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Menopause-induced changes may include increased incidence of both depression/

anxiety and obesity. We hypothesized that behavioral changes that may develop after

ovarian failure could be related to neurochemical and metabolic aspects affected by this

condition and that high-fat intake may influence these associations. The present study

investigated in rats the effects of ovariectomy, either alone or combined with high-fat

diets enriched with either lard or fish-oil, on metabolic, behavioral and monoaminergic

statuses, and on gene expression of neuropeptides and receptors involved in energy

balance and mood regulation. Female rats had their ovaries removed and received

either standard chow (OvxC) or high-fat diets enriched with either lard (OvxL) or fish-

oil (OvxF) for 8 weeks. The Sham group received only chow diet. Ovariectomy increased

feed efficiency and body weight gain and impaired glucose homeostasis and serotonin-

induced hypophagia, effects either maintained or even accentuated by the lard diet but

counteracted by the fish diet. The OvxL group developed obesity and hyperleptinemia.

Regarding components of hypothalamic serotonergic system, both ovariectomy alone or

combined with the fish diet increased 5-HT2C expression while the lard diet reduced 5-

HT1B mRNA. Ovariectomy increased the anxiety index, as derived from the elevated plus

maze test, while both high-fat groups showed normalization of this index. In the forced

swimming test, ovariectomy allied to high-lard diet, but not to fish-oil diet, reduced the

latency to immobility, indicating vulnerability to a depressive-like state. Linear regression

analysis showed hippocampal AgRP to be negatively associated with the anxiety index

and hypothalamic AgRP to be positively associated with the latency to immobility.

These AgRp gene expression associations are indicative of a beneficial involvement

of this neuropeptide on both depression and anxiety measures. The present findings

demonstrate metabolic, neurochemical and behavioral alterations after ovaries removal

and highlight a positive effect of high-fat feeding on the anxiety-like behavior shown by

ovariectomized animals. Since the polyunsaturated ômega-3 intake (fish diet), unlike the

saturated fat intake (lard diet), failed to induce deleterious metabolic or neurochemical

consequences, further studies are needed focusing on the potential of this dietary

component as an adjuvant anxiolytic agent after menopause.
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INTRODUCTION

Although a connection between metabolic disturbances and
psychiatric disorders has been suggested, the mechanisms
involved have not been elucidated. Patients with depression have
been shown to present inadequate patterns of food intake and
glycemic control while diabetic individuals had higher incidence
of cognitive impairment, depression and anxiety disorders
(Panza et al., 2012; Correia and Ravasco, 2014; Singh, 2014;
Barandas et al., 2015).

The proportion of overweight and obese adults has increased
worldwide regardless of gender (Ng et al., 2014; de la Iglesia
et al., 2016), while the prevalence of anxiety disorders and
depression are higher in women than in men (Bromberger and
Kravitz, 2011; Kessler et al., 2015). Gender differences related to
depression seem to emerge after puberty (Hankin et al., 2007)
and to decline years after menopause (Bebbington et al., 2003).
Moreover, there is an increased prevalence of mood disorders in
post-menopausal women, a condition reportedly aggravated by
the presence of diabetes (Anderson et al., 2001; Martins et al.,
2002; Kim et al., 2015). Additionally, the association between
obesity and depression is highly expressed after menopause but
the mechanisms involved are unknown (Perquier et al., 2014;
Xiong et al., 2017).

Energy balance is regulated by a complex system in which
the hypothalamus plays a pivotal role, integrating signals from
both peripheral and central sites to modulate the release of
neuropeptides controlling food intake and energy expenditure
(Gerozissis, 2008; Yeo and Heisler, 2012). In contrast, the
hippocampus is an area highly involved in the control of mood
and cognition (Mahar et al., 2014; Anacker and Hen, 2017).
Interestingly, it is targeted by peripherally-derived endocrine
signs and it has been suggested to participate in the non-
homeostatic control of feeding through regulating the activation
of reward memory by food-related cues (Davidson et al., 2005).
However, the actions of these hormonal signs on this brain area
remain little explored (Kanoski and Grill, 2017).

Estrogen deficiency has been associated with increased body
adiposity, impairment of plasma lipid profile, type 2 diabetes
and metabolic syndrome (Milewicz et al., 1996; Carr, 2003;
Messina et al., 2013). Estradiol has been shown to inhibit
feeding via hypothalamic actions. The reported effects of
estradiol are complex and include attenuation of ghrelin’s
orexigenic action (Ferrer-Lorente et al., 2009), inhibition of
neuropeptide Y (NPY)/agouti-related peptide (AgRP) orexigenic
neurons (Olofsson et al., 2009), potentiation of cholecystokinin-
induced satiety (Asarian and Geary, 2007), and stimulation
of pro-opiomelanocortin (POMC) anorexigenic neurons (Zhu
et al., 2015). Estradiol-induced hypophagia may also involve
hypothalamic serotonergic activation (Pelletier et al., 2007;
Silva et al., 2010; Rivera et al., 2012; Santollo et al., 2012).
Moreover, estrogens influence brain areas regulating mood
and cognition, such as the hippocampus, increasing the
availability of monoamines through reduction of monoamine
oxidase expression, stimulation of tryptophan hydroxylase,
and regulation of serotonin (5-HT) neuronal transport (Ren-
Patterson et al., 2006; Kiss et al., 2012). These data indicate

that estrogen deficiency after menopause could facilitate
the establishment of both mood disorders and metabolic
derangements (Alexander et al., 2007).

The role played by AgRP, NPY, POMC, and CART acting at
the hippocampus is not yet understood. Hippocampal infusion
of NPY reversed the anxiogenic action of corticotropin releasing
factor (Kask et al., 2002; Heilig, 2004) and chronic restraint stress
elevated CART gene expression in the hippocampus (Hunter
et al., 2007). POMC deficiency decreased hippocampal cell
proliferation in rats (Ostwald et al., 2006) while AgRP expression
has been associated with hippocampal maturation in human fetal
cells (Bai et al., 2005).

