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Brain-computer interface (BCI) is a direct communication pathway between brain and
external devices, and BCl-based prosthetic devices are promising to provide new
rehabilitation options for people with motor disabilities. Electrocorticography (ECoG)
signals contain rich information correlated with motor activities, and have great potential
in hand gesture decoding. However, most existing decoders use long time windows,
thus ignore the temporal dynamics within the period. In this study, we propose to use
recurrent neural networks (RNNs) to exploit the temporal information in ECoG signals for
robust hand gesture decoding. With RNN’s high nonlinearity modeling ability, our method
can effectively capture the temporal information in ECoG time series for robust gesture
recognition. In the experiments, we decode three hand gestures using ECoG signals of
two participants, and achieve an accuracy of 90%. Specially, we investigate the possibility
of recognizing the gestures in a time interval as short as possible after motion onsets. Our
method rapidly recognizes gestures within 0.5 s after motion onsets with an accuracy of
about 80%. Experimental results also indicate that the temporal dynamics is especially
informative for effective and rapid decoding of hand gestures.

Keywords: brain-computer interface, electrocorticography, neural prosthetic control, neural decoding, motor
rehabilitation

1. INTRODUCTION

Brain-computer interface (BCI) is a direct communication pathway between brain and external
devices (Wolpaw et al., 2002). BCI systems do not depend on peripheral nerves and muscles, and
thus have great potential to provide new rehabilitation options to patients with motor disabilities
(Daly and Wolpaw, 2008), toward the big vision of cyborg intelligence (Wu et al., 2013, 2016; Yu
et al., 2016). Electrocorticography (ECoG)-based BCI systems, i.e., the semi-invasive BCIs, have
better long-term stability than invasive BCIs (Pilcher and Rusyniak, 1993), although neural spikes
(Qian et al., 2018; Xing et al., 2018) have high temporal resolution, and contains richer information
than traditional non-invasive BCIs, such as EEG (Blankertz et al., 2004; Sun et al., 2016), thus have
been considered as an ideal option for applications such as neural prosthesis control (Leuthardt
et al., 2004; Schalk et al., 2008).

A key problem in BCI-based neural prosthesis control is decoding movement intentions
from brain signals. Hand gestures convey rich information in communication, and hand
gesture decoding has attracted a lot of attention recently. Most existing hand gesture decoding
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approaches fall into two categories: finger movement regression
and hand gesture classification. Some typical studies on hand
gesture decoding are summarized in Table 1. Finger movement
regression approaches aim to predict the flexion trajectories of
individual fingers (Kubanek et al., 2009; Miller et al., 2012, 2014;
Xie et al., 2018). But the flexion trajectories of individual fingers
in those studies were generated by the movement of single finger.
Very few studies tried to decode flexion trajectories of fingers
when multiple fingers move simultaneously (Acharya et al,
2010). According to several finger movement decoding studies,
the sites of useful signals in ECoG locate separately in space for
different fingers (Miller et al., 2012, 2014). When multiple fingers
move simultaneously, although the mixed signals of multiple
finger movements could be recorded by ECoG electrodes, the
temporal overlapping and spatially sparse sampling makes it
difficult.

Instead of predicting the flexion trajectories of fingers, hand
gesture classification directly regards hand posture decoding
as a classification problem, which is more straightforward for
practical solution of prosthesis control. Yanagisawa et al. (2011)
proposed a real-time decoding system to classify three hand
gestures with a linear classifier. Chestek et al. (2013) proposed to
use naive Bayes decoder to effectively classify five hand postures
from the ECoG signals. These approaches addressed the strength
of ECoG signals in hand gesture classification, however, they
extracted features using statistics over a long time window,
and thus ignored the dynamics in time. Since the performing
of gesture is a process, temporal information in ECoG signals
contains potential information for decoding. To capture the
temporal information, Bleichner et al. (2016) and Branco et al.
(2017) proposed a temporal template matching method to decode
four gestures from ECoG signals, and Li et al. (2017) proposed
SVM-based short-term window approach to further explore
the information in time. With short-term time windows, the

temporal patterns of different gestures can be characterized,
which provides useful information to improve the accuracy in
gesture decoding. However, the sequential relationship among
windows was not explicitly modeled for accurate decoding. It is
still a problem to further exploit the underlying temporal patterns
and structures in ECoG signals to improve gesture decoding.

