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In this work, we propose a Spiking Neural Network (SNN) consisting of input neurons

sparsely connected by plastic synapses to a randomly interlinked liquid, referred to as

Liquid-SNN, for unsupervised speech and image recognition. We adapt the strength

of the synapses interconnecting the input and liquid using Spike Timing Dependent

Plasticity (STDP), which enables the neurons to self-learn a general representation of

unique classes of input patterns. The presented unsupervised learning methodology

makes it possible to infer the class of a test input directly using the liquid neuronal spiking

activity. This is in contrast to standard Liquid State Machines (LSMs) that have fixed

synaptic connections between the input and liquid followed by a readout layer (trained in

a supervised manner) to extract the liquid states and infer the class of the input patterns.

Moreover, the utility of LSMs has primarily been demonstrated for speech recognition. We

find that training such LSMs is challenging for complex pattern recognition tasks because

of the information loss incurred by using fixed input to liquid synaptic connections.

We show that our Liquid-SNN is capable of efficiently recognizing both speech and

image patterns by learning the rich temporal information contained in the respective

input patterns. However, the need to enlarge the liquid for improving the accuracy

introduces scalability challenges and training inefficiencies. We propose SpiLinC that is

composed of an ensemble of multiple liquids operating in parallel. We use a “divide and

learn” strategy for SpiLinC, where each liquid is trained on a unique segment of the

input patterns that causes the neurons to self-learn distinctive input features. SpiLinC

effectively recognizes a test pattern by combining the spiking activity of the constituent

liquids, each of which identifies characteristic input features. As a result, SpiLinC offers

competitive classification accuracy compared to the Liquid-SNN with added sparsity in

synaptic connectivity and faster training convergence, both of which lead to improved

energy efficiency in neuromorphic hardware implementations. We validate the efficacy

of the proposed Liquid-SNN and SpiLinC on the entire digit subset of the TI46 speech

corpus and handwritten digits from the MNIST dataset.
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1. INTRODUCTION

SNNs are a class of bio-inspired neuromorphic computing
paradigm that closely emulate the organization and
computational efficiency of the human brain for complex
classification and recognition tasks. Several SNN architectures
have been independently proposed for learning visual and
auditory signal modalities. Two-layered fully-connected SNN
(Diehl and Cook, 2015) and shallow/deep convolutional SNN
(Masquelier and Thorpe, 2007; Lee et al., 2016, 2018a,b; Panda
and Roy, 2016; Tavanaei et al., 2016; Panda et al., 2017a; Ferré
et al., 2018; Jin et al., 2018; Kheradpisheh et al., 2018; Thiele
et al., 2018; Wu et al., 2018) have been demonstrated for visual
image recognition. On the other hand, reservoir (Lukoševičius
and Jaeger, 2009) or liquid computing models (Maass et al., 2002,
2003; Panda and Srinivasa, 2018) have been shown to encode
time-varying speech and video data, where subsequent inference
entails supervised algorithms. Each class of applications
essentially requires separate hardware implementations. Hence,
it is highly desirable to have a general computing model capable
of processing different signal modalities using a uniform
self-learning methodology.

In this work, we propose a general computing model referred
to as the Liquid-SNN, consisting of input neurons sparsely
connected by plastic synapses to a reservoir of spiking neurons
termed liquid, for unsupervised learning of both speech and
image patterns. The liquid, whose architecture is inspired by
neural microcircuits in the cerebral cortex (Maass et al., 2003),
consists of excitatory and inhibitory neurons interlinked in a
sparse random manner. The recurrent connectivity and the non-
linear neuronal dynamics enable the liquid to generate high
dimensional spike patterns (liquid states) for varied inputs.
Standard liquid computing models (Maass et al., 2002, 2003)
have fixed synaptic connectivity between the input and excitatory
neurons, which leads to random liquid projections that are
extracted by a readout layer. In order to empower the liquid to
produce states correlated with the input patterns, we adapt the
input to liquid synaptic weights using STDP in our Liquid-SNN.
This sensitizes individual excitatory neurons to unique input
classes, which facilitates unsupervised learning and inference
without a readout layer. The presented learning methodology
renders the liquid capable of recognizing time-varying speech
inputs as well as static image patterns. Further, we experimentally
demonstrate uniform recurrent connectivity across different
kinds of applications, which is a testament to the universality
of our Liquid-SNN. However, the Liquid-SNN suffers from
scalability challenges due to the need to primarily increase the
number of neurons to enhance the classification accuracy. To this
effect, we propose Spiking Liquid-Ensemble Computing, referred
to as SpiLinC, which is composed of a distributed arrangement of
multiple liquids operating in parallel. SpiLinC incorporates the
principle of ensemble learning to recognize an input pattern by
training the constituent liquids to extract low-level characteristic
features. Thus, SpiLinC is a universal as well as a scalable
computing framework that can achieve efficient feature learning.

Liquid State Machine (LSM), a well established liquid
computing model, consists of an input layer sparsely connected

via synapses whose weights are fixed a priori to a liquid followed
by a readout layer trained using supervised algorithms (Auer
et al., 2002; Verstraeten et al., 2005b) to periodically extract the
liquid states and infer the class of an input pattern. We note that
unsupervised training of the liquid to readout connections using
STDP would increase the network complexity by necessitating
larger number of readout neurons with lateral inhibition.
Moreover, LSMs have primarily been demonstrated for speech
recognition. We find that training such LSMs is challenging
for image recognition applications that have sufficient intra-
class differences and inter-class similarities. The complex datasets
negatively impact the ability of a liquid to produce linearly
separable states for distinct input classes. Prior research efforts
attempted to improve the liquid efficacy by evolving the recurrent
connections (Norton and Ventura, 2010; Yin et al., 2012; Xue
et al., 2013; Chrol-Cannon and Jin, 2015; Roy and Basu, 2016;
Bellec et al., 2018), which nonetheless require a readout layer.
Recently, Panda and Roy (2017) demonstrated a liquid capable of
sequence generation (specifically, words) without using a linear
readout and relying on the dynamics of the liquid obtained
by learning the recurrent connections to perform character-by-
character prediction.While our work is complementary to that of
Panda and Roy (2017) and prior LSM efforts, we relax the burden
of training the recurrent connections and rely on the unique non-
linear representations produced by a liquid with fixed recurrent
connections to perform recognition.

In an effort to enhance the liquid projections for different
input modalities including the speech and image patterns, we
train the input to liquid-excitatory synaptic weights in our
Liquid-SNN using STDP that enables unsupervised inference
without a readout layer. When a time-varying input, for instance,
a speech signal is fed to the liquid, the recurrent connectivity
causes a group of excitatory neurons to fire. Performing STDP
on the interconnecting synaptic weights causes these neurons
to learn the temporal dynamics of the presented input, which
effectively renders them sensitive to similar inputs. Hence, the
excitatory neuronal spiking activity can directly be used for
inference. We show that the presented Liquid-SNN, trained in
an unsupervised manner on a subset of spoken digits from the
TI46 speech corpus (Liberman et al., 1993), achieves comparable
accuracy to that provided by LSMs trained using supervised
algorithms. In order to further highlight the generality of
our proposed model across different application domains, we
illustrate how the non-linear liquid dynamics together with
STDP can be used to self-learn image patterns. STDP enables
the synapses connecting each excitatory neuron to encode a
representation of an image pattern. The recurrent inhibition
assists in differentiating the receptive field of various excitatory
neurons. We demonstrate the efficacy of Liquid-SNN in image
recognition by training it to infer handwritten digits from the
MNIST dataset (LeCun et al., 1998).