Dietary factors may have an impact on both metabolic
and mood disorders. We have previously shown, in rats, that
fish-oil intake increased neuronal activation of hypothalamic
sites expressing anorexigenic mediators (Watanabe et al., 2009).
Moreover, n-3 PUFAs presented a protective effect in patients
with major depression, acting via serotonergic modulation (Peet
and Stokes, 2005; Ross et al., 2007). In mice, the consumption
of n-3 diet had an antidepressant-like effect, and increased
hippocampal volume, BDNF expression and neurogenesis
(Venna et al., 2009). In contrast, despite the obesogenic effect
of saturated fatty acids, lard consumption reportedly reduced
signs of stress and anxiety in humans and animals (Finger et al.,
2011; Singh, 2014), but little is known about its properties in an
estrogen deficiency-state.

Based on the above considerations, the present study
investigated the effects of ovaries removal, either alone or
combined with the chronic consumption of high-fat diets
enriched with either lard or fish-oil, on metabolic, behavioral
and monoaminergic statuses. Additionally, hypothalamic and
hippocampal gene expression of neuropeptides and receptors
involved in energy balance and mood regulation have also been
analyzed. We hypothesized that behavioral changes that may
develop in the absence of ovarian hormones could be related to
neurochemical and metabolic aspects affected by this condition
and that high-fat intake may impact these associations.

METHODS

Animals and Diets
All the procedures were in agreement with the guidelines of the
Committee in Research Ethics of the Universidade Federal de São
Paulo (CEP 0311/11). Eight-week-old female Wistar rats were
weighed and submitted to either bilateral ovariectomy or sham
operation, under ketamine/xylazine anesthesia (66/33 mg/kg,
ip). After the surgery, they were housed four to five per cage
and maintained under controlled lighting (12 h light/dark cycle,
lights on at 6 a.m.) and temperature conditions (23 ± 1◦C), with
free access to food and water. The ovariectomized rats (Ovx)
were assigned to one of three groups (OvxC, OvxL, or OvxF),
according to the diet received for the next 8 weeks. The OvxC
group received standard rat chow (Control diet, 2.87 kcal/g,
15% of energy from fat, Nuvilab, Brazil) while the OvxL and
OvxF groups received high-fat diets (3.60 kcal/g, 45% energy
from fat) enriched with either lard (Aurora, Cooperativa Central
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Aurora de Alimentos, Brazil) or fish oil (ROPUFAr “75” ω-
3, Roche, DSM Nutritional Products, Brazil), respectively. The
sham-ovariectomized group (Sham) received the control diet.

The high-fat diets were prepared by adding, to the standard
chow, 20% (w/w) fat, 20% (w/w) casein, 10% (w/w) sucrose, and
0.02% (w/w) butylated hydroxytoluene (Watanabe et al., 2010;
Dornellas et al., 2015). The lard diet contained 2% soybean oil to
ensure the adequate content of essential PUFAs (Reeves, 1997).

Food Intake, Body and Fat Pads Weight,
and Serum Parameters
Food intake and body weight were measured weekly. The
metabolic efficiency was calculated as [(body weight gain/energy
intake)∗100]. At the end of the diet treatment, the rats were
euthanized after an overnight fast, trunk blood was collected and
serum stored at−80◦C. Uterus and retroperitoneal, gonadal and
mesenteric fat pads were dissected and weighed. Ovariectomy
was confirmed by uterus atrophy. Glucose, triacylglycerols and
cholesterol levels were analyzed by enzymatic methods (Labtest
Diagnóstica, Brazil). Serum levels of insulin and leptin were
measured by enzyme-linked immunosorbent assays (Millipore
Corp., Bedford, USA).

Hypothalamic, Hippocampal and Serum
Levels of 5-HT, 5-HIAA, and
Catecholamines
Three days after the infusion experiment and after an
overnight fast, some animals were euthanized and their
hypothalami and hippocampi were dissected and immediately
weighed and homogenized in 1.5ml of cold 0.1M perchloric
acid containing 0.02% sodium metabisulfite and 0.7 nM 3,4-
dihydroxybenzylamine as internal standard (Watanabe et al.,
2010). Levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid
(5-HIAA) were analyzed in 200µl of serum. After centrifugation,
the supernatant was stored at−80◦C until analysis. The contents
of 5-HT, 5-HIAA, and catecholamines were determined by High-
pressure Liquid Chromatography (HPLC) with electrochemical
detection.

RNA Extraction and Real-Time Polymerase
Chain Reaction (RT-PCR)
Four days after the behavioral tests, some animals were
euthanized and their hypothalami and hippocampi were
dissected and immediately stored at −80◦C until analysis. Total
RNA from hypothalami and hyppocampi were extracted
using Trizol protocol (Invitrogen). One nanogram of
total RNA, as determined by NanoDrop 1100 (NanoDrop
Technologies, Wilmington, DE, USA), was used for cDNA
synthesis (High-Capacity cDNA kit, Applied Biosystems).
The cDNA was amplified using the TaqManr Universal
PCR Master Mix Kit with specific TaqMan Gene Expression.
The following target genes were assessed: serotonin 1A
(5-HT1A) receptor (Rn00561409_s1), serotonin 1B (5-
HT1B) receptor (Rn01637747_s1), serotonin 2C (5-HT2C)
receptor (Rn00562748_m1), serotonin trasporter (5-HTT)
(Rn00564737_m1), neuropeptide Y (NPY) (Rn01410145_m1),

pro-opiomelanocortin (POMC) (Rn00595020_m1), cocaine- and
amphetamine-regulated transcript (CART) (Rn01645174_m1),
agouti-related peptide (AgRP) (Rn01431703_g1), leptin receptor
(ObR) (Rn 01433205_m1), adiponectin receptor 1 (AdipoR1)
(Rn01483784_m1), and adiponectin receptor 2 (AdipoR2)
(Rn01433173_m1). β-actin (Rn00667869_m1) was used as
endogenous control for normalization. The PCR reactions
were performed in a 96-well Optical Reaction Plate (Applied
Biosystems, Foster City, CA, USA). The thermocycler parameters
were as follows: 50◦C for 2min, 95◦C for 10min, 50 cycles of
95◦C for 15 s and 60◦C for 1min. Expression of the target genes
was normalized against that of the Sham animals. The statistical
analysis was performed using the 1Ct value (Ctgene of interest
– Ctβ−actin) and the results were expressed using the 2-11Ct
method (Livak and Schmittgen, 2001).