In this study, we propose an RNN-based decoder to accurately
recognize hand gestures in ECoG signals. To capture the
underlying temporal information in ECoG signals, we propose
to use gated RNN models, i.e., long short-term memory (LSTM)
models, to learn the temporal patterns of different gestures. The
LSTM model can sequentially update the gates in memory cells
to determine which features in the preceding windows should
be considered for gesture decoding. To benefit temporal pattern
learning, our method selects the most temporally informative
features to be input to the LSTM decoder. Specially, we evaluate
the features in different channels and frequencies by their
decoding performances in temporal patten representation, and
select the optimal features using a greedy strategy. Experimental
results of two subjects show that our method outperforms other
methods with an accuracy of 90% in three gesture recognition.
Moreover, we investigate the possibility of recognizing the
gestures in a time interval as short as possible after motion onsets.
The motion intents can be rapidly recognized within 0.5 s after
motion onset. Our method achieves high motion recognition
performance with quick response, and is promising for online
BCI control of prosthetic and robotic devices.

2. METHODS

The framework of our method is shown in Figure 1. In our
approach, the ECoG signals are firstly divided into sequential
short-time segments, and power spectrum features are extracted
from each segment. Then we select the most informative signal

TABLE 1 | Hand gesture decoding methods using ECoG signals.

Authors Problem Gestures Method Window? Subject Num Result

Kubanek et al., 2009 Regression 5 - single finger movement Linear multivariate decoder [0, 1.2 9] 5 Average CC®-0.63

Acharya et al., 2010 Regression 2 - slow grasping motions of Generalized linear model [0,259] Average CC©-0.48

the hand

Miller et al., 2012 Regression 5 - single finger movement Generalized linear model [-1s,2¢] 14 Relationship of
cortical population
activity

Xie et al., 2018 Regression 5 - single finger movement CNN+LSTM [0, 18] 3 Average CC®-0.49

Yanagisawa et al., 2011 Classification 3 - rock, scissors, paper Linear classifiers [25s,259] 79.6%

Chestek et al., 2013 Classification 5 - four finger movements, Naive Bayes [-0.5s, +1.5 5] 3 P1-68%, P2-84%,

rest P3-81%

Bleichner et al., 2016 Classification 4-D,FV,YP Template matching [1s,25] 2 P1-97%, P2-74%

Branco et al., 2017 Classification 4-D,FV,YP Template matching [-1s,2.65] 5 85%

Lietal, 2017 Classification 3 - rock, scissors, paper SVM [0, 1.2 9] 3 P1-85.7%,
P2-84.5%,
P3-69.7%

aThe movement onset time is regarded as time 0.

bAmerican Sign Language finger spelling alphabet D, F, V and Y, respectively.

©CC is the abbreviation of correlation coefficients.

Frontiers in Neuroscience | www.frontiersin.org 2 August 2018 | Volume 12 | Article 555


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pan et al.

Rapid Decoding ECoG Using RNNs

ECoG Signal Segmentation Feature RNN-based Gesture
0ty Signa £ extraction and selection decoder recognition
W Mo, " - el D
"\'»\ﬂgllflrf/'f‘l"‘- ! ’ '\'S’W\W N\)V,/\ W, “’\Vv'/\\‘,@"‘l,w:’«’/' (X)) = .! () 6] %
d . B
' @eo-eree —— ;
“M U\awhwr\w{mm W{,wajm_\ /\J\/n m f v'*v\ o MI__.I_M »
M ([ - @O0 0000 = mD =
Time] Channel \
‘JI .\
" \.‘\m}\.\, 'mf‘\M!\\"\Wllﬁ‘v’\\,«\}\.‘,\ufva r«‘f\,/.’h““ WW* W @ .I .I (1) -g @
‘ "‘“l k k e A’ham)el . l J .L J. . >
FIGURE 1 | Framework of the proposed method.

TABLE 2 | Information of the participants and electrode locations.

Participants Gender Age Handedness (task hand) Implanted grids* Seizure focus
P1 Female 28 Right (right) LH: temporal, parietal, occipital lobe Temporal lobe
p2 Male 22 Right (left) RH: frontal medial, dorsal surface, parietal lobe Frontal lobe

* LH, Left hemisphere; RH, Right hemisphere.

Participant P1

greedy feature selection.

FIGURE 2 | The spatial position of the subdural ECoG electrodes. (A,B) are the electrode placement for P1 and P2, respectively. The circles are the position of each
electrode, the numbers in the circles present the channels. The blue dash lines mark the central sulcus. The color of the electrodes denote the selection priority in

Participant P2

channels along with the frequency bands using a greedy strategy,
to compose compact features for decoding. Finally, the features
of the segments are sequentially put into a RNN-based decoder
for gesture recognition.

