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Electroencephalography (EEG) offers information about brain function relevant to
a variety of neurologic and neuropsychiatric disorders. EEG contains complex,
high-temporal-resolution information, and computational assessment maximizes our
potential to glean insight from this information. Here we present the Batch EEG
Automated Processing Platform (BEAPP), an automated, flexible EEG processing
platform incorporating freely available software tools for batch processing of multiple
EEG files across multiple processing steps. BEAPP does not prescribe a specified EEG
processing pipeline; instead, it allows users to choose from a menu of options for EEG
processing, including steps to manage EEG files collected across multiple acquisition
setups (e.g., for multisite studies), minimize artifact, segment continuous and/or event-
related EEG, and perform basic analyses. Overall, BEAPP aims to streamline batch
EEG processing, improve accessibility to computational EEG assessment, and increase
reproducibility of results.
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INTRODUCTION

Electroencephalography (EEG) offers tremendous opportunities as a window into brain function.
It offers potential in understanding large-scale neural network activity, and thus serves as a
bridge between neurons and behavior. It is translatable, providing opportunities to bridge between
animals and humans. It can be used in a variety of ages without requiring sedation, and in both
typical and clinical populations, facilitating data acquisition in populations (such as young infants)
who cannot follow instructions and have a limited behavioral repertoire. Its portability and relative
affordability allow it to be easily used for multisite studies, which is of particular utility when
studying rare diseases or acquiring large datasets.

Often the most productive research combines knowledge from two or more previously disparate
fields. EEG is of particular interest to researchers in fields such as neuroscience, psychology,
and development, given its ability to measure and thus enhance understanding of brain activity
across a wide variety of ages, settings, and disease states. Engineers, mathematicians, and computer
scientists have developed numerous signal processing techniques and tools applicable to the large
amount of EEG data even a short recording session can produce. In order to bridge these fields,
and thus maximize the insights that can be obtained from EEG data, brain researchers must be able
to access procedures and code created by experienced signal processors.

Open source toolboxes such as EEGLAB (Delorme and Makeig, 2004), FieldTrip (Oostenveld
et al., 2011) with SPM integrated (Litvak et al., 2011), Brainstorm (Tadel et al., 2011), MNE
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(Gramfort et al., 2014) with MNE-Python (Gramfort, 2013), and
NUTMEG (Tannous and Teng, 2011) offer myriad opportunities
in this regard. All of these toolboxes offer multiple advanced
options for EEG (as well as magnetoencephalography, MEG)
signal processing, with options to create analysis scripts for batch
processing across multiple processing steps and analyses, for
multiple EEG files.

Despite these important advances, accessibility of integrated
analyses remains limited in some cases. For users without
coding experience, creating an analysis script or pipeline may
be a daunting process. For users comfortable creating such
scripts, keeping track of the inputs, outputs, and specific settings
in various steps of an analysis can be challenging. This is
particularly a concern for users evaluating large multisite or
longitudinal datasets, in which native EEG format, sampling
rates, electrode layouts during acquisition, variable names, and
even line noise frequencies (for international studies) may differ
across files.

Additionally, reproducibility of analyses remains limited.
Among automated analyses, the computer code that researchers
use to generate data may link multiple software packages, set
parameters that are only partially reported in a “Materials and
Methods” section, and may not necessarily be saved or shared
(Peng, 2011). Furthermore, “hand-editing” of EEG data further
contributes to this concern, due to difficulties with human
error and judgment discrepancies. Allowing reviewers or other
researchers to exactly repeat prior analyses and review the details
thereof would help address this concern.

The Batch EEG Automated Processing Platform (BEAPP)
thus aims to aid accessibility and reproducibility by building
upon preexisting EEG analysis toolboxes to provide a flexible
structure for automated batch processing of EEG datasets.
Beginning with raw or partially preprocessed data, BEAPP
offers a series of automated steps to manage EEGs collected
across multiple acquisitions setups, minimize artifact, perform
several types of re-referencing, segment continuous and/or
event-related EEG, and conduct basic time-frequency analyses.
User inputs are determined in a single scripted user interface
or in a graphical user interface (GUI) that can be saved
as a template for future users, allowing users to determine
their analyses and parameters without writing their own code.
BEAPP tracks the output and parameters of each step of
the analysis, allowing users to review prior steps or re-
run a portion of the analysis with new parameters when
needed.

The remainder of this manuscript provides an overview of the
BEAPP format and current options, along with a series of sample
analyses of publicly available data. This manuscript is intended
to be used in conjunction with the BEAPP software package,
user manual, and new module creation starter guide, available as
described below.

MATERIALS AND METHODS

BEAPP is modular, MATLAB-based software, with user
inputs entered via a GUI or a script, and with functions in

script format. BEAPP is freely available, covered under the
terms of the GNU General Public License (version 3) (Free
Software Foundation, 2007). The BEAPP software package, user
manual, and new module creation starter guide are available at:
https://github.com/lcnbeapp/beapp. BEAPP is hosted on
GitHub, with the intention that users adding new functionality
will build upon the basic BEAPP structure, ultimately providing
shared functionality for EEG analysis across a variety of
laboratories and research studies. BEAPP integrates code
from several other EEG analysis toolboxes and pipelines,
including EEGLAB (Delorme and Makeig, 2004), the PREP
pipeline (Bigdely-Shamlo et al., 2015), the CSD toolbox (Kayser
and Tenke, 2006a,b), REST (Dong et al., 2017), Cleanline
(Mullen, 2012), FieldTrip (Oostenveld et al., 2011), MARA
(Winkler et al., 2014), and HAPPE (Gabard-Durnam et al.,
2018).