Behavioral Tests
Intracerebroventricular Serotonin Injection and Food

Intake Measurement
At the eighth week of treatment, the animals were anesthetized
with ketamine/xylazine (66/33 mg/kg, ip) and stereotaxicaly
implanted with a guide cannula (21 gauge, 15mm length) aimed
at the lateral cerebral ventricle (from bregma:−0.9mm posterior,
+1.6mm lateral and −2.5mm ventral) (Paxinos et al., 1985).
They were then caged individually with free access to food and
water during 1 week. After this recovery period, they were fasted
for 6 h and received an intracerebroventricular (ICV) injection
of either 5.0 µl of vehicle (artificial cerebrospinal fluid, CSF:
145 mmol/l sodium chloride, 2.7 mmol/l potassium chloride,
1.2 mmol/l calcium chloride, 2.0 mmol/l di-sodium hydrogen
phosphate, and 1 mmol/l magnesium chloride at pH 7.4) or
5.0 µl of vehicle containing either 200 or 300 µg of serotonin
(H9523, Sigma-Aldrich, USA). The injections were performed
in the animal room immediately before lights off. Following
the injection, they were returned to their individual cages and
a known amount of diet was offered. Diet consumption was
assessed by weighting the food remaining after 12 and 24 h. Each
animal was injected twice, receiving vehicle or one serotonin
dose, on separate days, two days apart. They were randomly
divided so that half the animals received vehicle as the first
injection and the other half received serotonin as the first
injection. The correct cannula positioning was evaluated by the
dipsogenic effect of an ICV 20 ng dose of angiotensin II. All
animals failing to drink water were discarded.

Elevated Plus Maze Test
The maze consisted of two open arms and two closed arms
connected by a central platform high off the ground and lit by
a dim light. The animals were placed individually on the central
platform facing an open arm. The test was performed during
5min and was videotaped for subsequent analysis. The time
spent, number of entries and distance traveled in the arms were
measured by two observers (Pellow et al., 1985). The number of
entries and distance traveled in the closed arms were used as a
measure of locomotor activity (Campos et al., 2013). The anxiety
index was calculated by the equation: 1-[(open arm time/5min)
+ (open arm entry/total entry)]/2. The index values range from
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0 to 1, with a higher value indicating increased anxiety (Huynh
et al., 2011).

Modified Forced Swim Test
The rats were individually placed in a Plexiglas cylinder (diameter
30 cm, height 50 cm) containing water up to 30 cm (or high
enough to prevent the animal from supporting the body with
the tail) at 25 ± 1◦C. On the first day, the animals remained
in the cylinder for 15min (training session). After 24 h, the
procedure was repeated for 5min (test session). The test
session was videotaped for subsequent analysis. The predominant
behavior within each 5-s period was recorded. The following
behaviors were assessed: swimming (movements throughout
the cylinder), climbing (upward-directed movements with the
forepaws along the cylinder walls), immobility (floating with
minimal movements with head just above the water) and number
of dips (Porsolt et al., 1977). After the sessions, the animals were
dried and returned to the home cage.

STATISTICAL ANALYSIS

Data are expressed as mean ± SEM. Comparisons among the
groups (Sham, OvxC, OvxL, and OvxF) were performed by
ANOVA followed by Tukey’s test for multiple comparisons.
The effect of intracerebroventricular serotonin on food intake
was assessed in each group by Student’s t-tests for dependent
measures. The Pearson’s correlation coefficient was used to
analyze the existence of relationships between behavioral
parameters in the elevated plus maze and forced swim tests,
and metabolic/gene expression data. Multivariate regression
analysis was performed to assess metabolic/gene expression
factors influencing behavioral variables. The regression models
were constructed based on the statistically significant correlations
shown by the univariate analysis. The Statistics Software Package
for the Social Sciences (SPSS, v18.0) was used for these
analyses.

RESULTS

Lard Diet But Not Fish Diet Potentiated the
Deleterious Effects of Ovariectomy on
Body Weight Gain and
Metabolic/Hormonal Parameters
The daily food mass and food energy intakes of the control,
lard and fish diets were measured once a week, throughout
the 8 weeks, and the cumulative intakes are shown in Table 1.
There was no effect of ovarietomy, either alone (OvxC group)
or combined with high-fat feeding (OvxL and OvxF groups),
on the cumulative food intake, while the cumulative caloric
intake of the OvxL group was significantly higher than that of
the OvxC group. These findings indicate that, although the two
hyperlipidic diets had the same caloric content, only the lard diet
induced increments of the caloric intake of the ovariectomized
rats.

Ovariectomy, either per se or combined with high-lard intake,
increased feed efficiency while the high-fish intake prevented this

effect of ovariectomy, indicating a protective effect of the high-
fish diet. Ovariectomy increased body weight gain and final body
weight. In the OvxL group, these parameters were higher than in
the OvxC and OvxF groups. These results show that the excess
weight gain induced by ovariectomy was deepened by the lard
diet but not by the fish diet. Taken together, these data suggest
that increased feed efficiency may explain the high body weight
gain of the OvxC and OvxL groups but not of the OvxF group.

Body adiposity, estimated by the sum of 3 adipose tissue
depots, was higher in the OvxL animals than in all the other
groups [F(3, 44) = 22.817, p = 7.55 × 10−9; p = 1.87 × 10−7

vs. Sham; p = 1.43 × 10−4 vs. OvxC; p = 1.66 × 10−8 vs.
OvxF). Additionally, the OvxF group showed decreased adiposity
in comparison to OvxC (p = 0.044). These data indicate that
ovariectomy associated with lard consumption, but not with
fish-oil consumption, caused obesity.

All the Ovx groups showed increased levels of serum glucose,
regardless the diet consumed [F(3, 45) = 11.288, p = 1.46 ×

10−5]. Insulin levels were higher in OvxL than in OvxF [F(1, 20)
= 90,527, p = 7.25 × 10−8]. Although without statistical
significance (p = 0.597), insulin levels of OvxF rats were 62%
lower than those of OvxC animals. These data suggest that fish-oil
intake ameliorated the insulin resistance induced by ovariectomy.

Leptinemia was increased in OvxL [F(3, 33) = 16.839, p =

1.88× 10−6] in relation to all the groups. The OvxF rats showed a
nonsignificant (p= 0.511) reduction of leptin levels in relation to
OvxC group. These results are in accordance with the adiposity
data.