2.1. Experimental Paradigm and Data

Collection

2.1.1. Subjects

The participants in this study were patients with intractable
epilepsy, who had implanted temporary intracranial electrode
arrays for surgical purpose. The configuration and location of
the electrodes were determined by clinical requirements. The
clinical electrodes were platinum electrodes with a diameter

of 4 mm (2.3 mm exposed) spacing at 10 mm and generally
implanted only for a period ranging from several days up to
2 weeks. Table2 and Figure 2 presents the information and
implantation details of each participant. During the task, the
participants temporarily stopped taking the epilepsy medicine
under the supervision of doctors. All participants went through
the clinical examination routine of the motor, sensory, language
function, and so on through cortical stimulation mapping (CSM),
which helped to further and functionally localize the electrodes.
In addition, combined with preoperative MRI examination, a
computed tomography (CT) scans were used to further confirm
the location of the electrodes after the implantation surgery,
and none of the hand motor areas were in seizure onset zones
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FIGURE 3 | Behavior task paradigm. A trial was initiated by a red cross displayed on the center of the screen along with a verbal cue of “ready”. After a short delay,
the red cross disappeared and a gesture cue appeared on the screen, and the participant should perform the given gesture and hold it on, until the red dot appeared.

FIGURE 4 | Evaluation of the behavior task. (A,B) are the finger trajectories after
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movement onsets of 3 gestures for participant P1 and P2 (the variance is denoted by

the thickness of each line). (C,D) are the clustering results of the three gestures using the finger trajectories for participant P1 and P2.

for both participants. All procedures were followed from the
guide and approved by the Second Affiliated Hospital of Zhejiang
University, China. Participants gave written informed consent
after detailed explanation of the potential risks of the research
experiment.

2.1.2. Experimental Paradigms

In the experiment, the participants were asked to perform three
kinds of hand gestures (“scissors,” “rock,” and “paper”) guided by
the cues presented on the screen. As shown in Figure 3, a trial
began with a verbal cue of “ready,” and meanwhile a cross sign
displayed at the center of the screen. The cross sign indicates
that the participants should relax the task hands and be prepared.
During the relax stage, the participants were asked to relax their
task hands and flex the fingers slightly with their palms facing up.
The relax stage would last for 2-2.5 s randomly. After the relax
stage, the cross sign would be replaced by a picture of a randomly
selected gesture, and the task stage began. In the task stage, the
participants were asked to perform the given gesture instantly,
and hold the gesture until a red circle (stop cue) appeared. The
task stage would last for 2-3 s randomly. When the stop cue
showed, the participants should release the gesture and relax the

task hands. At the end of each trial, a verbal feedback “correct”
or “wrong” was given by the experimenter to tell the subjects
whether it was an eligible trial or not.

During the experiment, if participants failed to hold the
gestures until the stop cue, or forgot to release the gestures, the
trial was considered to be invalid. The failed trials were then
removed from the dataset. Each session contained three blocks,
and each block was composed of 50 trials. For both participants
P1 and P2, a total of five sessions were involved in the experiment.
The participants would have a short break between the blocks.
In practice, the number of trials and the duration of each
break depended on the medical condition and the willingness
of the participants. Experiments were carried out to evaluate
the behavioral compliance of the participants by analyzing
the finger trajectories after movement onsets. As shown in
Figure 4, the finger movement trajectories are consistent within
the same gestures with small variance (denoted by the thickness
of the line). We further analyze the trajectories by clustering
after t-distributed stochastic neighbor embedding (t-SNE). As
shown in Figure4, the gestures are discriminative for both
participants. The results verify the compliance of the behavior
task.
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2.1.3. Data Acquisition

The ECoG signals were collected at the Second Affiliated Hospital
of Zhejiang University. The NeuroPort system (128 channels,
Blackrock Microsystems, Salt Lake City, UT) was used to
record clinical ECoG signals from subdural electrode grids. The
recorded signals were stored continuously during the whole task
at the sampling rate of 2 kHz and low-pass filtered with a cutoff
frequency of 500 Hz. The hand movement data were collected
by a 5DT data glove with 14 sensors (5DT Inc., USA) and each
sensor simultaneously recorded the finger flexion values. Since
we need to mark the onset time of each movement, we defined
the onset of a movement as the moment when five first derivative
of the flexion values consecutively exceeded a specific threshold.
In order to synchronize the neural signals and the motor data, we
marked the timestamps of each cue in the ECoG signal recordings
using the event channel of the NeuroPort system.