BEAPP is divided into four main steps, based on the
format of input and output data (Figure 1). Step 1 involves
converting native data into BEAPP format. Step 2 involves
preprocessing of continuous data, for minimization of
experimentally generated artifacts and standardization
across acquisition setups. Step 3 involves dividing continuous
data into segments for further analysis. Step 4 includes
several options for analyses themselves, particularly those
based on spectral decomposition. If users wish to input
pre-segmented native data, they may skip steps 2 and
3 and proceed directly to analysis. Of note, while steps
1 and 2 are conceptually separate and thus described
separately in the manuscript, within the GUI these steps
are combined under the “Format and Preprocessing”
option.

Within each step, the user can select any series of modules.
Within modules, further customizable options and parameters
are available. The user inputs offer a script-based or GUI-based
menu to determine whether to include each given module,
choose which options and parameters being used for that
module, and decide whether to save the output of that module.
Default parameters are offered to guide a beginning user, and
as an example of parameter input format. Outputs include
EEG data produced in that module, along with file-specific
and group-level information intended to allow a user to easily
keep track of how raw data have been altered, while avoiding
unnecessary redundancy that may lead to excessively large file
sizes.

The user guide contains detailed information about how
to prepare EEG data to be run through BEAPP, including
a “Start-Up Guide” for preparing an initial data run. This
includes information on ensuring a user has the software
necessary for running BEAPP, preparing the EEG files that
will be analyzed (in a format recognizable by BEAPP),
specifying any additional file-specific information not contained
within the original EEG files themselves (e.g., line noise
frequency), and setting the modules (and the options and
parameters within these modules) to be run on the data.
There is also a BEAPP “Module Creation Starter Guide”
provided with the BEAPP software, to help users add new
functionality.
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FIGURE 1 | Flowchart of BEAPP steps and modules. This figure provides an
overview of BEAPP. Each step is divided into modules, which contain
user-defined parameters. Modules are indicated by individual cells. Cell body
color indicates module input format, and cell outline color indicates module
output format. Green = native file format; Blue = EEG in continuous array;
Purple = EEG in segmented 3D array; Red = Output measure. For each
module, sample parameters are outlined in black.

Step 1: Formatting Data for BEAPP
Prior to running any processing, segmenting, or analysis
modules, BEAPP converts data from its native file format
into BEAPP file format. BEAPP can handle several native file
formats; details about how to prepare native files are included
in the user guide. BEAPP format includes a cell array labeled
eeg, which contains one matrix per recording period with
the relevant EEG data. Each row of the matrix contains the
amplitude of the EEG tracing for a particular channel, and
each column contains the amplitude of the EEG tracing at a
particular timepoint. For example, data obtained from an EEG
with 129 channels over 60 s, sampled at 500 Hz, would be a
129 × 30,000 matrix. BEAPP format also includes a variable
labeled file_proc_info, which contains key information specific to
a particular EEG, including electrode layout, event timing, and
sampling rate. As each file runs through the BEAPP platform,
details of what processing steps the EEG has undergone are also
included in file_proc_info. Of note, files in BEAPP format can
be converted to and from EEGLAB file format as needed, using
the batch_beapp2eeglab.m and batch_eeglab2beapp.m functions,
respectively.

Native continuous (unsegmented) EEG data, with tags
defining any events for later segmentation if necessary, provides
the greatest flexibility in terms of which modules can be run in
BEAPP. However, if users wish to provide preprocessed, pre-
segmented data to BEAPP for analysis, this can be accommodated
as well.

The formatting module requires users to provide BEAPP
with the native EEG data and additional necessary information,
including information about data type (baseline, event-tagged,
or conditioned baseline). For our purposes, “baseline” refers
to data that is continuously collected and not tied to any
particular stimulus or time point. (If any event tags happen
to exist in data marked as “baseline,” these tags will be
ignored in the analysis and will not determine how the data
are segmented). For many users, resting-state data may fit
these criteria. “Event-tagged” refers to data that, while perhaps
continuously collected, contains tags that specify a particular
stimulus or time point around which segmentation should occur.
This can be used for event-related potential (ERP) paradigms, for
example. “Conditioned baseline” refers to a hybrid of baseline
and event-tagged data, in which baseline data occurs between
event tags; this includes alternating or recurring sections of
baseline data. Resting data in which the eyes are intermittently
opened and closed, sleep stages, or data containing intermittent
epileptiform activity would often be of this data type. There
is also an option to specify whether particular “recording
periods” of data should be analyzed. In BEAPP, “recording
periods” refer to sections of continuous data in a non-continuous
data file. For example, if an EEG file contains one minute
of continuous data, followed by a break during which no
EEG was recorded, and then another minute of continuous
data, then each of these one-minute runs of continuous data
would be considered a recording period, and outputs would
be reported separately for each recording period. Additionally,
users provide information about electrode layout(s), line noise
frequency, sampling rate(s), event tag name(s), and event tag
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offset(s), all of which may differ across EEGs within a single
dataset.

Step 2: Preprocessing of Continuous
Data
In step 2 (preprocessing of continuous data), each module
involves input of a continuous EEG signal, and output of another
continuous EEG signal after modification by that module. The
first module the user selects utilizes the user-provided EEG as
its input, and each successive module that the user selects builds
upon changes to the EEG made in the prior module. As above, the
user can determine which modules to use, and which to turn off.