OvxF animals presented reduced triglyceride levels [F(3, 32) =
9.023, p = 2.23 × 10−4] in relation to all the other groups. In
addition, total cholesterol levels were higher in OvxL [F(3, 20) =
5.817, p = 0.006] than in Sham (p = 0.024), and lower in OvxF
than in OvxL (p = 0.014). The data indicate that ovariectomy
affected blood glucose levels regardless the diet. However, in
ovariectomized rats, the consumption of lard impaired while
fish-oil intake presented a protective effect on metabolic and
hormonal parameters.

Fish Diet Stimulated Hippocampal
Serotonergic Activity in Ovariectomized
Rats
Because monoamines participate in the control of both metabolic
and behavioral aspects, their serum levels as well as their
hypothalamic and hippocampal tissue levels were evaluated and
are presented in Table 2.

Both circulating and hypothalamic levels of serotonin,
catecholamines and their metabolites failed to present significant
differences among the groups.

In the hippocampus, L-Dopa levels were higher [F(3, 20) =

4.596, p = 0.016] in OvxF than in Sham (p = 0.036) and OvxC
(p = 0.016) rats. 5-HIAA levels were higher in OvxF than in
Sham (p = 0.044) while serotonin turnover was higher in OvxF
[F(3,19) = 3.535, p= 0.039] than in OvxC (p= 0.038). The present
data indicate that the serotonergic activity was stimulated in the
hippocampus of the OvxF animals.
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TABLE 1 | Body and serum parameters of Sham, OvxC, OvxL, and OvxF groups.

Variables Groups

Sham OvxC OvxL OvxF

Cumulative daily food intake (g/8 weeks) 171.94 ± 14.27

(n = 19)

163.12 ± 5.71

(n = 12)

161.71 ± 2.81

(n = 17)

148.00 ± 4.94

(n = 20)

Cumulative daily caloric intake (kcal/8 weeks) 493.47 ± 40.95

(n = 19)

468.15 ± 16.40&

(n = 12)

582.16 ± 10.11#

(n = 17)

532.78 ± 17.78

(n = 20)

Feed efficiency (g/Kcal/8 weeks) 10.77 ± 0.86

(n = 19)

16.95 ± 0.78*$

(n = 12)

17.31 ± 0.80*$

(n = 17)

12.88 ± 0.82#&

(n = 18)

Body weight gain (g/8 weeks) 49.90 ± 1.96

(n = 20)

70.51 ± 3.04

(n = 16)

101.67 ± 3.67*#$

(n = 18)

70.18 ± 3.42

(n = 18)

Final body weight (g) 247.91 ± 3.80

(n = 20)

277.84 ± 4.98*

(n = 16)

307.16 ± 5.22*#$

(n = 18)

281.11 ± 3.86*

(n = 18)

Adipose depots (g/100g) 4.40 ± 0.24

(n = 14)

4.77 ± 0.25

(n = 8)

7.17 ± 0.27*#$

(n = 12)

4.12 ± 0.39#

(n = 9)

Glucose (mg/dl) 98.04 ± 2.38

(n = 9)

116.53 ± 3.8*

(n = 11)

128.67 ± 2.66*

(n = 13)

128.28 ± 5.52*

(n = 13)

Insulin (ng/ml) 1.08 ± 0.07

(n = 6)

1.19 ± 0.21

(n = 6)

1.87 ± 0.43$

(n = 6)

0.74 ± 0.17&

(n = 6)

Leptin (ng/ml) 2.09 ± 0.49

(n = 6)

4.30 ± 0.40

(n = 9)

9.21 ± 1.27*#$

(n = 10)

2.50 ± 0.28

(n = 9)

Triglycerides (mg/dl) 55.67 ± 7.45

(n = 7)

67.71 ± 1.81

(n = 8)

67.83 ± 7.21

(n = 10)

32.25 ± 2.30*#&

(n = 8)

Total cholesterol (mg/dl) 63.32 ± 5.02

(n = 5)

79.77 ± 3.87

(n = 5)

90.16 ± 9.84*

(n = 5)

61.23 ± 2.39&

(n = 5)

Values are Mean ± SEM *p < 0.05 vs. Sham; #p < 0.05 vs. OvxC; &p < 0.05 vs. OvxL; $p < 0.05 vs. OvxF.

TABLE 2 | Catecholamines, serotonin and metabolites levels of the Sham OvxC, OvxL, and OvxF groups.