2.2. Segmentation and Feature Extraction
After data acquisition, both ECoG signals and movement signals
are continuous. According to the event timestamps recorded
synchronously with the signals, the valid trials could be located
and preserved for gesture decoding. Each trial contains three
timestamps of events: gesture cue start, hand motion onset
(indicated by the glove signals), and gesture cue stop.

For each trial, the ECoG signals between “hand motion onset”
and “gesture cue stop” is adopted for gesture decoding. The
raw ECoG signals are firstly processed by a common average
reference spatial filter for noise removal. For each channel, we
calculate the average value of the data of the whole session, then
the average is subtracted from the raw signals. After filtering,
a sliding window is adopted to divide the signals in trials into
small temporal segments. In accordance with previous work (Li
et al.,, 2017), we use a window with length of 300 ms and stride
of 100 ms. With the temporal segments, the dynamics during the
movement stage could be preserved for further decoding.

Then, the power spectral density (PSD) is estimated for each
temporal segments. The PSD is calculated using the Welch’s
algorithm (Welch, 1967). Since the range of the power in different
frequency bands could be different, normalization is required.
In our method, we adopt the ECoG signals in the relax stage
to provide the baseline for normalization. For each channel, we
firstly calculated average PSD of all the data segments obtained in
relax period:

Nrelax

- 1
Rep =5 D Reg(i) (1)

i=1

where R.f(i) is the PSD of channel ¢ and frequency f in the
relax segment 7, and N, is the total number of segments in the
relax stages. Then PSD of the task signals could be normalized by
dividing the respective PSD value in R:

Syl
Sof(i) = RLf
(%

i=0,1,2,..., N> (2)

where S.¢(i) is the PSD of channel ¢ frequency f in the task
segment i.

After normalization, we aggregate the PSD values in frequency
bands. According to previous studies (Li et al., 2017), a total of
five frequency bands are used: a low-frequency band (4-12 Hz),
beta frequency band (12-40 Hz), low gamma frequency band
(40-70 Hz), high gamma frequency band (70-135 Hz) and a
high frequency band (135-200 Hz). For each frequency band, we
calculated the average PSD for each channel:

1 N
Serr = ; ; Set () (3)

where gc)t)p is the average PSD of tth in band F for channel ¢, and
F is the total number of frequencies in each band.

At last, we put extracted features from small temporal
segments in a trail into a matrix with t rows and »n columns
as a input sequence, where ¢ is the number of windows and n
is the number of features. Each input sequence contains ¢ time
steps, and n features at each time step. This operation let us
able to put features into RNN-based model in a recurrent way,
which better characterized temporal information by preserving
the sequential information in short-term windows. With the
temporal segments, the dynamics during the movement stage
could be preserved for further decoding.

2.3. Gesture Recognition

Since the electrode placement was determined by surgery
requirements, most channels are unrelated to hand motor
activities. The unrelated signals can bring noise in gesture
decoding and cause unnecessary computational costs. Therefore,
effective feature selection strategy is applied to choose the
most informative features for effective and efficient gesture
recognition.

2.3.1. Feature Selection

In feature selection, we adopt a greedy strategy-based method to
select the most informative channels along with the frequency
bands. The greedy strategy performs in an iterative manner.
Firstly, we choose the feature with the highest decoding
performance using an SVM classifier, and put it into the selected
set. Then, at each step, we iteratively choose one candidate
feature that improves accuracy the most when combined with
the selected features, to be added to the selected set. Since the
candidate feature is evaluated together with the selected features,
redundant features are not likely to be selected. The iteration
stops when the request feature number is reached or there is no
improvement of decoding performance after adding the newly
selected feature. The greedy feature selection strategy is presented
in Algorithm 1.