Finally, we present SpiLinC, which is composed of an
ensemble of smaller liquids to address the scalability and training
inefficiencies posed by a single large Liquid-SNN. Ensemble
methods previously proposed in literature (Opitz and Maclin,
1999; Dietterich, 2000) typically entail multiple weak classifiers
trained on the same input data, where diversity in the individual
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classifiers leads to improved inference accuracy (Hansen and
Salamon, 1990). In this work, we utilize a “divide and learn”
methodology for SpiLinC that is inspired by recent works on
ensemble learning in fully-connected SNN trained for MNIST
digit recognition (Shim et al., 2016; Panda et al., 2017b).
It is important to note that SpiLinC is a sparser universal
computing model that is capable of unsupervised multimodal
learning. We train each liquid forming the ensemble in parallel
on a distinct segment of the input patterns as described
in Panda et al. (2017b). The individual liquids consequently
learn low-level attributes characterizing different input patterns.
SpiLinC thereafter produces inference based on the combined
spiking activity of the constituent liquids. Our results indicate
that SpiLinC, with sufficient number of neurons per liquid,
performs on par with a similarly sized Liquid-SNN. The superior
learning efficiency is achieved with improved sparsity and fewer
training examples, both of which can be exploited to achieve
significant energy savings in custom on-chip implementations
like TrueNorth (Merolla et al., 2014) or memristive crossbar
architectures (Jo et al., 2010; Rajendran et al., 2013).

Overall, the key contributions of our work are:

1. We propose Liquid-SNN (single liquid architecture) and
SpiLinC (liquid-ensemble architecture), where each liquid
is trained in parallel on a unique input segment, for
unsupervised speech and image recognition.

2. We demonstrate that input subdivision enables the individual
liquids in SpiLinC to self-learn diverse input features, which
can effectively be combined to recognize an input pattern.

3. We propose optimal strategy to determine the ensemble
size and input partition per liquid in the ensemble, and
sparsity constraints in the input to liquid and recurrent-
liquid synaptic connectivity required to achieve efficient
unsupervised learning in SpiLinC.

4. We validate and benchmark the proposed models on
the MNIST dataset for image recognition and the
entire digit subset of the TI46 speech corpus for speech
recognition.

2. MATERIALS AND METHODS

2.1. Computational Model of Spiking
Neuron and Synapse
The fundamental computing unit of an SNN is a spiking (post)
neuron, which is driven by a group of input (pre) neurons
via weighted synapses as shown in Figure 1A. The input pre-
neuronal spikes are modulated by the synaptic weights to
produce resultant post-synaptic current that leaks exponentially
in the time interval between successive input spikes. The post-
synaptic current is referred to as excitatory (inhibitory) post-
synaptic current if the pre-neurons are excitatory (inhibitory).
We use the Leaky-Integrate-and-Fire (LIF) model (Diehl and
Cook, 2015) to mimic the spiking neuronal dynamics. An LIF
neuron integrates the excitatory and inhibitory post-synaptic
currents, resulting in a change in its membrane potential that
subsequently decays in an exponential manner. It fires an output
spike when its potential exceeds an adaptive threshold. The
membrane potential is thereafter reset, the firing threshold is
raised, and the neuron is prevented from spiking for a certain
refractory period. These mechanisms collectively regulate the
neuronal spiking activity and help achieve uniform firing rate
across neurons in an SNN, thereby facilitating competitive
learning.

2.2. Synaptic Plasticity
Spike Timing Dependent Plasticity (STDP) postulates that the
strength (or weight) of a synapse depends on the degree of
timing correlation between the corresponding pre- and post-
neuronal spikes. We use the power-law weight-dependent STDP
model (Diehl and Cook, 2015) that is illustrated in Figure 1B and
described by

1w = η ×

[

e−
tpost−tpre

τ − STDPoffset

]

× [wmax − w]µ (1)

where 1w is the change in the synaptic weight, η is the
learning rate, tpre and tpost are respectively the time instants

FIGURE 1 | (A) SNN consisting of input (pre) neurons connected by weighted synapses (wij ) to a spiking (post) neuron. The input spikes are modulated by the

synaptic weights to produce resultant post-synaptic current that leaks exponentially in the time interval between successive input spikes. The spiking neuron

integrates the post-synaptic current into its membrane potential (Vmem) that subsequently decays in an exponential manner. The neuron fires an output spike (at time

instant tpost ) when its potential exceeds a threshold (θ ). The potential is subsequently reset (to Vrst ) and the neuron is restrained from firing for a certain refractory

period. (B) Illustration of the power-law weight-dependent STDP rule formulated in (1) for learning rate (η) of 0.005, time constant (τ ) of 15ms, STDPoffset of 0.4,

maximum weight (wmax) of unity, current weight (w) of 0.5, and exponential factor (µ) of 0.9. The synaptic weight is increased (potentiated) for strong temporal

correlation between a pair of pre- and post-neuronal spikes (tpost − tpre ≤ 14 ms for the chosen parameters), and decreased for larger spike time differences.
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of a pair of pre- and post-neuronal spikes, τ is the STDP
time constant, wmax is the maximum bound imposed on the
synaptic weight, and w is the current weight. The synaptic
weight is increased (potentiated) if a pre-neuronal spike causes
the post-neuron to fire within a definite period of time
determined by the STDPoffset. On the contrary, the synaptic
weight is decreased (depressed) for larger spike time differences.
Additionally, the synaptic weight change has an exponential
dependence (controlled by µ) on the current weight, which
ensures a steady rise (decline) of the synaptic weight toward
its upper (lower) bound that is desirable for efficient learning.

2.3. Proposed Liquid Computing Models
2.3.1. Single-Layered Liquid-SNN
The Liquid-SNN (shown in Figure 2) is composed of an
input layer sparsely connected by plastic synapses to a liquid
containing excitatory and inhibitory neurons recurrently
interlinked in sparse random manner. The excitatory
neurons typically outnumber the inhibitory neurons by
a factor of 4 as observed in the cortical microcircuits.
The neurons in the input layer represent either the time
evolution of various frequency components characterizing
a speech signal or static image pixels, each firing at a rate
proportional to the corresponding intensity. The input
neurons are sparsely connected to the excitatory neurons.
The non-linear spiking neuronal dynamics together with
sparse recurrent connectivity triggers the liquid to produce
diverse spiking patterns, referred to as liquid states, for inputs
with disparate temporal characteristics. The state of the
liquid at any given time is a high dimensional representation
incorporating the input dynamics both at the current and
preceding time instants. It is important to note that sparsity
in synaptic connectivity is essential for a liquid to generate
discernible states. A disproportionate increase in the input or

recurrent connectivity could potentially result in chaotic spiking
activity.