PREP Pipeline
In step 2, the first module offered is the PREP pipeline (Bigdely-
Shamlo et al., 2015). The PREP pipeline is offered first because
it was developed as a standardized early-stage preprocessing
pipeline, including line noise removal using the cleanline method
(Mullen, 2012), and robust average referencing with detection
and interpolation of bad channels relative to this reference.
Because line noise frequency varies by region (60 Hz in most of
North America, 50 Hz in most of Europe, Africa, and Australia,
and either 50 or 60 Hz in parts of South America and Asia), the
BEAPP user is offered the opportunity to specify expected line
noise frequency for their dataset in the formatting module, and
this is altered accordingly in PREP. For users who may wish to
evaluate data from multiple countries with potentially different
line noise frequencies, users also have the option to define line
noise frequency separately for each individual file. Since PREP is
intended to be a standardized pipeline, optional input parameters
for PREP through BEAPP are otherwise intentionally limited,
although an advanced user could manually make changes directly
within PREP as needed. Outputs include information about a
variety of variables determined by the PREP pipeline, including
whether any errors were encountered, and which channels PREP
interpolated.

Filtering
Users may next use the filter module to apply their choice of
high pass, low pass, and/or notch filtering steps, and can set the
frequency parameters for each of these. BEAPP currently uses
the EEGLAB eegfiltnew function for the high pass, low pass, and
notch filters in this module, pulling in file-specific EEG data and
sampling rate. Cleanline (Mullen, 2012) is also available for line
noise removal.

Several checks are included in this module. First, since the
user is offered the opportunity to later resample after filtering,
BEAPP verifies that the minimum allowed sampling rate (after
resampling) will not be less than twice the maximum frequency
of the low pass filter, in order to avoid aliasing during resampling.
(Of note, given imperfections in a typical filter, we would in fact
recommend that the low pass filter be set below, rather than
at, the Nyquist frequency of the resampling rate). Alternatively,
if data in a particular file is sampled at a rate lower than the
maximum good frequency in the low pass filter, filtering is
skipped for that file. User notifications are generated in both of
these cases, although the pipeline will continue running.

Typically a user will opt to remove line noise using either
a notch filter or cleanline, but not both. Of note, cleanline is
applied in both the PREP pipeline and the HAPPE pipeline (part
of the ICA module, and described in companion paper; Gabard-
Durnam et al., 2018); therefore, users applying PREP or HAPPE
to their data will likely opt to turn both notch filtering and
cleanline steps off in this module. By default, if the notch filter
or cleanline are turned on, they will target frequency components
in the range of the user-defined line noise.

Resampling
The next module offered is resampling. Users are currently
offered the option to resample using interpolation via the
MATLAB interp1 function. While resampling can be used for
any number of reasons, in BEAPP its primary utility is likely
to standardize sampling rates across multiple acquisition setups
(and hence potentially multiple acquisition sampling rates), by
downsampling those EEGs collected at higher sampling rates to
match the EEGS collected at lower sampling rates.

Independent Components Analysis (ICA)
BEAPP includes an ICA module, which provides three options
for applying ICA to a dataset. One option is ICA alone,
which decomposes the data from selected channels into a series
of components maximizing temporal independence from one
another. BEAPP employs the extended infomax ICA algorithm
(with pre-whitening) to account for sources with subgaussian or
supergaussian activity distributions (Lee et al., 1999). Relative
to other ICA algorithms and decomposition methods, this
ICA algorithm has been shown to be useful for decomposing
electrophysiological signals like EEG (Delorme et al., 2007).
If the user chooses this option, the EEG run through the
remainder of BEAPP will include these components in place
of channels, although the format (and variable names) will
otherwise remain unchanged. Users may choose this option
if they wish to analyze a particular component or series of
components.

As a second option, if users wish to use ICA for artifact
rejection, they may choose the option for ICA with a multiple
artifact rejection algorithm (MARA). While details of MARA
are described elsewhere (Winkler et al., 2011, 2014), it is worth
noting that MARA has been shown to identify multiple types
of artifact (including that from muscle and eye movements)
for rejection in an automated manner, and can be applied
to different electrode placements. While other options for
automated artifact detection could be added in the future, we
began with MARA because of its fully automated approach,
its generalizability across participants and EEG acquisitions,
and its ability to detect multiple classes of artifacts (rather
than being restricted to a single artifact type). For users
who wish to visualize the components that MARA selects
for rejection, or manually select alternative components for
rejection, a visualization option is provided; however, users
should note that this addition of a manual step may decrease
reproducibility of the otherwise automated EEG processing in
BEAPP.
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Of note, although there is still much empirical research
to be done on processing steps and data parameters to
optimize ICA performance (e.g., filtering settings, data quality,
downsampling), ICA works best under several conditions. ICA
performs optimally when data has been high pass filtered to
remove non-stationary signal, and low-pass filtered to remove
frequencies outside the range of biological sources (e.g., 250 Hz
by some accounts) (Winkler et al., 2014). To avoid sensitivity to
slow drift, high pass filtering at 0.5 Hz, or up to a maximum 2 Hz,
is also recommended. While empirical testing is limited, it is also
often recommended that for a given number of channels c and
number of data samples s:

s ≥ x ∗ c2

where x is a minimum of 20–30. This is to avoid overlearning
and generate a robust, stable ICA signal decomposition (Särelä
and Vigário, 2003). Users should take into account any down-
sampling from the raw data when calculating their (effective)
data samples. A large number of data samples and seconds of
EEG data are necessary but not sufficient to guarantee robust
ICA decomposition; therefore, these may serve as preliminary
guidelines in combination with the abovementioned parameters.