Variables Groups

Sham OvxC OvxL OvxF

SERUM

5-HT (pg/ml) 607.81 ± 68.54 600.06 ± 25.32 558.73 ± 44.55 466.59 ± 34.95

5-HIAA (pg/ml) 10.38 ± 0.36 10.09 ± 1.32 8.33 ± 0.26 8.96 ± 1.06

HYPOTHALAMUS

Noradrenaline (pg/g) 422.48 ± 26.06 419.45 ± 20.76 459.64 ± 8.98 412.70 ± 15.79

Adrenaline (pg/g) 12.17 ± 0.87 11.43 ± 0.59 14.21 ± 1.64 14.23 ± 1.59

L-Dopa (pg/g) 6.03 ± 1.22 6.20 ± 0.86 7.55 ± 0.88 6.036 ± 0.96

Dopamine (pg/g) 101.54 ± 10.29 102.85 ± 4.46 117.86 ± 11.14 110.50 ± 9.04

5-HIAA (pg/g) 290.64 ± 43.54 317.66 ± 18.24 365.95 ± 43.96 420.43 ± 33.00

5-HT (pg/g) 160.14 ± 18.29 192.93 ± 3.10 215.85 ± 23.11 180.17 ± 11.20

5-HIAA/5-HT 1.83 ± 0.20 1.66 ± 0.12 1.72 ± 0.11 2.36 ± 0.22

HIPPOCAMPUS

Noradrenaline (pg/g) 56.04 ± 5.46 50.58 ± 4.37 47.58 ± 5.43 52.18 ± 2.25

Adrenaline (pg/g) 1.44 ± 0.15 1.46 ± 0.17 1.80 ± 0.38 1.68 ± 0.12

L-Dopa (pg/g) 0.95 ± 0.23 0.87 ± 015 1.27 ± 0.24 1.89 ± 0.23*#

Dopamine (pg/g) 3.30 ± 0.49 3.31 ± 0.63 3.40 ± 0.68 4.73 ± 1.04

5-HIAA (pg/g) 147.31 ± 12.13 163.32 ± 8.33 166.04 ± 9.15 187.27 ± 7.56*

5-HT (pg/g) 89.84 ± 9.37 106.79 ± 5.28 103.63 ± 4.91 87.61 ± 5.77

5-HIAA/5HT 1.69 ± 0.18 1.55 ± 0.10 1.60 ± 0.10 2.18 ± 0.21#

Values are mean ± SEM n = 5–6. *p < 0.05 vs. Sham; #p < 0.05 vs. OvxC.
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Ovariectomy Plus High-Lard Feeding
Impairs Hypothalamic Serotonergic
System Gene Expression
Hypothalamic and hippocampal mRNA levels of several genes
related tometabolic and behavioral homeostasis were determined
and are presented in Tables 3, 4.

As shown in Table 3, OvxL had lower 5-HT1B hypothalamic
gene expression [F(3,,15) = 5.042, p = 0.017] than Sham (p =

0.017) while 5-HT2C expression was higher in OvxC and OvxF
(p = 0.018 and p = 0.021, respectively) when compared to the
Sham group [F(3, 15) = 5.767, p = 0.011]. AgRP expression was
lower in OvxL and OvxF (p = 0.018 and p = 0.029, respectively)

TABLE 3 | Hypothalamic gene expression of Sham, OvxC, OvxL, and OvxF

animals.

Genes Groups

Sham OvxC OvxL OvxF

5-HT1A 1.01 ± 0.09 0.79 ± 0.09 0.68 ± 0.08 0.81 ± 0.03

5-HT1B 1.00 ± 0.03 0.94 ± 0.07 0.71 ± 0.03* 0.94 ± 0.06

5-HT2C 1.01 ± 0.10 1.55 ± 0.13* 1.26 ± 0.04 1.53 ± 0.12*

5-HTT 1.07 ± 0.15 0.98 ± 0.13 0.63 ± 0.11 1.06 ± 0.10

POMC 1.04 ± 0.19 1.41 ± 0.23 1.36 ± 0.10 1.02 ± 0.10

CART 1.03 ± 0.15 1.03 ± 0.11 1.19 ± 0.11 1.12 ± 0.09

NPY 1.00 ± 0.07 0.93 ± 0.05 0.89 ± 0.05 0.90 ± 0.06

AgRP 1.01 ± 0.11 0.76 ± 0.17 0.47 ± 0.04* 0.51 ± 0.02*

AdipoR1 1.00 ± 0.03 1.09 ± 0.06 1.04 ± 0.02 1.10 ± 0.07

AdipoR2 1.00 ± 0.01 0.86 ± 0.03 0.85 ± 0.05 0.79 ± 0.02*

ObR 1.00 ± 0.06 1.07 ± 0.04 0.81 ± 0.11 0.90 ± 0.01

The mRNA levels were measured by RT-PCR and expression of the target genes was

normalized against that of the Sham animals.

Values are mean ± SEM n = 5–6. The housekeeping gene β-actin mRNA was used to

normalize the relative amounts of mRNA. *p < 0.05 vs. Sham.

TABLE 4 | Hippocampal gene expression of Sham, OvxC, OvxL, and OvxF

animals.

Genes Groups

Sham OvxC OvxL OvxF

5-HT1A 1.02 ± 0.12 0.96 ± 0.15 0.91 ± 0.09 0.80 ± 0.08

5-HT1B 1.04 ± 0.17 1.05 ± 0.06 1.16 ± 0.06 0.96 ± 0.10

5-HT2C 1.00 ± 0.04 0.98 ± 0.16 1.50 ± 0.27 1.35 ± 0.19

5-HTT 1.20 ± 0.40 0.79 ± 0.13 0.78 ± 0.18 0.76 ± 0.09

POMC 1.01 ± 0.10 1.43 ± 0.21 0.90 ± 0.09 1.36 ± 0.12

CART 1.07 ± 0.23 1.17 ± 0.21 1.15 ± 0.25 1.14 ± 0.22

NPY 1.00 ± 0.01 0.95 ± 0.09 1.09 ± 0.13 0.99 ± 0.06

AgRP 1.01 ± 0.10 0.88 ± 0.08 0.89 ± 0.09 1.12 ± 0.10

AdipoR1 1.00 ± 0.01 0.94 ± 0.02 1.09 ± 0.08 1.14 ± 0.11

AdipoR2 1.00 ± 0.04 0.83 ± 0.04 0.94 ± 0.10 0.77 ± 0.05

ObR 1.02 ± 0.12 1.06 ± 0.17 1.21 ± 0.20 1.02 ± 0.02

The mRNA levels were measured by RT-PCR and expression of the target genes was

normalized against that of the Sham animals.

Values are mean ± SEM n = 5–6. The housekeeping gene β-actin mRNA was used to

normalize the relative amounts of mRNA.

than in Sham rats [F(3, 15) = 5.458, p = 0.013]. AdipoR2 gene
expression [F(3, 15) = 5.847, p = 0.011] was lower in OvxF than
in Sham animals (p= 0.008).

These data show that the intake of lard or fish-oil by the
ovariectomized rats affected distinctly the components of the
hypothalamic serotonergic system. While the effect of the lard
diet pointed to a deleterious consequence on the serotonergic
effectiveness, both ovariectomy alone or combined with fish-oil
intake tended to yield to an upregulation of serotonin action.

No significant changes were found in hippocampal gene
expression among the groups (Table 4).

Fish Diet Reverses the
Ovariectomy-Induced Impairment of
Serotonin Hypophagia
In order to analyze the hypophagic effect of
intracerebroventricular serotonin after ovaries removal and
chronic consumption of different high-fat diets, the animals
received 200 or 300 µg of serotonin ICV. The results are shown
in Figure 1.

The ICV injection of 200µg of serotonin had no effect on food
intake (data not shown). The dose of 300 µg of serotonin evoked
a significant hypophagic effect on Sham animals in the first period
of 12 h (p = 0.026) and in the cumulative period of 24 h (p =

0.025). In addition, OvxF presented a significant decrement of
food intake in the second period of 12 h (p = 0.009) and in the
cumulative period of 24 h (p = 0.007) after serotonin injection.
Contrastingly, serotonin failed to significantly inhibit feeding in
OvxC and OvxL animals.