Existing liquid computing models such as LSMs use
predetermined weights for the input to liquid synapses and feed
the liquid states to a layer of readout neurons for inference.
The utility of LSMs has predominantly been demonstrated for
speech recognition applications. Image patterns, on the other
hand, possess appreciable similarities across classes and marked
differences within a class. We observe that complex inputs hinder
the capacity of a liquid to produce linearly separable states for
different patterns. This results in a loss of information that
diminishes the recognition capability of the subsequent readout
layer. Previous research investigated self-learning the structure or
morphology of the liquid, which enables it to generate specific
features rather than random projections. We relax the burden
of training the recurrent connections and directly learn the rich
temporal information contained in a speech/image pattern by
performing STDP on the sparse synaptic connections between
the input and liquid. This, in turn, empowers the non-linear
liquid (with random recurrent connectivity) to produce states
correlated with the input. The proposed methodology effectively
tunes the spiking activity of individual neurons to correspond
to specific input classes, which enables unsupervised inference
without a readout layer as explained below for a speech input.
In the beginning of the training phase, a time-varying speech
input triggers a random group of excitatory neurons to fire.
Carrying out STDP-based updates on the input to liquid synaptic
weights allows the neurons to learn temporal correlations
underlying the presented input. This increases the likelihood of
the corresponding neurons to thereafter spike for similar inputs.
The recurrent inhibition facilitates the activation of distinct
excitatory neurons for various input classes. STDP imparts
temporal learning and sensitizes each neuron to the appropriate
input class, which enables the Liquid-SNN to recognize a test
input straightaway by using the excitatory neuronal spiking
activity as explained below. Once the input to liquid synapses

FIGURE 2 | Single-layered Liquid-SNN consisting of input neurons (represented by the time evolution of frequency channels characterizing an utterance of “0” in this

sample illustration) sparsely connected to a liquid housing excitatory (highlighted in blue) and inhibitory (highlighted in red) neurons recurrently interlinked in a sparse

random manner.

Frontiers in Neuroscience | www.frontiersin.org 4 August 2018 | Volume 12 | Article 524

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Srinivasan et al. SpiLinC

are trained, we tag the excitatory neurons in the liquid with the
classes of input patterns for which they spiked at a higher rate
during the training phase. During the inference phase, for a given
test pattern, we first estimate the average spike count of every
group of neurons tagged as having learnt features pertaining to
a specific class of input patterns that is specified by

avg_spike_count(j) =
1

nj

nj
∑

k=1

spike_count(k, j) ∀ j ∈ {1 . . . nclasses}

(2)
where avg_spike_count(j) is the average spike count of the group
of neurons carrying the tag “j,” nj is the total number of neurons

with the tag “j,” spike_count(k, j) is the spike count of the kth

neuron with the tag “j” over the time interval for which the test
pattern is presented (also referred to as the simulation interval),
and nclasses is the number of classes for a given pattern recognition
task. We then predict the unknown test pattern to belong to the
class (or tag) represented by the neuronal group with the highest
average spike count as described by

predicted test class = argmax
j∈{1...nclasses}

avg_spike_count(j) (3)

where predicted test class is the class of the test pattern predicted
by the Liquid-SNN using the average spike count of the excitatory
neurons and the corresponding tags.

In order to illustrate the generality of the proposed model, we
describe how the non-linear liquid dynamics together with STDP
can be used for the unsupervised learning of image patterns.
STDP, when applied to synapses connecting the input to a specific
excitatory neuron, causes the synapses to encode a representation
of the image pattern in the corresponding weights. This triggers
the neuron to fire consistently for matching image patterns while
STDP reinforces the synapses. Besides, the positive recurrent
connection between pairs of excitatory neurons facilitates them
to learn varying representations of a particular class of patterns.

On the contrary, the inhibitory connections help separate the
receptive field of different excitatory neurons. The proposed
topology, in addition to being capable of learning different signal
modalities, offers enhanced synaptic sparsity in comparison
with two-layered fully-connected SNN (Diehl and Cook, 2015).
Despite these advantages, the need to primarily upsize a single
liquid for achieving higher classification accuracy introduces
scalability issues in hardware realizations.

2.3.2. SpiLinC: Spiking Liquid-Ensemble Computing
We present SpiLinC as a scalable neuromorphic computing
model composed of a distributed arrangement of multiple
liquids, referred to as a liquid-ensemble, operating in parallel. An
alternative but feasible approach would be to stack smaller liquids
in a feed-forward manner to form a deep network. However,
the gradual decline in the spiking activity of individual neurons
across successive levels of a deep hierarchy limits the effectiveness
of STDP on the corresponding synapses. Hence, we propose
a liquid-ensemble since it offers inherent parallelism in the
operation of its constituent liquids, each of which can be trained
efficiently using STDP.

We adopt a “divide and learn” strategy described by Panda
et al. (2017b) for input feature extraction using SpiLinC.
Accordingly, we train each liquid in SpiLinC with a distinct input
segment. Figure 3A shows a two-liquid SpiLinC architecture
trained with different frequency channels of a speech signal while
Figure 3B depicts one consisting of four liquids individually
trained with separate partitions of an image pattern. Note that
there are no synaptic connections between different liquids in
SpiLinC. We adapt the strength of the synapses connecting an
input partition to a specific liquid using STDP, which enables the
excitatory neurons to extract and self-learn distinctive features
making up various speech/image patterns. This, in effect, causes
each excitatory neuron to spike at a higher rate for those input
patterns containing features encoded in the interconnecting

FIGURE 3 | Illustration of the Spiking Liquid-Ensemble Computing (SpiLinC) architecture composed of a distributed arrangement of multiple liquids operating in

parallel. (A) Two-liquid SpiLinC, where each liquid constituting the ensemble is trained with different frequency channels of a speech signal (utterance of “0” in this

example). (B) Four-liquid SpiLinC, where the individual liquids are trained with separate partitions of an image pattern.
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synaptic weights. For instance, if the synapses connecting an
excitatory neuron encode features contained in the digit pattern
“6,” then the corresponding neuron would fire at a higher rate
for input patterns similar to “6.” Once all the liquids in SpiLinC
are trained, we tag the excitatory neurons in each liquid with
the classes of input patterns for which they spiked at a higher
rate during the training phase. Since every liquid constituting
the ensemble encodes unique input characteristics, SpiLinC
integrates the spiking activity of all the liquids to provide a unified
decision on the class of a test input. During the inference phase,
we present segments of an unknown test pattern to the individual
liquids in SpiLinC and record the spike count of all the excitatory
neurons.We then estimate the average spike count of every group
of neurons (in all the liquids) tagged as having learnt features
pertaining to a specific class of input patterns as described by

avg_spike_counti(j) =
1

nij

nij
∑

k=1

spike_counti(k, j)