2.3.2. Recurrent Neural Network-Based Gesture
Recognition

After feature selection, the feature representation of a task trial
can be denoted as {x;, Xy, ..., X}, where x; is the feature vector
at the ith temporal segments. The feature representation takes
rich information in both spectrum and temporal dynamic for
gesture recognition. Since most classifiers require inputs in the
form of vectors, the decoders based on such classifiers need to
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Algorithm 1 Greedy Feature Selection

Input: Input Feature Matrix F containing N samples of feature
vector {f;}}_,
Output: Selected Feature List
. Step 0: Initialization
: Put ith feature with the best accuracy into list /
| < argmax; P(f;)
. Initialize the best accuracy B <— 0
: Initialize local best accuracy LB <— P(f})
. Delete f;

: Step 1: Greedy Feature Selection
: while LB > B do

10: B < LB

11: [ < argmax; P(< f,f; >)
12: LB < P(f;)

13: Delete f;

14: return/

O P N QU R W N =

concatenate the temporal features into a vector. This procedure
loses the temporal structure of data, thus leads to inaccurate
decoding.

The RNN-based method overcomes this problem by inputting
data in a recurrent way. As shown in Figure 5, the feature vectors
are sequentially put into the model, and the temporal information
could be well preserved by the temporal connections. In
our method, the LSTM model is adopted (Hochreiter and
Schmidhuber, 1997):

i(t) = o (Wix(t) + Uih(t — 1) + b)),

f(t) = o (Wpx(t) + Urh(t — 1) + by),

o(t) = o (Wox(t) + Uph(t — 1) + b,), (4)
c(t) = i(t)tanh(Wex(t) + Uch(t — 1) + be) + f(H)c(t — 1),

h(t) = o(t)tanh(c(t))

where x(t) is the feature vector at the t-th time window, o(t)
is the recognition result output from the model after the last
time window, o (x) is the sigmoid function, c¢(t) is the memory
cell, h(t) is the hidden layer units, and i(t), f(¢), o(t) are the
input gate, forget gate, and output gate respectively. The memory
cell can remember useful information through time, and the
gates control how many time windows should be used for the
current gesture recognition task. Therefore, in the LSTM model,
temporal information can be well preserved for accurate gesture
decoding.

3. RESULTS

In this section, experiments are carried out to evaluate the gesture
decoding performance of our method. Firstly, we examine and
analyze the decoding performance of the features selected by
different kinds of strategies. Secondly, we test the RNN model
with different settings to select the optimal parameters for gesture
decoding. After that, the RNN-based decoder is compared with

four other competitors to demonstrate the advantages of our
method. Finally, we investigate the decoding performance in a
time interval as short as possible after motion onsets for rapid
gesture recognition. The RNN model is implemented with Keras
on the top of TensorFlow.

In the experiment, we have rejected the trials with move
artifacts or electrode failures by visual inspection. After removing
invalid trails, the dataset includes 243 samples for P1, and 394
samples for P2. In our study, there are a total of three classes of
gestures of “rock,” “scissors,” and “paper.”

3.1. Feature Analysis

In this section, we analyze the features extracted from the ECoG
signals. Firstly, we evaluate the feature selection strategy and
assess its influence on the gesture recognition performance.
Then, experiments are designed to find the appropriate number
of features to be applied in gesture recognition. After that,
the channels and frequency bands selected are presented and
analyzed.

The performance of the greedy-based feature selection is
evaluated in comparison with other methods. Firstly, we evaluate
the gesture recognition performance using all the channels and
frequency bands by the SVM classifier to serve as the baseline
in the experiment. Then, an optimal-based feature selection
strategy, which independently selects the top N features with the
best decoding performance, is implemented and compared. The
settings of competitors in this experiment are as follows:

e Baseline: all the channels with all five frequency bands
are used for gesture recognition. The features in temporal
segments are concatenated to a vector and put into the SVM
classifier.

e Optimal-based feature selection: a feature selection strategy
that evaluates each frequency of each channel independently,
and selects the best N features for gesture recognition.

e Greedy-based feature selection: our method. The strategy is
described in the Algorithm 1.

In this experiment, the signals are divided into temporal
segments using a 300 ms sliding window with a stride of 100
ms, and a total of 10 temporal segments following the movement
onsets are used. The performance is presented in the average
accuracy of 3-fold cross-validation. In gesture classification
evaluation, we apply 10-fold cross-validation, for each fold in
cross-validation, we randomly select 20% of the training dataset
as validation dataset to select the hyper-parameters.