These findings show that ovariectomy suppressed the ability
of central serotonin to inhibit food intake. The use of the fish-oil
diet, but not of the lard diet by the ovariectomized rats restored
serotonin hypophagia.

Either High-Fat Diet Reversed the
Anxiogenic Effect of Ovariectomy
The anxiety-like behavior was assessed in the elevated plus maze
test, which is based on the conflict between exploration of the
environment and the fear of the potential danger resulting from
this exposure (Pellow et al., 1985). As illustrated in Figure 2, the
OvxC animals entered fewer times [F(3, 38) = 4.843, p = 0.006]
(Figure 2A) and traveled a shorter distance in the open arms
[F(3, 38) = 3.881, p = 0.017] (Figure 2B) than the Sham rats (p
= 0.005 e p = 0.013, respectively). Moreover, OvxC also spent
less time exploring the open arms [F(3, 38) = 5.025, p = 0.005]
and more time in the closed arms [F(3, 38) = 6.063, p = 0.002]
when compared to both Sham and OvxF groups (p = 0.003 and
p = 0.006, respectively) (Figure 2C). There were no significant
differences among the groups regarding the number of entries
and the distance traveled in the closed arms (Figures 2A,B,
respectively). As shown in Figure 2D, OvxC presented higher
anxiety index [F(3, 38) = 5.128, p= 0.05] when compared to Sham
(p= 0.012) and OvxF (p= 0.006) animals.

These findings show that ovariectomy induced an anxiety-
like behavior, evidenced by lower exploration of the open spaces
of the maze. However, high-fat diets consumption, independent
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FIGURE 1 | Food intake of Sham (n = 4–6), OvxC (n = 4–5), OvxL (n = 4–5) and OvxF (n = 4–5) groups during the first and the second 12-h periods and the total

24-h period following the intracerebroventricular injection of vehicle (solid bars) or 300 µg of serotonin (dotted bars). αp < 0.05 vs. vehicle.

FIGURE 2 | Number of entries (A), distance (B), and percentage of time spent (C) in the open or closed arms, and anxiety index (D) during the elevated plus maze

test of Sham (n = 12), OvxC (n = 8), OvxL (n = 9), and OvxF (n =11) rats. *p < 0.05 vs. Sham; $p < 0.05 vs. OvxF.

of the fatty acids type, reverted this anxiogenic effect of
ovariectomy.

Ovariectomy Allied to High-Lard Intake
Induced Depressive-Like Behavior
The depressive-like behavior was assessed by the forced
swimming test, in which the frequency of immobility is
considered the main indicative of depressive-like state (Porsolt
et al., 1977). There were no significant differences in swimming
(Figure 3A), climbing (Figure 3B), and immobility frequencies
(Figure 3C) among the groups. However, the OvxL group
showed a non-significant decrement of swimming frequency
when compared to the Sham group (p = 0.528). As illustrated

in Figure 3D, the latency to immobility was shorter in the OvxL
group [F(3, 41) = 3.920, p = 0.016] than in the Sham group (p =

0.028). These results indicate that ovariectomy allied to high-lard
intake induced vulnerability to a depressive-like state.

AgRp Gene Expression Associations
Indicate Beneficial Effects on Depression
and Anxiety Measures
The correlation analyses were performed to determine the
associations between behavioral and metabolic variables. The
following parameters were included in the correlation analysis:
all parameters of the elevated plus maze test and of the forced
swimming test, body weight gain, adipose depots mass and their
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FIGURE 3 | Swimming (A), climbing (B), immobility frequencies (C), and latency to immobility (D) of Sham (n = 14), OvxC (n = 8), OvxL (n = 12), and OvxF (n = 9)

rats during the forced swim test. *p < 0.05 vs. Sham.

TABLE 5 | Pearson’s correlation coefficients of the Sham, OvxC, OvxL, and OvxF groups.

EOA ECA DOA DCA AI Rearing HD FI LI FS

BW gain −0.33β −0.27 −0.33β −0.28 0.08 −0.24 −0.05 −0.04 −0.21 −0.23

Fat depots sum −0.15 −0.05 −0.08 −0.11 0.25 −0.06 0.02 0.11 −0.24 −0.40β

HIPPOCAMPUS

5-HT1B −0.18 −0.01 −0.05 0.19 0.42 0.08 0.15 0.52β −0.10 −0.32

5-HT2C −0.20 0.02 −0.11 0.02 −0.11 −0.31 0.48 0.49 −0.32 −0.59β

SERT −0.29 0.09 −0.23 0.19 0.37 −0.51β 0.03 0.34 0.07 −0.08

AgRP 0.36 0.14 0.28 0.00 −0.83β 0.06 0.48 −0.26 0.12 −0.01

POMC −0.08 −0.07 −0.16 0.14 −0.18 0.00 −0.09 −0.30 −0.28 0.61β

AdipoR1 0.25 −0.03 0.28 −0.20 −0.23 −0.35 0.67β 0.05 −0.44 −0.28

AdipoR2 −0.04 0.55 −0.09 0.17 0.22 −0.48 −0.17 0.15 0.09 −0.24

HYPOTHALAMUS

NPY 0.08 0.56β 0.06 0.60β −0.25 −0.25 0.04 0.17 0.11 −0.03

AgRP 0.01 0.38 −0.12 0.15 0.00 −0.26 −0.28 −0.17 0.69β 0.11

AdipoR1 0.21 0.11 0.10 0.05 −0.25 −0.03 0.17 −0.41 −0.50β 0.41

AdipoR2 0.11 0.53β −0.05 0.21 0.00 −0.40 −0.23 −0.10 0.45 −0.08

Pearson’s correlation coefficients between behavioral body adiposity and gene expression parameters (n = 15–16).

EOA, number of entries in open arms; ECA, number of entries in closed arms; DOA, distance traveled in open arms; DCA, distance traveled in closed arms; AI, anxiety index; HD,

headdipping; FI, frequency of immobility; LI, latency of immobility; FS, frequency of swimming. βp < 0.05.

sum, and all genes expression data. Table 5 depicts the variables
showing at least one significant correlation.