∀ i ∈ {1 . . . nliquids} and j ∈ {1 . . . nclasses}

(4)

where avg_spike_counti(j) is the average spike count of the
group of neurons in the ith liquid carrying the tag “j,” nij is

the total number of neurons in the ith liquid with the tag “j,”
spike_counti(k, j) is the spike count of the kth neuron in the ith

liquid with the tag “j” over the simulation interval, nliquids is
the number of liquids in SpiLinC, and nclasses is the number of
classes for a given pattern recognition task. Next, we combine
the average spike count of the individual liquids to compute the
resultant average spike count of the n-liquid SpiLinC for every
possible input class (or tag) that is specified by

res_avg_spike_count(j) =
1

nliquids

nliquids
∑

i=1

avg_spike_counti(j) (5)

where res_avg_spike_count(j) is the resultant average spike count
of the groups of neurons in the n-liquid SpiLinC with the tag
“j.” Finally, we predict the unknown test pattern to belong to the
class (or tag) represented by the neuronal group with the highest
resultant average spike count as described by

predicted test class = argmax
j∈{1...nclasses}

res_avg_spike_count(j) (6)

where predicted test class is the class of the test pattern predicted
by SpiLinC. Thus, we combine the spiking activity of each
liquid that separately learnt characteristic input features to
make a strong prediction regarding the class of a test pattern.
SpiLinC effectively incorporates STDP-driven ensemble learning
mechanism to provide a universal and scalable liquid computing
model capable of unsupervised speech and image recognition.

We now provide insights on the sparsity and training
efficiency of SpiLinC against an equivalently sized Liquid-SNN.
Given a fixed number of training examples, SpiLinC is inherently
capable of encoding more input information than the Liquid-
SNN. In other words, the Liquid-SNN requires greater number

of training examples to attain similar efficiency in learning.
This is corroborated by our analysis, which reveals that SpiLinC
with adequate number of neurons per liquid performs on
par with the Liquid-SNN using significantly lower number of
training examples. SpiLinC, by construction, offers enhanced
sparsity than the Liquid-SNN. The favorable trade-offs render
SpiLinC more amenable for realizing intelligent devices capable
of adapting real-time to varied input data.

2.4. Experimental Framework
We evaluated the proposed liquid computing models using
BRIAN (Goodman and Brette, 2008), which is a Python-based
SNN simulator, on the entire digit subset of the TI46 speech
corpus and theMNIST handwritten digit dataset. In the following
sub-sections, we describe the procedure followed to convert
the input speech/image patterns to Poisson-distributed spike
trains and generate the Liquid-SNN and SpiLinC topologies,
the training and testing methodology, and the metrics used to
compare the proposed models.

2.4.1. Input Spike Generation
We first describe the process of converting the input image
patterns to Poisson-distributed spike trains, and then detail
the corresponding mechanism for a speech input. For the
handwritten MNIST digits, we converted the input pixel
intensities to average Poisson firing rates constrained between 0
and 63.75 spikes per second. The average Poisson firing rate of an
input neuron is then used to estimate its firing probability (pfiring)
at every simulation time-step that is specified by

pfiring =
average firing rate

1000
× tstep (7)

where tstep is the simulation time-step (0.5 ms used in this work).
For instance, if the intensity of an image pixel is 255, the average
Poisson firing rate for the corresponding input neuron is 63.75
spikes per second and its firing probability at every time-step is
0.031875. We then generate a random number between 0 and
1 at every simulation time-step and emit a spike if the random
number is less than the probability of firing. On the other hand,
for the TI46 speech dataset, we pre-processed the audio samples
available in wave format (.wav extension) based on Lyon’s Passive
Ear model (Lyon, 1982) of the human cochlea using Slaney’s
MATLAB auditory toolbox (Slaney, 1998). Using Lyon’s cochlear
model, which extracts the time evolution of frequency channels
characterizing a speech signal, we converted each audio sample
into variation in the intensity of 39 frequency channels over time.
We then normalized the intensity of all the frequency channels at
every time-step with respect to the maximum intensity to map it
to the instantaneous firing probability of the corresponding input
neurons. Finally, we used Poisson process (described above) to
generate the input spikes at every time-step.

2.4.2. Network Generation
In this sub-section, we detail the procedure followed to generate
the Liquid-SNN and SpiLinC for different pattern recognition
tasks. For the Liquid-SNN, the entire input is sparsely connected
to the single liquid layer. On the other hand, for SpiLinC,
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TABLE 1 | Synaptic connectivity parameters.

Application ne/ni Input to liquid connections (pinp−e) Recurrent-liquid connections

pee (%) pei (%) pie (%) pii (%)

Speech recognition 3/1 25% (Liquid-SNN) / 0.5 5.0 20.0 0.5

25% (SpiLinC)

Image recognition 4/1 30% (Liquid-SNN) / 1.0 5.0 30.0 1.0

50% (SpiLinC)

we determined the optimal number of liquids based on the
dimensionality of the input data and partitioned the input for
the individual liquids as discussed in section 4.3. We then
estimated the percentage of input to liquid and recurrent-
liquid (excitatory/inhibitory ↔ excitatory/inhibitory) synaptic
connections (listed in Table 1) based on the heuristics discussed
in section 4.1 on liquid sparsity. In order to generate the
connectivity matrix between any two groups of neurons from the
percentage of synaptic connections, we first formed a random
matrix of dimension, number of neurons in the first group
× number of neurons in the second group, and populated it
with random numbers following a uniform distribution between
0 and 1. We then created a connection between those pairs
of neurons, where the matrix entry is less than the required
percentage of synaptic connections divided by 100. For instance,
for a liquid with 100 excitatory neurons and 1% connectivity
among them, we form a random matrix of dimension, 100
× 100, populate it with random numbers from a uniform
distribution between 0 and 1, and create a connection between
those pairs of neurons where the random entry is less than
0.01. The input to liquid connections are subjected to synaptic
plasticity and hence the corresponding weights are initialized
with random values following a uniform distribution between
winit_min and winit_max that are listed in Table 2 for different
pattern recognition tasks. On the other hand, the recurrent-liquid
synaptic connections have constant weight as shown in Table 2.
The excitatory and inhibitory neurons making up the liquid
are modeled using differential equations mimicking the leaky-
integrate-and-fire dynamics as described in Diehl and Cook
(2015). The LIF neuronal parameters are adopted from Jug (2012)
with the exception of the time constant of the excitatory and
inhibitory post-synaptic currents, which have been changed to 2
ms (from 1 ms) and 1 ms (from 2 ms), respectively for enabling
the excitatory neurons to spike at a higher rate only during the
testing phase.

2.4.3. Training and Testing Framework
During the training phase, each input speech/image pattern is
converted to spike trains and fed to the networks for a certain
simulation interval, which is chosen to be 750 ms for the TI46
speech samples and 350 ms for the MNIST digits. We used a
simulation time-step of 0.5 ms. The synaptic weights connecting
the input to each liquid-excitatory neuron are modified at the
time instants of an output spike using STDP as mandated by
the presented unsupervised learning methodology. Once the
networks are trained, each excitatory neuron is tagged with the

TABLE 2 | Synaptic weight initialization parameters.