As shown in Figure 6, we compare the feature selection
strategies using the accuracy of the gesture recognition
performance. Results show that the baseline method using all
the features obtains high performance. With the feature selection
strategies, performance close to the baseline can be achieved
using only a small set of features. It is because the useless channels
could bring noises in classification. Besides, the large amounts of
features (both P1 and P2 have 32 signal channels, the total feature
number is the product of the number of channel, the number of
frequency, and the number of temporal segment) lead to high
computational costs.
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FIGURE 5 | Architecture of RNN model for gesture classification from ECoG.
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FIGURE 6 | Performance of feature selection strategies using different number of features. (A,B) are for participant P1 and P2, respectively. The yellow stars indicate
the points that the greedy algorithm stops, and the performance converges after the points.

We also compare the performance using a different number of ~ information. The channels and their corresponding frequency
features. Compared with the optimal-based strategy, the greedy ~ bands are shown in Table 3. The corresponding electrodes for the
strategy achieves better performance on both of the participants.  features are illustrated in Figure 2. Most of the selected electrodes
In the greedy strategy, since the candidate feature is evaluated  are close to the central sulcus and within the sensorimotor region,
together with the selected features, redundant features are not  which is in accordance with existing studies (Li et al., 2017).
likely to be selected, and thus more informative feature sets could
be obtained. .

Here, we present the statistical analysis of the channels and the 3.2. Performance of Gesture Recognition
frequency bands selected by our method. The feature distribution ~ In this section, we evaluated the decoding performance of our
of frequency bands is shown in Figure 7, which shows that the ~ method. Firstly, in order to maximize the performance of the
most useful bands are 70-135 Hz and 135-200 Hz. The results  classifiers, experiments are carried out on the validation dataset
indicate that high frequency bands in ECoG are highly correlated  to select the optimal model settings. Secondly, we compare our
to hand motions, which is in agreement with previous studies ~ method with other decoders to demonstrate the effectiveness of
(Bleichner et al., 2016; Branco et al., 2017). temporal information, and the ability of RNN in ECoG time

For the number of features, we only used the first six features  series decoding.
selected by the greedy algorithm. It is because, although using
more features can still lead to improvement of performance  3.2.1. Model Selection
as in Figure6, the later selected electrodes can not bring  Experiments are carried out to select the optimal setting for the
much improvement. Besides, since the dataset is small, a slight  LSTM RNN model. For the LSTM model, one important setting
improvement can be brought by overfitting instead of useful  is how many hidden units are used. Models with a small set of
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TABLE 3 | The channels and frequency bands selected by the greedy-based
strategy.

Selection order Participant P1 Participant P2
Channel  Frequency Channel  Frequency

band (Hz) band (Hz)

1 3 70-135 13 70-135

2 iR 135-200 13 135-200

3 13 135-200 12 70-135

4 2 135-200 20 12-40

5 30 70-135 20 135-200

6 28 135-200 17 70-135

hidden units may not be useful to encode the information, while
models with large sets of hidden units are prone to overfitting.

In this experiment, we tune the number of hidden units from
8 to 128 to test the performance of the LSTM model. In this
experiment, we use the top six features selected by the greedy
strategy, and the settings of temporal segments are the same
as in section 3.1. As shown in Figure 8, the LSTM model with
32 hidden units got the best performance (90.56% on for P1
and 88.18% for P2) for both participants on validation dataset.
Therefore, we use 32 hidden units for gesture recognition in
our decoder. In model training, we use Adam optimization
algorithm, the learning rate was set to be 0.001 with a decay rate
of 0.0005 for each epoch. An early stop was applied by selecting
the epoch with the best performance on the validation set.

3.2.2. Comparison With Other Methods

In this experiment, comparison is carried out between our
method and other decoders. We firstly compare our method with
decoders using long time windows to evaluate the effectiveness
of temporal information. Then our decoder is compared with
other classifiers to demonstrate the strength of RNN models in
sequential modeling. For the competitors, we carefully select
typical segment-based ECoG/EEG classification approaches from
the existing studies, including linear and nonlinear methods. For
linear method, we choose the widely used logistic regression

method as in Subasi and Ergelebi (2005). For nonlinear method,
we choose the classical SVM classifier with RBF kernel as in
Li et al. (2017) for comparison. We also compare the segment-
based approaches with the method using long time windows
to show the effectiveness of temporal information. In order to
demonstrate the effectiveness of recurrent structure, we compare
our method with an MLP-based approach as in Chatterjee and
Bandyopadhyay (2016), to evaluate advantage of weight sharing
of RNN models. In this experiment, the signals are divided into
temporal segments using a 300 ms sliding window with a stride
of 100 ms. A total of 10 temporal segments are used. Thus, each
input sequence contains 10 time steps, and 6 features at each time
step for our RNN model.