MARA works best with epochs that are at least 15 s long,
and suboptimal results may occur if data is high pass filtered at
frequencies greater than 2 Hz or low pass filtered at frequencies
less than 39 Hz. MARA calculates several metrics as part of its
artifact detection algorithm that use spatial information from
the 10–20 electrodes (or their equivalents), so users wishing to
apply MARA should have channel locations with known 10–
20 channel equivalents. Accordingly, within BEAPP, ICA/MARA
currently runs on any channels in the acquisition layout whose
placement corresponds to an electrode in the 10–20 system,
and on any additional channels defined by the user to achieve
the relationship between channels and samples as described
above.

As a third option (and, if the user chooses, as an
alternative to the other modules in step 2), the user also
has the opportunity to run the HAPPE pipeline within
BEAPP. HAPPE is described in a companion manuscript
to this one (Gabard-Durnam et al., 2018), and is targeted
toward artifact removal for EEG data collected from young
children, those with neurodevelopmental disorders, or other
EEG data with short recording lengths or high levels of
artifact contamination. HAPPE includes highpass filtering at
1 Hz (bandpass filtering 1–249 Hz for EEGs sampled at
500 Hz or higher), cleanline for line noise removal, automated
bad channel detection and removal, wavelet-enhanced ICA
(W-ICA) and ICA with MARA component rejection for
artifact removal, interpolation of bad channels, and referencing
to average or single-channel or channel subset references.
In the segmentation step of BEAPP, HAPPE also offers
specific segmentation options, including automated segment
rejection. HAPPE produces a single summary report across
all EEGs of data quality metrics for each EEG to facilitate
evaluation of files for inclusion in further analysis and to
assess HAPPE performance on the data. For further details,

see the companion paper on HAPPE (Gabard-Durnam et al.,
2018).

Re-referencing
BEAPP then offers several options for re-referencing data. One
referencing option is the infinity reference obtained by the
reference electrode standardization technique (REST) (Yao, 2001,
Yao et al., 2005; Dong et al., 2017), which is provided since
multiple studies have recently found performance of REST to
be superior to other referencing techniques (Chella et al., 2017;
Huang et al., 2017; Lei and Liao, 2017; Liang et al., 2017).

If users prefer, data can be referenced to average at this stage.
(Of note, average referencing does not need to be repeated at this
stage if native data was average referenced, or if either PREP or
HAPPE were already run on a dataset, because these pipelines
output average referenced data). Data can also be referenced to
a single channel or user-defined channel subset. Alternatively,
data can be Laplacian referenced, using the CSD toolbox (Kayser
and Tenke, 2006a). The Laplacian transform is well-regarded
by many signal processors for its ability to help counteract the
negative effects of volume conduction and recording reference
(Kayser and Tenke, 2015) as well as muscle artifact (Fitzgibbon
et al., 2013); additionally, Laplacian and average referencing
can provide complementary information, as these techniques
allow for targeted analysis of localized and widespread activity,
respectively (Levin et al., 2017b).

There is a complex relationship between referencing and
channel interpolation. A channel with poor signal quality (e.g.,
an electrode that was not appropriately attached to the head)
can significantly alter the appearance not only of its own tracing,
but also the tracing of any channels referenced to it. Therefore,
such channels are often interpolated prior to re-referencing.
However, interpolation itself depends on data in the surrounding
channels; if more than one channel has poor signal quality, signal
in an interpolated channel may have persistently poor quality.
Additionally, determination of which channels have poor signal
quality may differ depending upon the reference type being used.

To address this concern, BEAPP offers several options. As
one option, users may opt to use the PREP pipeline (Bigdely-
Shamlo et al., 2015), which includes a robust re-referencing
procedure. This procedure involves iterative estimation of the
average referenced signal, identification and interpolation of bad
channels relative to this average referenced signal, and then
re-estimation of the average referenced signal. This process
is continued until iteratively alternating between these two
processes no longer changes which channels are identified as
requiring interpolation. Alternatively, users may opt to use
ICA with MARA or HAPPE prior to re-referencing; in both
of these options, for high-density EEG only a subset of the
original channels are typically maintained (given limitations on
the relationship between number of channels, which informs
the number of ICA components, and number of data samples)
(Makeig and Onton, 2011). Within this subset of channels,
HAPPE identifies channels with poor signal quality and removes
them before running ICA. ICA with MARA (either on its own or
as part of HAPPE) then essentially acts upon remaining channels
in the user-defined subset to minimize artifact while maintaining
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underlying signal. Any channels within the subset that had been
removed earlier in processing are then interpolated. After PREP,
ICA with MARA, or HAPPE, users can choose either to maintain
any interpolated channels as they are, or remove any interpolated
channels (substituting their data with NaN) so that they are not
included in re-referencing and further steps.

Detrending
The final module currently offered in the preprocessing step
of BEAPP is a detrending option. Currently users may choose
mean, linear, or Kalman detrending. While mean or linear
detrending will likely suffice for most users, Kalman detrending
has been used for removal of artifact from transcranial magnetic
stimulation (Morbidi et al., 2008) and ballistocardiogram (In
et al., 2006), as well as epileptic spike detection (Tzallas et al.,
2006). Kalman filtering works within a Bayesian framework, uses
surrounding information to estimate the state of a process, and
thus estimate the noise to be removed from the signal. (Kalman,
1960). Notably, “detrending” in this module refers to processing
of the continuous EEG. A separate option for detrending within
individual segments is also available in step 3.