Application Input to liquid

weights

Recurrent-liquid weights

ee ei ie ii

Speech

recognition

[0.005, 0.505] 1.00 3.00 1.00 1.00

Image

recognition

[0.003, 0.303] 1.00 10.0 1.00 1.00

class of input patterns for which it spiked the most during the
training phase for the MNIST digit recognition task. On the
other hand, for the TI46 speech recognition task, each excitatory
neuron is tagged with two classes of input patterns for which it
spiked at a higher rate than the rest of the input classes during the
training phase. During the inference phase, the spike count and
the tag(s) of the excitatory neurons are used to predict the class of
a test pattern as described in sections 2.3.1 (for the Liquid-SNN)
and 2.3.2 (for SpiLinC).

2.4.4. Evaluation Metrics
We use the classification accuracy (on the testing dataset), the
number of input to liquid and recurrent-liquid synapses, and
the number of training examples needed for convergence as
the evaluation metrics for comparing the proposed Liquid-
SNN and SpiLinC topologies. We report the classification
accuracy of the networks across five different training and
testing runs to account for the randomness in the input to
liquid connectivity, the recurrent-liquid connectivity, and the
input spike generation scheme based on Poisson process. The
evaluation metrics, namely, the number of synapses and training
examples, determine the degree of energy efficiency offered by
the networks in neuromorphic hardware implementations. The
total number of synapses in a network of given size determines
the area footprint and read/write energy of the synaptic memory
in neuromorphic hardware implementations. The number of
synapses in the Liquid-SNN (#synapses) is calculated as

#synapses =
pinp−e

100
× ninp × ne +

pee

100
× ne × ne

+
pei

100
× ne × ni +

pie

100
× ni × ne

+
pii

100
× ni × ni (8)
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TABLE 3 | STDP model parameters for different pattern recognition tasks.

Parameters Values

Speech recognition Image recognition

learning rate, η 0.0001 0.005

STDP time constant, τ 15 ms 15 ms

STDP offset, STDPoffset 0.0 0.4

Weight dependence factor, µ 0.9 0.9

Maximum synaptic weight, wmax 1.0 1.0

Minimum synaptic weight, wmin 0.0 0.0

where ninp is the number of input neurons, ne is the number
of excitatory neurons, ni is the number of inhibitory neurons,
pinp−e is the percentage of synaptic connections between the
input and excitatory neurons, pee is the percentage of recurrent
synaptic connections among the excitatory neurons, pei is the
percentage of synaptic connections between the excitatory and
inhibitory neurons, pie is the percentage of synaptic connections
between the inhibitory and the excitatory neurons, and pii is
the percentage of recurrent synaptic connections among the
inhibitory neurons. The number of synapses in SpiLinC is
estimated by multiplying the number of synapses per liquid
[#synapses in (8)] with the total number of liquids. We define
the sparsity in synaptic connectivity offered by SpiLinC over a
similarly sized Liquid-SNN as the ratio of the number of synapses
in the Liquid-SNN to the number of synapses in SpiLinC. The
final metric, i.e., the number of training examples needed for
convergence, which depends on the liquid size (or the number of
neurons per liquid), is determined experimentally by increasing
the number of training examples until the classification accuracy
(on the testing set) attains a maximum and saturates/deteriorates
for any further increase in the training examples. For every
two-fold increase in the liquid size, we find that the required
number of training examples scales by a factor of 2× to 4× for
the liquid sizes presented in this work across different pattern
recognition tasks. The number of training examples dictates the
total energy expended during the training phase including the
neuronal computational energy, the read energy for loading the
input to liquid and the recurrent-liquid synaptic weights every
time-step, and the total number of weight updates carried out on
the plastic input to liquid synapses that impacts the synaptic write
energy. We use the same learning rate for both the networks to
perform a fair comparison with respect to the number of training
examples needed for convergence.

3. RESULTS

3.1. Speech Recognition
We employ the entire digit subset of the TI46 speech corpus
(Liberman et al., 1993) to demonstrate the utility of the proposed
Liquid-SNN and SpiLinC in unsupervised speech recognition.
The digit subset contains a total of 1,594 training samples
including 10 utterances each of digits 0–9 spoken by 16 different
speakers and 2542 test samples. Each speech sample is uniquely

TABLE 4 | Number of examples used to train the Liquid-SNN and SpiLinC for

recognizing digit utterances from the TI46 speech corpus.

#Liquid neurons Number of training examples

Liquid-SNN Two-liquid SpiLinC

400 3,800 2,100

800 8,200 4,100

1,600 26,000 9,600

3,200 100,000 29,000

represented by the time evolution of 39 frequency channels that
constitute the input neurons. The parameters governing the input
to liquid connectivity, the recurrent-liquid connectivity, and the
ratio of the number of excitatory to inhibitory neurons are
shown in Table 1 while the STDP model parameters are listed in
Table 3.

Our analysis on a Liquid-SNN of 800 neurons yielded an
average accuracy of 77.7%, which signifies the capability of
the liquid to self-learn digit utterances. The accuracy increased
to 86.66% by augmenting the size of the Liquid-SNN to
3,200 neurons. However, the need to continually grow a
single-layered Liquid-SNN for improving the accuracy leads to
increased synaptic connectivity and slower training convergence.
We present two-liquid SpiLinC as a scalable architecture for
achieving improved accuracy. Each liquid in the ensemble is
trained on a distinct group of 30 input neurons that enables it
to learn the temporal dynamics of the corresponding frequency
channels. Given a certain number of training examples, SpiLinC
encodes more input information than a similarly sized Liquid-
SNN. As a result, SpiLinC achieves efficient feature learning
using fewer training examples as corroborated by Table 4 that
shows the number of examples used to train both the Liquid-
SNN and SpiLinC for different network sizes. Note that the
unique input samples are replicated to generate the required
number of training examples for different network sizes. Our
simulations reveal that the individual liquids need to be suitably
sized to match the accuracy of an equivalent Liquid-SNN.
This is evidenced by Figure 4A, which indicates that the two-
liquid SpiLinC requires a minimum of 1,600 neurons per liquid
to attain an accuracy of 85.14%, which is on par with that
provided by a Liquid-SNN of 3,200 neurons. The comparable
accuracy is achieved with 3.45× reduction in the number of
training examples (as shown in Figure 4B) and 1.95× sparsity
in synaptic connectivity (as depicted in Figure 4C). It can
additionally be inferred from Figure 4C that larger the number
of liquid neurons, greater is the sparsity offered by SpiLinC over
Liquid-SNN.

Finally, we use the confusion matrix illustrated in Figure 5A

to dissect the classification performance of the two-liquid
SpiLinC with 1,600 neurons per liquid. The confusion matrix
for a given network, which plots the predicted class vs. the
actual class of the test samples, precisely specifies the number
of correct predictions and mispredictions (false negatives and
false positives) for every input class. The diagonal elements of
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FIGURE 4 | (A) Classification accuracy of two-liquid SpiLinC and Liquid-SNN vs. the total number of liquid neurons, evaluated on 2,542 test samples from the TI46

digit subset. (B) Reduction in the number of training examples offered by two-liquid SpiLinC over Liquid-SNN. (C) Sparsity in synaptic connectivity offered by

two-liquid SpiLinC over Liquid-SNN.