In this experiment, we evaluate our method in comparison
with other methods using a permutation test. In each
permutation trial, we randomly select 10% of the data for test,
and run a total of 500 trials. We also examine the significance of
the results using paired ¢-test.

The implementation and settings of the competitors in this
experiment are as follows:

e SVM-Global: a SVM-based decoder using features calculated
over long time windows. For fair comparison, the length of
the ECoG signal used is the same as the following competitors.
RBEF kernel is used in the SVM model, and the parameters of C
and gamma is selected by cross-validation. The parameters C is
selected from 0.1,1,10,100 and 1,000, and gamma was selected
from 0.01, 0.001, and 0.0001.

e SVM-Segments: a SVM-based decoder using features in
temporal segments (Li et al., 2017). The segment settings are
the same as the RNN method. The features in sequence are
reshaped into a single vector to input to the SVM classifier.
RBF kernel is used in the SVM model, and the parameters of C
and gamma is selected by cross-validation. The parameters C is
selected from 0.1,1,10,100, and 1,000, and gamma was selected
from 0.01, 0.001 and 0.0001.

e MLP-Segments: a multilayer perception based decoder from
previous work (Chatterjee and Bandyopadhyay, 2016). The
segment settings are the same as the RNN method. The
features in sequence are reshaped into a single vector to input
to the MLP classifier.
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TABLE 4 | Gesture recognition comparison of different decoders.

TABLE 5 | P-value of paired t-test in comparison with other methods.

Decoder P1 P2 t-test P1 P2
SVM-Global 79.03% + 6.50 78.94% +7.60 Ours vs. SVM-Global 1.52E-141 6.25E-129
SVM-Segments 86.51% +5.23 87.66% +6.19 Ours vs. SVM-Segments 3.31E-34 2.37E-25
MLP-Segments 84.35% +£5.76 87.11% £7.13 Ours vs. MLP-Segments 3.08E-66 9.34E-28
LR-Segments 83.82% +5.69 85.76% +6.77 Ours vs. LR-Segments 8.58E-86 6.06E-53
RNN (ours) 89.34% +4.67 90.83% +5.94

e LR-Segments: a logistic regression based decoder from
previous work (Subasi and Ercelebi, 2005). The segment
settings are the same as the RNN method. The features in
sequence are reshaped into a single vector to input to the LR
classifier.

The results are shown in Table4. Overall, the RNN-based
decoder obtains the highest accuracies for both participants.
For participant P1 the gesture recognition accuracy is 89.34%,
and for participant P2 the gesture recognition accuracy is
90.83%. Among the competitors, the SVM-Global gives the worst
performance. It is reasonable since it calculates the features
using the whole time window and ignores the information in
time. The SVM-Segments method improves the accuracy by 7.48
and 8.72% for P1 and P2 respectively, by using the temporal
segments. The results demonstrate the importance of considering
the temporal information in ECoG decoding. The significance of
the results are evaluated using paired ¢-test. Results show that our
method statistical significantly outperforms other approaches
under significance of 0.01 (see Table 5).

3.3. Rapid Recognition
Quick recognition is an important issue in BCI-based prosthetic
control. In this section, we investigate the possibility of

recognizing the gestures in a time interval as short as possible
after motion onsets. In the experiments, we tune the time interval
from 100 ms to 1,200 ms after motion onsets. For each time
interval, the ECoG signals are divided using a 300 ms sliding
window with a stride of (t — w)/9 ms, where ¢ is the time interval
and w = 300 ms is the length of the sliding window. If the time
interval is <300 ms, we use a w = t/2 ms sliding window with
a stride of w/9 ms. A total of 10 temporal segments are used.
We evaluate the performance using a permutation test. In each
permutation trial, we randomly select 10% of the data for test,
and run a total of 500 trials.

The results are shown in Figure9. As the time interval
become longer, better gesture decoding performance could be
obtained. The results of this experiments also demonstrate
the possibility of rapid recognition. As shown in Figure9,
recognition accuracies of over 75% could be obtained at the 0.3
s interval for both of the participants. If we use a 0.5 s time
interval, the gesture recognition accuracy is over 80%. The results
also indicate that, the temporal dynamic is especially informative
for quick decoding within short time intervals. The significance
of the results is evaluated using paired t-test, and our method
outperforms both SVM-Global and SVM-Segment significantly
with p < 0.01. The details of the ¢-test results are shown in the
Supplementary Table 1.
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FIGURE 9 | Gesture recognition performance within different time intervals after motion onsets. (A,B) are the decoding performance of different methods on
Participant P1 and P2, respectively. Recognition accuracies of over 75% could be obtained at the 0.3 s interval for both of the participants. If we use a 0.5 s time
interval, the gesture recognition accuracy is over 80%. The results also indicate that, the temporal dynamic is especially informative for quick decoding within short
time intervals.