In the elevated plus maze test, the number of entries in the
open arms presented an inverse correlation with the total body
weight gain (p = 0.040), while the number of entries in the
closed arms showed direct associations with hypothalamic gene
expression of NPY (p = 0.025) and AdipoR2 (p = 0.033). The

distance traveled in the open arms had an inverse association with
body weight gain (p = 0.045) while the distance traveled in the
closed arms showed a direct correlation with NPY hypothalamic
gene expression (p = 0.014). The anxiety index presented an
inverse correlation with hippocampal AgRP expression (p =

0.004). Rearing behavior had a negative association to SERT
expression in hippocampus (p = 0.042) while the number

Frontiers in Neuroscience | www.frontiersin.org 8 September 2018 | Volume 12 | Article 557

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Dornellas et al. Ovariectomy, High-Fat Diet and Anxiety

TABLE 6 | Linear regression models for predictors of behavioral parameters.

Predictors Beta coefficients Standard error p-value

DEPENDENT VARIABLE: ANXIETY INDEX

AgRP hpc −0.34 0.06 8.11−5

Intercept 0.95 0.06 3.72−10

DEPENDENT VARIABLE: FREQUENCY OF IMMOBILITY

5-HT1B hpc 11.46 4.99 0.037

Intercept 30.80 5.38 5.27−5

DEPENDENT VARIABLE: LATENCY TO IMMOBILITY

AgRP hpt 58.81 17.15 0.004

Intercept 11.97 12.06 0.33

hpc, hippocampus; hpt, hypothalamus.

of headdippings was positively related to AdipoR1 gene in
hippocampus (p= 0.005).

In the forced swimming test, the frequency of immobility
presented a direct association with 5-HT1B hippocampal gene
expression (p = 0.038) while the latency to immobility had a
positive association with hypothalamic AgRP (p = 0.004) and a
negative association with hypothalamic AdipoR1 (p = 0.0.46).
The frequency of swimming had an inverse correlation with the
sum of adipose depots (p= 0.008) and with hippocampal 5-HT2C

(p = 0.017), and a direct association with hippocampal POMC
gene (p= 0.012).

These results showed associations of hippocampal and
hypothalamic gene expression rates with behavioral measures
indicative of anxious-like and depressive-like behaviors. We
then used linear regression models to identify predictors for
the variations of the behavioral parameters anxiety index,
frequency of immobility and latency to immobility, among
the hypothalamic and hippocampal genes presenting significant
correlation with these behavioral parameters (Table 6).

For the anxiety index, the model predicted 68% of the
variations [R = 0.85, R2 = 0.68, F(1, 14) = 30.024, p < 0.00008]
and showed that hippocampal AgRP (p= 3.01−5) was a negative
predictor (power 0.9959, effect size 2.1250, 2 predictors). The
other predictor tested was the hippocampal 5-HT1B serotonin
receptor but its effect was not significant.

The linear regression model for frequency to immobility in
the forced swimming test predicted 27% of the variations [R =

0.52, R2 = 0.27, F(1, 14) = 5.270, p = 0.037) and showed that
hippocampal 5-HT1B gene expression was a positive predictor
(p = 0.037) (power 0.4474, effect size 0.3698, 2 predictors). The
other predictor tested was the hippocampal 5-HT2C serotonin
receptor but its effect was not significant.

For the latency to immobility, the linear regression model
predicted 47% of the variations [R = 0.68, R2 = 0.47 F(1, 13)
= 11.749, p = 0.004] and showed that hypothalamic gene
expression of AgRP (p = 0.004) was a positive predictor (power
0.8279, effect size 0.8867, 2 predictors). The other predictor tested
was the hypothalamic AdipoR1 but its effect was not significant.

Overall, the linear regression models pointed to AgRp gene
expression associations indicative of a beneficial involvement of
this neuropeptide on both depression and anxiety measures.

DISCUSSION

To investigate mechanisms involved in the putative interaction
of metabolic disturbances and mood and anxiety disorders
developed after menopause, we examined the effects
of ovariectomy alone or in combination with chronic
consumption of high-fat diets on metabolic/neurochemical
and behavioral parameters of rats. The diets differed in
their fat source by the use of either lard (rich in saturated
fatty acids) or fish-oil (rich in n-3 polyunsaturated fatty
acids).

Ovariectomy induced excess body weight gain in the absence
of excess food intake, probably as result of increased feed
efficiency. Additionally, since previous studies in animals and
humans have reported basal metabolism decrements in estrogen-
deficient states (Ainslie et al., 2001; Monda et al., 2006; Witte
et al., 2010), this aspect, not evaluated in the present study, may
have played a role.

The intake of the lard diet exacerbated the body weight
gain of the ovariectomized group and increased body adiposity
and leptinemia. The saturated fatty acids have the highest
obesogenic ability (Buettner et al., 2006), a fact associated
with its higher rate of acylation into triglycerides and lower
rate of oxidation in comparison to polyunsaturated and
monounsaturated fatty acids (Siddiqi et al., 2000). Chronic
intake of lard-enriched diet impaired carnitine-palmitoyl-
transferase-1 function, damaging the mitochondrial import
and oxidation of long chain fatty acids (Noland et al.,
2009).

In contrast, although similar in caloric density, the fish-oil
diet reduced body adiposity, tryglicerides and total cholesterol
levels, and restored feed efficiency to levels similar to those
of the Sham rats. Numerous studies have shown that n-3
polyunsaturated fatty acids present beneficial metabolic effects
(Misra et al., 2010; Abeywardena and Patten, 2011; Robinson
and Mazurak, 2013). In relation to their effect on adipose
tissue, omega-3 fatty acids reportedly modulated gene expression
through transcription factors such as peroxisome proliferator-
activated receptor γ (PPARγ), resulting in the stimulus of
fatty acids oxidation in mitochondria and peroxisomes (Hensler
et al., 2011). Docosahexaenoic acid (DHA, 22:6n-3) and
eicosapentaenoic acid (EPA, 20:5n-3) presented hypolipidemic
effects, in part due to inhibition of fat cell proliferation
(Ruzickova et al., 2004). Additionally, omega-3 fatty acids
stimulated the generation of newmitochondria in adipocytes and
activated the expression of the carnitin-palmitoyl-transferase 1
gene (Flachs and Hal, 2005).