FIGURE 5 | (A) Confusion matrix of two-liquid SpiLinC with 1,600 neurons per liquid trained on 29,000 digit utterances from the TI46 speech corpus. (B) Percentage

of false negatives predicted by the two-liquid SpiLinC for every input class. (C) Percentage of false positives produced by the two-liquid SpiLinC for every predicted

class.

the confusion matrix indicate the number of correct network
predictions for each input class as depicted in Figure 5A. The
false negative misprediction represents the scenario, where the
network predicts an incorrect class (for instance, “1–9”) for
test input belonging to a different class (for instance, “0”).
Figure 5A shows that (“1,” “4”), (“5,” “9”), and (“6,” “8”) are
some of the common pairs of input classes misclassified by
the two-liquid SpiLinC. The total number of false negatives
per input class is estimated by column-wise summation of the
confusion matrix excluding the diagonal entry. The percentage
of false negatives per input class (plotted in Figure 5B) is
determined by dividing the number of false negatives by the
total number of test samples in the respective class. We find
that the percentage of false negatives predicted by the two-liquid
SpiLinC is relatively high (>15%) for input classes “0,” “1,” “2,”
“5,” and “9” compared to the remaining classes. On the contrary,
the false positive misprediction represents the scenario, where
the network predicts a particular incorrect class (for instance,
“0”) for test input belonging to any of the remaining classes (for

instance, “1–9”). The number of false positives per predicted class
is computed by row-wise summation of the confusion matrix
excluding the diagonal entry. The percentage of false positives
per predicted class is obtained by dividing the number of false
positives by the total number of test samples excluding the ones
belonging to the predicted class. Our results plotted in Figure 5C

indicate that the percentage of false positives is relatively high
(>∼2%) for predicted classes “1,” “5,” “6,” and “8” compared to
the rest of the classes.

3.2. Handwritten Digit Recognition
We demonstrate the applicability of Liquid-SNN and SpiLinC
in unsupervised image recognition by training them to infer
handwritten digits from the MNIST dataset (LeCun et al.,
1998). We use the entire training set containing 60,000 images
and report the classification accuracy on the testing set of
10,000 images. Each digit pattern is 28 × 28 in dimension,
essentially giving rise to 784 input neurons. It is evident
from Table 1 that the recurrent-liquid connectivity is uniform
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across image and speech recognition applications, which further
underlines the generality of the proposed liquid computing
models.

In our first experiment, we trained a Liquid-SNN of 400
neurons on a smaller subset of training examples (refer to
Table 5) using the STDP model parameters shown in Table 3,
which yielded an average accuracy of 76.86%. It can be seen
from Figure 6A that the synapses connecting every excitatory
neuron acquired a sparse representation of a distinct handwritten
digit. This illustrates the capacity of the non-linear liquid to
self-learn image patterns, which is enabled by the presented
unsupervised learning methodology. We obtained an improved
accuracy of 89.65% using an augmented liquid of 12,800 neurons.
In an effort to achieve further improvements in accuracy
with added sparsity benefits, we explored a couple of liquid-
ensemble schemes, namely, two-liquid SpiLinC and four-liquid
SpiLinC. The two-liquid SpiLinC is trained using the vertical
image partitions (each 28 × 16 in dimension) while the four-
liquid SpiLinC is additionally trained using the horizontal image
partitions (each 16 × 28 in dimension). Figure 6B illustrates
the characteristic features self-learned by two-liquid SpiLinC
consisting of 200 neurons per liquid. However, the resultant
accuracy (75.37%) is lower than that attained by a Liquid-SNN
of 400 neurons (76.86%). This is because the individual liquids
need to be sufficiently sized for them to comprehensively learn
various distinctive features. This is validated by Figure 7A, which
shows that two-liquid SpiLinC with 3,200 (>3,200) neurons per
liquid performs on par with (better than) an equivalently sized
Liquid-SNN. Further, two-liquid SpiLinC with 6,400 neurons
per liquid provides an improved accuracy of 91.43%, which is
achieved with 1.4× fewer training examples (Figure 7B) and
1.7× sparsity (Figure 7C) compared to the Liquid-SNN. Similar
trends are observed for four-liquid SpiLinC, which necessitates
1,600 (>1,600) neurons per liquid to attain comparable (higher)
accuracy than the Liquid-SNN. Four-liquid SpiLinC with 3,200
neurons per liquid offers an accuracy of 90.9%, which is
achieved with 3× fewer training examples and 2.6× sparsity
than the Liquid-SNN. Hence, the four-liquid SpiLinC with 3,200
neurons per liquid yields the best trade-off among accuracy,
sparsity, and training convergence for MNIST digit recognition.
Figure 8A illustrates the confusion matrix of the four-liquid
SpiLinC with 3,200 neurons per liquid. We find that the four-
liquid SpiLinC frequently misclassifies certain pairs of input

TABLE 5 | Number of examples used to train the Liquid-SNN and SpiLinC for

recognizing MNIST digits.

#Liquid neurons Number of training examples

Liquid-SNN Two-liquid SpiLinC Four-liquid SpiLinC

400 5,500 3,000 –

800 11,200 6,500 3,000

1,600 22,400 14,000 6,500

3,200 44,800 30,000 14,000

6,400 89,600 60,000 30,000

12,800 200,000 140,000 64,000

classes including (“3,” “8”), (“4,” “9”), and (“7,” “9”), where the
individual classes in the respective pairs share common features.
Overall, the four-liquid SpiLinC predicts a higher percentage
(>10%) of false negatives for the input classes “4,” “5,” “8,”
and “9” as evidenced by Figure 8B. On the other hand, the
percentage of false positives (plotted in Figure 8C) is higher for
the predicted classes “3” and “9” compared to the rest of the
classes.

Our experimental results on SpiLinC (compared to Liquid-
SNN) including the number of training examples listed inTable 5
(normalized plot in Figure 7B) and the reduction in the number
of synapses (Figure 7C), respectively indicate that higher the
number of liquids, faster is the training convergence and greater
is the sparsity in synaptic connectivity. However, scaling up
the number of liquids (ensemble size) lowers the size of the
input segment received by the individual liquids. This limits the
feature learning capability of SpiLinC, leading to degradation
in the classification accuracy. The optimal ensemble size was
experimentally determined to be 4 for MNIST digit recognition.
Refer to section 4.3 for a discussion on the scalability of SpiLinC
across different tasks.