Step 3: Division of Data Into Segments
In step 3 (division of data into segments), the input is a
continuous EEG signal. This is typically the last EEG signal
output from step 2 after preprocessing is complete, although users
who have preprocessed their data outside of BEAPP may choose
to proceed directly to step 3 after formatting. The output is a
series of EEG segments, which are ready for the analyses offered
in step 4.

During the segmentation step, users may specify whether to
treat data as baseline data, event-related data, or conditioned
baseline data and whether any additional processing (e.g., within-
segment detrending) takes place. Additionally, this step allows
the user to provide rejection criteria for each segment.

Event-Related Data
For event-related EEG, the data segments created are time-locked
to a stimulus or other marked event (hereafter “stimulus” will
refer to all cases of an event). The user can define the event
code for this stimulus of interest, and specify segment start and
end times in relation to the stimulus. Start and end times can
be negative or positive, for situations in which the user would
like segments to include data before or after stimulus offset,
respectively. If the timing of the event code is offset from the
true stimulus delivery time (e.g., due to transmission delays in
the stimulus presentation setup), the user can define this offset
in the formatting module. If offsets are not uniform across the
dataset, the user can provide a table that defines the offset for each
individual file. Once segments are created, the user can choose
whether to run a within-segment linear detrend. “Bad” segments
can be rejected if data in any channel crosses an amplitude
threshold set by the user, or using rejection criteria defined
in HAPPE, which includes both amplitude thresholding and
assessment of segment likelihood (where artifact-contaminated
segments should be less likely than good segments) using

joint probability calculations (both across segments for a single
channel and across channels for a single segment).

Of note, this initial creation of segments is used primarily
for within-segment preprocessing, and for determining which
segments to reject. The user is not obligated to analyze all of the
data within a segment once a segment has been created, however.
In the analysis step (described below), the user can choose a
sub-segment upon which to focus their analyses. This may be
particularly useful for users who wish to baseline correct event-
related data to a pre-stimulus baseline, or users who wish to run
separate analyses on a series of sub-segments (e.g., early and late
responses to a stimulus).

Baseline Data
For baseline data, the user defines the length of segments to be
created, and BEAPP creates a series of non-overlapping segments
from the available data. Amplitude thresholding or HAPPE-based
thresholding for segment rejection can occur after BEAPP divides
the full EEG into segments, in a manner identical to event-related
segment rejection (Figure 2A). Alternatively, BEAPP offers an
option to use amplitude thresholding to first identify segments
of unusable data within the continuous EEG, and then create
segments from the remaining data. For this purpose, BEAPP’s
definition of unusable data is intended to closely match common
hand-editing practices, which aim to identify high-amplitude
data and its surrounding rise and fall. Upon identifying any data
point that is above threshold, BEAPP determines the nearest
zero-crossing before and after that data point. Above-threshold
segments are then defined as beginning and ending at the
nearest zero-crossings, rather than only including the narrower
windows of time where data is suprathreshold. BEAPP creates
a mask marking segments of data in which any channel is
above threshold (as defined by the zero-crossing start and end
points), and then creates segments from the remaining data
(Figure 2B).

Regardless of whether segment rejection occurs before or after
segmentation, non-continuous data are not concatenated in any
way, given concerns about data integrity with concatenation.
Data is divided into the maximum possible number of segments
of user-specified length, but any remaining data at the end of each
useable segment, if it is too short to create its own segment, is
excluded from analysis.

Conditioned Baseline Data
As described above, conditioned baseline data is essentially a
hybrid of baseline and event-tagged data, in which baseline data
occurs between event tags. The user specifies the event tags that
signify onset and offset of conditioned baseline periods. Then,
as for baseline data, the user defines the length of segments to
be created, and BEAPP segments the data between event tags
accordingly.

Further Processing of Segments
Once segments have been created, BEAPP also offers an option
for within-segment detrending. All of the analyses described
below can then be run on a segment in its entirety, or on a sub-
segment. For event-related data, users have the option to baseline
correct one portion of the segment (typically a post-stimulus
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FIGURE 2 | Segmentation and amplitude thresholding. Channels are arranged vertically, with horizontal channel reference lines in cyan. For clarity, only those
channels that are part of the 10–20 system, and those channels that cross the amplitude threshold in this portion of the EEG, are shown here. EEG tracings for each
channel are in black. Reference lines are spaced by 100 µV, equal to amplitude threshold, so that above-amplitude portions of tracing cross another channel’s
reference line. Dark blue vertical lines indicate segment boundaries; in this example, 1 s segments are created from continuous data. Sample data here are from
baselineEEG08.mat, samples 13,250:15,750, after PREP, filtering (1 Hz high pass, 100 Hz low pass), and mean detrending. (A) Amplitude thresholding after
segmentation. Pink patches demonstrate segments rejected because at least one channel crosses the artifact threshold. Portions of the EEG tracing that are above
the amplitude threshold (and thus lead a segment to be rejected) are in red. Blue patches demonstrate good segments to be analyzed. (B) Amplitude thresholding
before segmentation. Pink patches demonstrate segments rejected because at least one channel crosses the artifact threshold; length of segment spans from
zero-crossing before the segment crosses the artifact threshold to zero-crossing after the segment crosses the artifact threshold. Portions of the EEG tracing that are
above the amplitude threshold, extending out to the zero-crossing on either side (thus determining the boundaries for rejected segments) are in red. Blue patches
demonstrate good segments to be analyzed. White patches demonstrate remaining segments of good data that are too short for analysis.
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portion) to another portion of the segment (typically a pre-
stimulus portion) prior to running analyses on a sub-segment.