4. DISCUSSIONS

In this study, we have shown that ECoG signals provide
useful information for effective hand gesture classification, and
demonstrated the importance and effectiveness of temporal in
formation in gesture decoding. Compared with the existing
approaches, our method explore further on the temporal
information in ECoG signals to achieve more accurate hand
gesture decoding. Bleichner and Branco et al. (Bleichner et al.,
2016; Branco et al., 2017) proposed to use temporal template
matching of local motor potential (LMP) for each channel for
gesture decoding. Compared with their approaches, our method
considered temporal information in different frequency bands,
and modeled patterns and underlying relationships using the
RNN decoder. Li et al. (2017) proposed to model temporal
information in the ECoG signals using short-term time windows
and SVM classifier. In their approach, the features in temporal
sequence were reshaped into a vector for classification, which
broke the temporal structure of the features. Different from
their method, our RNN-based decoder input features in a
recurrent way, which better characterized temporal information

by preserving the sequential information in short-term windows.
Elango et al. (2017) proposed to use RNN-based models
to classify individual finger movements. Different from their
approach which manually selected the ECoG channels and
frequencies from empirical observations, our method selected
the optimal channels and frequencies with a greedy strategy
to provide the most useful temporal information for gesture
decoding. Overall, our method further exploited the temporal
information of ECoG signals in both feature selection stage and
gesture decoding stage, and recognized three hand gestures with a
high accuracy of 90%. Besides, our results provided evidence for
the possibility of rapid recognition. As shown in Table 1, most
existing methods require long detection delays (from 1.2 to 2.6 s)
to achieve high performance, which leads to poor user experience
in real-time prosthesis control. In our system, quick response
can be achieved within 0.5 s with an accuracy of 80%, which is
promising for online applications.

Although our model achieved great results on ECoG signals,
the details of temporal information still need a discussion. The
temporal dynamic of different gestures is illustrated in Figure 10.
The color presents the feature values of six features in different
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time. The features are ordered by the selection order asin Table 3.  informative, the selection priority is not high. It might because
The horizontal axis denotes the time windows, where 0 is the  the feature is correlated to the early selected features. Therefore,
movement starting point. As described in section 3, the window itis not preferable in the greedy algorithm. In addition, the results
length is 300 ms with a stride of 100 ms. It is shown that, the  in feature selection show that most of the selected electrodes
features contain varying patterns in time. Most of the features  are distributed along both sides of the postcentral gyrus in
show higher values in the first several time windows and the  two participants, which is in accordance with existing studies
values decrease with time. One exception is the fourth feature  (Pistohl et al., 2012; Wang et al., 2012; Chestek et al., 2013).
for P2, which has small values shortly after movement onset. ~ The results suggest that the activation of the postcentral gyrus
It is reasonable because the feature covers low frequency band  play an influential role in hand movement. This phenomenon
(12-40 Hz). The feature might be chosen under overfitting.  is probably due to the motor control copy or the force-related
We also evaluate the importance of each feature for different  feedback.

gestures. In Figure 11, we present the mutual information of

each features to the gesture labels. For P1, the most informative

features are the 1st and the 2nd (the corresponding electrodes 5. CONCLUSION

are 3 and 11 respectively), for P2, the most informative features

are the Ist, 2nd, and 5th (the corresponding electrodes are  In this study, we proposed a RNN-based method to exploit
13 and 20 respectively). The most informative electrodes are  the temporal information in ECoG signals for rapid and
close to the central sulcus. For P2, although the 5th feature is  robust gesture recognition. Compared with the existing
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approaches using linear methods or SVM classifiers, the RNN
model better preserved the structure in feature sequence
and was capable of learning from nonlinear relationships.
Our system recognized three hand gestures with a high
accuracy of 90%, and quick response was achieved within
0.5 s with an accuracy of 80%. The results showed that
ECoG signals provide useful information for effective hand
gesture classification, and demonstrated the possibility of
rapid recognition. The results provided further evidence for
the feasibility of robust and practical ECoG-based control of
prosthetic devices.
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