4. DISCUSSION

4.1. Liquid Sparsity
The proposed liquid computing models necessitate sparsity
in both the input to liquid and recurrent-liquid synaptic
connectivity to achieve efficient unsupervised learning. In our
experiments using Liquid-SNN, we enforced 25% and 30%
synaptic connections between the input and liquid-excitatory
neurons, respectively for the speech and image recognition
applications. Note that SpiLinC could have a higher percentage
of input to liquid synaptic connections as shown in Table 1

for the image recognition task since the individual liquids
receive only a segment of overall input. However, the total
number of synaptic connections (input to liquid) is similar for
both SpiLinC and Liquid-SNN. The sparsity in the input to
liquid synaptic connectivity prevents hyperactivity of the liquid
neurons, which is essential for self-learning input representations
(using Liquid-SNN) or characteristic features (using SpiLinC).
It is interesting to note that the sparsity in the input to liquid
synaptic connectivity, which is defined as the ratio of the
total number of synaptic connections to the effective number
of synaptic connections, increases during training as STDP
prunes the insignificant synaptic connections like those from
the background pixels of the MNIST digit patterns. We quantify
the change in sparsity for MNIST digit recognition using four-
liquid SpiLinC containing 3,200 neurons per liquid (out of
which 2,560 are excitatory), where each liquid receives input
from 28 × 16 image segment. The total number of input to
liquid synaptic connections is 1,146,880 (28 × 16 × 2,560).
Before training, the effective number of input to liquid synaptic
connections is initialized to 50% of the total number of synaptic
connections as shown in Table 1, leading to 2× sparsity. During
training, STDP reduced the effective number of input to liquid
synaptic connections to an average of 230,786 per liquid, thereby
increasing the sparsity to 4.96×. For TI46 speech recognition,
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FIGURE 6 | (A) Sparse representations of MNIST digits (28 × 28 in dimension) self-learned by a Liquid-SNN of 400 neurons (80% of which are excitatory) in the

weight of the synapses connecting the input to the liquid-excitatory neurons (320 excitatory neurons organized in a 17 × 17 grid). (B) Sparse features self-learned by

the individual liquids making up a two-liquid SpiLinC consisting of 200 neurons per liquid (160 excitatory neurons organized in a 12 × 12 grid) trained using the vertical

partitions (each 28 × 16 in dimension) of the MNIST digit patterns.

FIGURE 7 | (A) Classification accuracy of two-liquid SpiLinC, four-liquid SpiLinC, and Liquid-SNN vs. the total number of liquid neurons, evaluated on the MNIST

testing dataset. (B) Reduction in the number of training examples offered by two-liquid SpiLinC and four-liquid SpiLinC over Liquid-SNN. (C) Sparsity in synaptic

connectivity offered by two-liquid SpiLinC and four-liquid SpiLinC over Liquid-SNN.

the sparsity in the input to liquid synaptic connectivity
remains the same during training since the optimal STDP
parameters (listed in Table 3) ensure synaptic weights are never
depressed.

Next, we discuss the sparsity requirement in the recurrent
connectivity within the liquid (individual liquids) constituting
Liquid-SNN (SpiLinC). Note that SpiLinC, by construction,
offers enhanced sparsity in recurrent connectivity by breaking up
a single large Liquid-SNN into an ensemble of multiple liquids
operating in parallel. Our analysis on both Liquid-SNN and
SpiLinC indicate that it is desirable to have limited synaptic
connectivity between pairs of excitatory (ee connections) or
inhibitory neurons (ii connections). We find that excessive ee
and ii synaptic connections lead to disproportionate increase
in the spiking activity of the excitatory neurons while lowering
the efficacy of the inhibitory neurons. This results in chaotic
spiking activity within the liquid that is detrimental to learning.

In this work, we used 0.5–1% ee and ii synaptic connections.
However, we introduced a relatively higher percentage of
synaptic connections (5%) between the excitatory and inhibitory
neurons (ei connections) to sufficiently excite the inhibitory
neurons. These neurons inhibit and help differentiate the
receptive filed of various excitatory neurons. Hence, the
inhibitory to excitatory (ie) synaptic connections ought to
be substantial (20–30% used in this work) for enabling the
liquid(s) to self-learn varied inputs in a multi-class pattern
recognition task. It is important to note that the relative
sparsity among the input to liquid and recurrent-liquid (ee,
ei, ie, and ii) connectivity controls the spiking activity within
the liquid, which is critical for improved representation/feature
learning and achieving competitive classification accuracy. The
sparsity in the recurrent-liquid synaptic connectivity remains the
same during training since the connectivity matrices are fixed
a priori.
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FIGURE 8 | (A) Confusion matrix of four-liquid SpiLinC with 3,200 neurons per liquid trained on 64,000 MNIST training examples. (B) Percentage of false negatives

predicted by the four-liquid SpiLinC for every input class. (C) Percentage of false positives produced by the four-liquid SpiLinC for every predicted class.

4.2. SpiLinC Training Convergence
We comprehensively validated the capability of SpiLinC to
achieve faster training convergence (using fewer examples)
compared to Liquid-SNN across speech (Table 4) and image
recognition tasks (Table 5). It is important to note that SpiLinC
exploits the principle of ensemble learning to achieve faster
training convergence as illustrated below. Let us suppose that a
Liquid-SNN containing x neurons requires a total of y training
examples to yield the optimal classification accuracy. Intuitively,
a larger liquid with 2x neurons, which necessitates a minimum of
2y training examples, can be used to improve the classification
accuracy. Alternatively, consider a two-liquid SpiLinC (with
x neurons per liquid) instead of a single large Liquid-SNN
(with 2x neurons). The individual liquids can effectively be
trained in parallel using y (>y in practice) training examples.
We showed that training the constituent liquids on disparate
input segments causes them to self-learn characteristic input
features. SpiLinC subsequently infers the class of a test input
by identifying the underlying low-level features. This enables
the two-liquid SpiLinC to perform on par or even outperform
the Liquid-SNN (beyond certain value of x) using 2× (<2×
in practice) fewer training examples. Higher the number of
liquids forming SpiLinC, greater is the reduction in the number
of training examples and faster is the convergence compared
to Liquid-SNN. This is corroborated by our experimental
results, which indicate that two-liquid SpiLinC, on average,
learns with 1.95× fewer training examples while four-liquid
SpiLinC offers up to 3.3× reduction in the number of training
examples.

4.3. SpiLinC Scalability
The scalability of SpiLinC with respect to the number of liquids
(ensemble size) determines the trade-off between classification
accuracy on one hand and sparsity together with training
convergence on the other for a given task. Scaling up the
number of liquids, in general, leads to improved sparsity and

faster training convergence (as discussed in sections 4.1 and
4.2). However, the classification accuracy is comparable to (better
than) that provided by Liquid-SNN only up to a certain ensemble
size. The accuracy deteriorates rapidly for larger ensembles due to
insufficient inputs received by the liquids. The number of inputs
received by each liquid in SpiLinC is specified by

Number of inputs per liquid

= pinp−e ×

[

input dimension

nliquids
+ noverlap

]

(9)

where pinp−e specifies the %synaptic connectivity between the
input and liquid, input dimension is the overall dimension of
the input data, and noverlap is the number of overlapping inputs
across ensembles. It is evident from (9) that the effective number
of inputs per liquid decreases for larger ensembles (nliquids). This
has a detrimental impact on the feature learning efficacy of the
individual liquids, leading to degradation in the classification
accuracy. Hence, the optimal ensemble size for a given task,
which depends on the input dimension as shown in (9), needs
to be selected so as to guarantee adequate number of inputs
to each liquid. For the speech recognition task with a total of
39 frequency channels representing each speech sample, two-
liquid SpiLinC (≥1,600 neurons per liquid) receiving inputs
from 30 disparate frequency channels was determined to be the
optimal configuration. On the other hand, we demonstrated up
to four-liquid SpiLinC (≥1,600 neurons per liquid) for efficiently
recognizing MNIST digit patterns, 28× 28 in dimension.