Step 4: Analyses
In step 4 (analyses), the inputs are the segmented EEG. Outputs
are the results of analyses themselves. For each file, detailed
outputs are reported in MATLAB, for users who wish to run
further analyses on their own. Additionally, several summary
outputs are output into a .csv file, for users who do not desire
any further post-processing. Several basic analyses are currently
offered in BEAPP. Users may also use the preprocessed data
output from step 2 or segmented data output from step 3 as a basis
for performing other analyses outside of BEAPP, if they prefer.

Power Spectrum
Spectral power is initially calculated on each segment or sub-
segment created as above. Several options are offered for a how
a power spectrum is calculated.

If the user opts to use a rectangular window or Hanning
window, power is calculated by Fast Fourier Transform, using
the fft function (Frigo and Johnson, 1998) in MATLAB. Each
segment is zero-padded with trailing zeros to the nearest power of
2, as recommended by MATLAB to increase the performance of
fft when the number of samples in a given segment is not a power
of 2. This creates a double-sided power spectrum, with complex
fft values. For a single side of this spectrum eeg_wf, absolute
power eeg_wfp is then calculated for each segment, for given
sampling rate sr and segment length (in samples) l, as follows:

eeg_wfp =
2∗|eeg_wf |2

l∗sr

If the user opts to use a multitaper method (Thomson, 1982) to
calculate the power spectrum, they can choose the number of
tapers to apply. The power spectrum is then calculated using the
MATLAB pmtm function.

Inter-Trial Phase Coherence
Inter-trial phase coherence (ITPC), a measure of the extent to
which an EEG signal is phase-locked to repeated time-locked
events (Makeig et al., 2004), can be calculated across segments
as well. This calculation uses the EEGLAB newtimef.m function.
For each event condition and each channel, phase coherence
is calculated across all segments, across relevant spectral time
windows (determined by user-defined subwindow length) and
frequency bins. Outputs of this module are complex numbers,
which include information about ITPC magnitude (absolute
value of the complex number) and phase (angle of the complex
number).

Summary Outputs
After each run of one or more files across one or more modules,
BEAPP creates a folder called “out,” which contains detailed
information summarizing the run. This includes a MATLAB
structure specifying the user inputs and run settings that were
common to all files included in a given run; of note, maintaining
this information in its own file, rather than repeated within each
individual EEG file, helps with management of data size (see

below). There is also a file detailing the text output from the
command window. Summary information is included in this
folder for certain modules as well. For example, a .csv file contains
summary information about files run through PREP, including
whether any errors occurred and how many bad channels PREP
detected. A separate .csv file contains summary information
generated through HAPPE.

The output folder also includes summary information about
analyses conducted. For analyses in the frequency domain, data
can be binned into any number of frequency bands defined by
the user. For power analyses, optional outputs in .csv format
include mean power across all segments in each channel at each
frequency band, as well as absolute power, normalized power,
natural log of power, and log10 of power. For ITPC analyses, .csv
outputs can include the maximum and/or mean ITPC magnitude
for each channel. Analysis-generated .csv outputs also include
general information relevant to interpretation of these outputs,
such as the original EEG’s net type (EEG electrode layout),
original sampling rate, current sampling rate (for resampled
data), information about recording periods run (for original
EEGs that included multiple recording periods), information
about channels marked bad, and number of data segments
analyzed.

Management of Data Size
When running large EEG datasets and saving outputs at multiple
processing modules, the amount of data being generated may
rapidly become a burden. BEAPP addresses this concern in
several ways. First, users are given the option of whether to save
output of each module. If a user does not intend to review outputs
of a specific module, or if outputs of a given module can be rapidly
reproduced if needed in the future, users may choose to have
BEAPP automatically delete these outputs. Outputs aim to strike
a balance between maintaining adequate information to allow a
user to easily keep track of how raw data have been altered and
avoid unnecessary redundancy that may lead to excessively large
file sizes.

Sample Data Files
The specific examples in this manuscript come from application
of BEAPP to EEG data collected through the Infant Sibling
Project (ISP), a prospective investigation examining infants at
high versus low familial risk for autism spectrum disorder over
the first 3 years of life. This dataset was chosen because the
longitudinal nature of the study led to data collection with
different sampling rates (250 and 500 Hz) and acquisition
setups (64-channel Geodesic Sensor Net v2.0, and 128-channel
HydroCel Geodesic Sensor Net, both from Electrical Geodesics,
Inc., Eugene, OR, United States). Additionally, because young
children cannot follow instructions to “rest” or remain still, EEG
in these children typically contains greater amounts of artifact
than EEG in typical adults. Baseline EEG data was collected
while a young child sat in a parent’s lap watching a research
assistant blow bubbles or show toys (Levin et al., 2017b). Event-
related EEG data was collected using an auditory double oddball
paradigm, in which a stream of consonant-vowel stimuli was
presented. Stimuli included a “Standard” /d̨a/ sound 80% of the
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time, “Native” /ta/ sound 10% of the time, and “Non-Native”
/da/ sound 10% of the time (Seery et al., 2014). To demonstrate
applications of BEAPP to analysis of group data, a subset of the
full ISP dataset, containing 10 baseline EEGs and 10 event-related
EEGs, is available at zenodo.org (Levin et al., 2017a) Details
regarding the baseline EEGs are provided in Table 1, and details
regarding the event-related EEGs are provided in Table 2. Data
were collected in the United States, with 60 Hz line noise. This
study was carried out in accordance with the recommendations of
the Institutional Review Board at Boston University and Boston
Children’s Hospital, with written informed consent from all
caregivers prior to their child’s participation in the study.