4.4. Comparison With Related Works
We compare the proposed Liquid-SNN and SpiLinC models
with the LSM presented in Verstraeten et al. (2005a) that uses a
similar pre-processing front-end for the TI46 speech recognition
task. We use a smaller subset containing a total of 500 speech
samples that includes 10 utterances each of digits 0–9 spoken by
5 different female speakers since it is de facto used in existing
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TABLE 6 | Classification accuracy of different SNN models (with similar audio pre-processing front-end) on 200 test samples from the TI46 speech corpus.

SNN models Network size Training methodology Accuracy (%)

LSM (Verstraeten et al., 2005a) 1,200 liquid neurons Supervised linear classifier 94.0

Liquid-SNN (our work) 1,600 liquid neurons Unsupervised STDP 91.6

Two-liquid SpiLinC (our work) 2 × 800 liquid neurons Unsupervised STDP 91.4

TABLE 7 | Classification accuracy of different SNN models trained using unsupervised STDP on the MNIST dataset.

SNN models Network size Number of synapses Accuracy (%)

Two-layered SNN (Diehl and Cook, 2015) 12,800 neurons 45,977,600 95

Liquid-SNN (our work) 12,800 liquid neurons 12,697,600 89.65

Four-liquid SpiLinC (our work) 4 × 3,200 liquid neurons 4,866,048 90.90

works to evaluate models for speech recognition. We trained our
models on 300 randomly selected speech samples and report the
classification accuracy on the remaining 200 samples. Table 6
shows that both the Liquid-SNN and two-liquid SpiLinC yield
comparable albeit slightly lower classification accuracy than that
provided by the LSM, which requires a readout layer trained
in a supervised manner to infer the class of an input pattern.
Next, we evaluate the proposed models against a two-layered
fully-connected SNN (Diehl and Cook, 2015) that is commonly
used for unsupervised image recognition. Table 7 shows that the
classification accuracy of both the models on the MNIST testing
dataset is lower than an accuracy of 95% achieved by the two-
layered SNN. However, the Liquid-SNN (with 12,800 neurons)
and SpiLinC (4 × 3,200 neurons), respectively offer 3.6× and
9.4× sparsity in synaptic connectivity compared to the two-
layered SNN containing 6,400 excitatory and 6,400 inhibitory
neurons. Note that number of synapses of the baseline two-
layered SNN (shown in Table 7) is computed from (8) using
the following parameters: ninp = 784, ne = ni = 6,400, pinp−e

= 1, pee = pii = 0, pei = 1/ne, and pie = 1−pei. Further,
the four-liquid SpiLinC with 3,200 neurons per liquid (out of
which 2,560 neurons are excitatory) would converge faster then
the two-layered SNN with 6,400 excitatory neurons if both
the networks were trained with the same learning rate. We
find that the classification accuracy of the proposed models is
lower than that achieved by the two-layered SNN because of
the sparse recurrent inhibitory connections inside the liquid as
explained below. When a test pattern is presented to the liquid,
the neurons that learnt the corresponding pattern during training
fire and only sparsely inhibit the remaining liquid neurons.
This could potentially cause neurons that learnt different input
classes but share common features with the presented test pattern
to fire, leading to degradation in the classification accuracy.
In order to precisely recognize a test pattern, it is important
to attribute higher weight to the spike count of the correctly
firing neurons and lower weight to the spike count of the
incorrectly firing neurons. This can be accomplished by adding a
readout layer and suitably adjusting the liquid to readout synaptic
weights. We refer the readers to the Supplementary Material

for performance characterization of SpiLinC with readout layer.
Our results show that SpiLinC augmented with readout layer

provides classification accuracy of 97.49% on the MNIST dataset
and 97.29% on the TI46 digit subset.

Finally, we note that the deep learning networks (Wan
et al., 2013) have been shown to achieve 99.79% classification
accuracy on the MNIST dataset while the Long Short-Term
Memory (LSTM) Recurrent Neural Networks (RNNs) (Graves
et al., 2004) provide 98% classification accuracy on the TI46
digit subset. Although the proposed liquid models yield lower
classification accuracy than the deep learning networks and
the LSTM-RNNs, they offer the following benefits with respect
to computational efficiency and training complexity. First, the
event-driven spike-based computing capability of the Liquid-
SNN and SpiLinC naturally leads to improved computational
efficiency than the deep learning networks including the binary
networks (Hubara et al., 2016) that are data-driven and operate
on continuous real-valued and discrete neuronal activations,
respectively. Second, the deep learning networks and the LSTM-
RNNs are respectively trained using error backpropagation
(Rumelhart et al., 1986) and backpropagation-through-time
(Werbos, 1990) algorithms, which are computationally expensive
compared to the STDP-based localized training rule used in
this work for the input to liquid synaptic weights. Last, the
deep learning networks are iteratively trained on multiple
presentations of the training dataset to minimize the training
loss and achieve convergence. On the other hand, the proposed
models are capable of achieving convergence with fewer training
examples as evidenced by the four-liquid SpiLinC for MNIST
digit recognition, which needed 64,000 training examples for
convergence that roughly translates to single presentation of
the training dataset. We note that meta-learning strategies
(Hochreiter et al., 2001) have been proposed for LSTM-RNNs to
learn quickly from fewer data samples by exploiting the internal
memory in LSTM-RNNs. Recently, a new class of networks
known as the memory-augmented networks (Santoro et al.,
2016), where the networks are augmented with an external
memory module, have been demonstrated for one-short learning
or learning new information after a single presentation. Similar
learning strategies, which either exploit the internal memory of a
recurrently-connected liquid or incorporate an external memory
module, can be used to improve the training efficacy of the
proposed models.
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5. CONCLUSION

In this work, we proposed Liquid-SNN consisting of input
neurons sparsely connected to a randomly interlinked liquid
for unsupervised speech and image recognition. We showed
that adapting the input to liquid synaptic weights enables
the neurons in a non-linear liquid to self-learn time-varying
speech and static image patterns. We demonstrated the
generality of our Liquid-SNN by training it to infer digit
utterances from the TI46 speech corpus and handwritten
MNIST digits. Such a general computing model, capable of
processing different signal modalities using a uniform self-
learning methodology, is highly desirable for neuromorphic
hardware implementations. However, the Liquid-SNN suffers
from scalability issues because of the need to grow the liquid
for enhancing the classification accuracy. We proposed
SpiLinC that is composed of an ensemble of smaller liquids
trained in parallel to learn distinctive input features. The
ability of SpiLinC to recognize an input by identifying
low-level features improves the classification accuracy.
SpiLinC, with adequately sized liquids for efficient feature
learning, provided competitive accuracy with added sparsity
in synaptic connectivity and faster training convergence
across different application domains. Therefore, SpiLinC
is a universal and scalable computing model that can be

used to realize intelligent devices capable of real-time online
learning.
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