RESULTS

Data were run on a standard iMac (late 2015, 4 GHz Intel Core
i7 processor, macOS X El Capitan version 10.11.6). BEAPP was
initially created and tested in MATLAB 2016a, although data here
were run using MATLAB 2017b.

Testing BEAPP on a Sample Dataset:
Baseline DATA, Power Spectrum
We ran BEAPP on a sample dataset of 10 baseline EEGs, as
described above. Data ran through BEAPP for a variety of
module combinations. A Supplementary File 1 describing the
exact settings for each of these analyses is included with this
manuscript. Of note, the formatting and PREP modules were only
run once each; the order of runs described above and in the table
allowed subsequent runs to take advantage of these modules from
prior runs.

Power spectra generated with each of these configurations
are shown in Figure 3. Power from the “Raw” data (after
segmentation into 1 s segments without artifact rejection) is
shown in black. After the PREP pipeline, which involves cleanline
and robust average referencing, 60 Hz line noise is reduced
(though not fully eliminated), and power is reduced across
frequencies (red). After the “Filt” run (green), there is a reduction
in power below 4 Hz with some extension into higher frequencies,
due to the 4 Hz high pass filter. There is a reduction in power
above 80 Hz, due to the 80 Hz low pass filter. There is a reduction
in power at and near 60 Hz, due to the 60 Hz notch filter. After the
HAPPE run (dark blue), there is a significant reduction in power
across all frequencies as is expected with HAPPE preprocessing
(Gabard-Durnam et al., 2018), reduction in 60 Hz line noise
power (since HAPPE includes cleanline), and some reduction
in power just above 1 Hz and just below 100 Hz, due to high
and low pass filters respectively occurring at these frequencies.
With CSD rereferencing (pink) after the PREP pipeline and 1–
100 Hz filtering, the power spectrum takes on the shape expected
from these preprocessing steps, but with increased power across
frequencies overall. (Of note, power units for CSD are µV2/mm2,
whereas power units are otherwise in µV2). MskArt (light blue)
and RejPostSeg (purple), with artifact thresholding taking place
before and after segmentation respectively, give relatively similar
results to one another; REST (orange) also gives similar results.

TABLE 1 | Baseline EEG information.

File name Sampling Net type

rate

“baselineEEG01.mat” 250 “HydroCel GSN 128 1.0”

“baselineEEG02.mat” 250 “Geodesic Sensor Net 64 2.0”

“baselineEEG03.mat” 250 “Geodesic Sensor Net 64 2.0”

“baselineEEG04.mat” 250 “HydroCel GSN 128 1.0”

“baselineEEG05.mat” 250 “HydroCel GSN 128 1.0”

“baselineEEG06.mat” 250 “HydroCel GSN 128 1.0”

“baselineEEG07.mat” 250 “HydroCel GSN 128 1.0”

“baselineEEG08.mat” 500 “HydroCel GSN 128 1.0”

“baselineEEG09.mat” 500 “HydroCel GSN 128 1.0”

“baselineEEG10.mat” 500 “HydroCel GSN 128 1.0”

TABLE 2 | Event-tagged EEG information.

File name Sampling Net type Offset

rate

“auditoryEEG01.mff” 250 “HydroCel GSN 128 1.0” 0

“auditoryEEG02.mff” 250 “Geodesic Sensor Net 64 2.0” 0

“auditoryEEG03.mff” 250 “Geodesic Sensor Net 64 2.0” 0

“auditoryEEG04.mff” 250 “HydroCel GSN 128 1.0” 0

“auditoryEEG05.mff” 250 “HydroCel GSN 128 1.0” 0

“auditoryEEG06.mff” 250 “HydroCel GSN 128 1.0” 0

“auditoryEEG07.mff” 250 “HydroCel GSN 128 1.0” 8

“auditoryEEG08.mff” 500 “HydroCel GSN 128 1.0” 18

“auditoryEEG09.mff” 500 “HydroCel GSN 128 1.0” 18

“auditoryEEG10.mff” 500 “HydroCel GSN 128 1.0” 18

While the exact amount of time each step requires will depend
on multiple factors (e.g., file size, computer specifications, etc.),
approximate benchmarks for the computer described above are
provided here for transparency. On average for each file, modules
took the following amounts of time: Format <10 s, PREP 1.5 min,
filter <10 s, resample <10 s, HAPPE 3.5 min, CSD 30 s,
REST <10 s, detrend <10 s, segment <10 s, PSD <10 s.

Testing BEAPP on a Sample Dataset:
Event-Tagged Data, ITPC
We next ran BEAPP on the sample dataset of 10 event-
tagged EEGs. Processing steps after formatting included the
PREP pipeline, filtering 1–100 Hz, resampling to 250 Hz,
CSD rereferencing, mean detrending, segmenting from −100
to 800 ms in relationship to the event tag for each “Standard”
stimulus (taking into account system offsets, which had not been
accounted for in the original event tags), and evaluation ITPC
across multiple overlapping windows of 256 ms each, and across
multiple frequency bands. On average, the ITPC module took
30 s per file. Figure 4 plots the outcome of this analysis for the
frontocentral channel demonstrating maximum ITPC in each
EEG. There is a peak in ITPC in the 150–300 ms time windows,
across multiple frequencies, for most of the sample EEGs. Of
note, this finding overlaps exactly with the time windows in which
one expects a positive-going P150 component in event-related
potential (ERP) analyses of young children (Seery et al., 2014).
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FIGURE 3 | Power spectra generated by various preprocessing pipelines. Power spectra for each continuous EEG are shown on a log10-log10 scale. Power units
are in µV2, except CSD (pink) which is in µV2/mm2. Each line shows the mean power spectrum generated across all channels. After specified processing, data were
segmented into 1 s windows. No additional artifact rejection occurred prior to power analysis, unless otherwise specified. Black: Raw data. Red: PREP pipeline.
Green: “Filt.” (Filtering 4 Hz high pass, 80 Hz low pass, 60 Hz notch). Dark blue: HAPPE pipeline (Filtering 1–100 Hz, resampling to 250 Hz, HAPPE pipeline with
associated segment rejection). Pink: CSD (PREP pipeline, filtering 1–100 Hz, CSD rereferencing, mean detrending, artifact thresholding at 3,000 µV2/mm2 prior to
segmentation). Orange: REST (PREP pipeline, filtering 1–100 Hz, REST rereferencing, mean detrending, artifact thresholding at 100 µV2 prior to segmentation). Light
blue: MskArt (PREP pipeline, filtering 1–100 Hz, resampling to 250 Hz, mean detrending, artifact thresholding at 100 µV2 prior to segmentation). Purple: Same
settings as MskArt, but with artifact thresholding after segmentation.

DISCUSSION

BEAPP automates batch EEG processing and analyses across
multiple EEGs (including those collected across multiple
acquisition setups) and multiple processing steps. Rather than
prescribing a specified set of processing steps, BEAPP allows users
to choose from a menu of options that meet their needs.

BEAPP has two primary goals. The first is accessibility. BEAPP
aims to provide a bridge, allowing researchers studying the
brain to more easily access some of the most useful tools that
experienced signal processors have created, by replicating others’
analysis pipelines or creating their own. To this end, BEAPP
aims to strike a balance between assuming only a basic level
of MATLAB and EEG signal processing experience, while also
offering a flexible menu of opportunities for more advanced
users.

The second primary goal is reproducibility. By allowing
improved accessibility of methods and workflows across
execution environments, BEAPP aims to improve reproducibility
within experiments, replicability across experiments, and
collaboration across laboratories.

Several limitations of BEAPP merit discussion. First, while
BEAPP provides flexibility for running a variety of modules
with a variety of user-specified parameters, BEAPP does not

prevent an inexperienced user from running incorrect sequences
of analyses, or setting meaningless parameters. For example,
a user running the PREP or HAPPE pipelines within BEAPP
will need to have adequate knowledge of these pipelines (either
through reading their companion manuscripts, or through the
BEAPP user guide) to know that these pipelines include cleanline
and average referencing; therefore, such steps do not need to be
run separately in other modules. As another example, running
ITPC on baseline data would produce outputs, but the meaning
of such results (since data segments would not be tied to
any particular stimulus) would be questionable. In many cases,
tips to avoid such errors are included in the user guide, or
within the user inputs themselves. BEAPP also contains flags to
help avoid certain errors (such as unintentionally overwriting
previously generated data when running modules with a new set
of parameters). However, as is often the case with customizable
software, such errors are not fully avoidable.

BEAPP is currently also limited in the scope of processing
techniques that it offers. The processing algorithms contained in
other software packages are numerous and tremendously useful,
and BEAPP incorporates only a small subset of the tools available.
In its current form, BEAPP therefore acts predominantly as
a basic structure for EEG data analysis and tracking, upon
which other parameters, modules, and options can be added

Frontiers in Neuroscience | www.frontiersin.org 10 August 2018 | Volume 12 | Article 513

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00513 August 6, 2018 Time: 16:19 # 11

Levin et al. BEAPP

FIGURE 4 | Inter-trial phase coherence for event-tagged data. ITPC for each event-tagged EEG is shown on a surface plot. Color demonstrates magnitude of ITPC
at each time window, for each frequency band. ITPC for the frontocentral channel demonstrating maximum ITPC (across all time windows centered 100–300 ms
after stimulus onset, and across all frequency bands) is plotted for each EEG; thus each plot contains data from only one channel.

in the future. Future additions to BEAPP would likely include
additional options for managing a wider variety of native file
types, compatibility with the Brain Imaging Data Structure
(BIDS) (Gorgolewski et al., 2016), improved efficiency through
parallel processing, additional analysis options (e.g., coherence,
phase lag index, and phase amplitude coupling), and display
options (e.g., topoplots). Rather than a fixed pipeline, BEAPP
is intended to offer a framework that a beginning user can
use for batch EEG data processing, and upon which a more
advanced user can build in additional options for preprocessing
and analysis.

Overall, BEAPP aims to provide a structure to streamline
batch processing of EEG across multiple preprocessing and
analysis steps, and across multiple EEGs in a dataset (including
EEGs with differing acquisition setups). Long term goals of this
structure include improved accessibility to EEG analysis across
fields, and improved reproducibility thereof.
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