In the present study, all ovariectomized groups presented
hyperglycemia, in agreement with the disrupted glycemic control
induced by estrogen deficiency (Ross and Polotsky, 2012).
Inadequate glycemic control has been directly associated with
depression in humans (Lustman et al., 2000). This agrees
with the present findings that, although only lard intake allied
to ovariectomy caused a statistically significant decrease of
the latency to immobility (a measure indicative of increased
propensity to develop depression), this parameter showed a
relevant decrement in all ovariectomized groups.

Frontiers in Neuroscience | www.frontiersin.org 9 September 2018 | Volume 12 | Article 557

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Dornellas et al. Ovariectomy, High-Fat Diet and Anxiety

As expected, the intracerebroventricular administration of
serotonin induced hypophagia in the Sham animals. In contrast,
this effect was completely abolished in the OvxC and OvxL
groups, while it was preserved in the OvxF group. Serotonin
induces hypophagia by modulating the expression of the
hypothalamic orexigenic and anorexigenic neuropeptides (Choi
et al., 2003, 2006; Ronan and Summers, 2011; Donovan and
Tecott, 2013). Serotonin binding to 5-HT1B reportedly inhibited
NPY/AgRP orexigenic neurons, while its binding to 5-HT2C

activated anorexigenic POMC/CART neurons (Heisler et al.,
1999, 2006; Garfield and Heisler, 2009). The present results
of hypothalamic gene expression showed increased expression
of 5-HT2C in the OvxC and OvxF animals. In view of
the lack of serotonin hypophagia in OvxC group, it can be
suggested that 5-HT2C upregulation may have represented
a compensatory mechanism, aimed at surpassing receptor
insensitivity. It is interesting that the high-fat diets affected
differentially serotonin receptor expressions. The lard diet had
a deleterious effect, both abolishing 5-HT2C upregulation and
inducing 5-HT1B downregulation. These effects are highly
consistent with the absence of serotonin hypophagia after lard
intake. In contrast, although fish-oil intake induced receptor
expression alterations similar to those seen in the OvxC
group, serotonin hypophagia was maintained. The factors
leading to the absence of hypophagia in OvxC, but not in
OvxF, are not apparent, as 5-HT2C expression was elevated
in both groups. One contributing factor may derive from
our previous data, in male rats, showing that fish-oil intake
increased neuronal activation of hypothalamic sites expressing
anorexigenic mediators, indicating a positive effect of fish oil
in mobilizing multiple hypothalamic anorexigenic pathways
(Watanabe et al., 2009).

The present findings showing that both metabolic and
behavioral alterations were caused by ovariectomy agree
with the reported homeostatic role of ovarian hormones
(Humeniuk et al., 2011; Kiss et al., 2012; Messina et al.,
2013). Additionally, the present demonstration of significant
associations between neuropeptides and serotonin receptors with
behavioral parameters highlight the existence of a complex
connection between them.

The intake of either the lard or the fish-oil diet normalized
the anxiety index of the Ovx animals, indicating an anxiolytic
effect of the high-fat diets, regardless the fatty acid composition.
A previous report showed that myristic acid (C16:0) produced
anxiolytic-like effects comparable to those of diazepam in male
rats (Contreras et al., 2014). We have previously reported
myristic acid as the most abundant fatty acid in the lard-
enriched diet consumed by our animals (Dornellas et al.,
2015). It has been shown that palatable foods, such as diets
rich in sugar and lard, reduced signs of stress and anxiety
in humans and animals (Finger et al., 2011; Singh, 2014).
Furthermore, OvxF rats had higher hippocampal concentrations
of L-Dopa and 5-HIAA and elevated serotonin turnover
when compared to the Sham rats. In accordance, it has
been reported that supplementation with fish oil reversed the
reduced hippocampal serotonin level in mice under chronic
mild stress (Vancassel et al., 2008), indicating an anxiolytic

effect of fish oil, probably mediated by stimulated serotonergic
activity.

Serotonergic neurons play an important role in mood
disorders and serotonin deficiency is known to be a substantial
contributing factor in anxiety and depression (Brigitta, 2002;
Leonardo and Hen, 2006; Kormos and Gaszner, 2013). The
present data showed hippocampal 5-HT1B gene to be a positive
predictor of the frequency of immobility during the forced
swimming test, a paradigm of depressive-like behavior in
rats. The 5-HT1B receptor inhibits serotonin release acting as
an auto-receptor in serotonergic neurons and as a hetero-
receptor in hippocampal gabaergic neurons (Clark et al.,
2006; López-Pantoja et al., 2012). Mice lacking 5-HT1B auto-
receptors displayed increased extracellular serotonin levels in
the ventral hippocampus, following the administration of a
selective serotonin reuptake inhibitor, and decreased anxiety-
like behavior and antidepressant-like effects in the forced
swim and sucrose preference tests (Nautiyal et al., 2016).
Additionally, estrogen replacement induced an antidepressant-
like action in ovariectomized rats, but this effect did not occur
in animals with destruction of serotonergic innervation (Vega-
Rivera et al., 2013). These data show that 5-HT1B activity
decreases serotonergic activity and support the present finding
of this receptor as a positive predictor of depression, as observed
in OvxL animals.

The present experiments indicated the possible involvement
AgRP neuropeptide in modulating both anxious- and depressive-
like behaviors. The linear regression model found AgRP gene
expression in hippocampus to be a negative predictor of the
anxiety index. Additionally, hypothalamic AgRP expression was
a positive predictor of the latency to immobility. The latter
finding is in agreement with the present observation of decreased
hypothalamic AgRP and latency to immobility by ovariectomy
allied to high-fat saturated diet. Little is known about the
influence of neuropeptides regulating energy homeostasis on
emotional behaviors. Importantly, reduction of AgRP signaling
increased extracellular dopamine levels in the basal forebrain,
leading to increased exploratory behavior and response to
cocaine (Dietrich et al., 2012). Moreover, brain AgRP infusion
reduced locomotor activity (Tang-Christensen et al., 2004). The
present results add relevant information to the understanding
of the influence of hypothalamic neuropeptides on nonfood-
associated behaviors, indicating a possible involvement of AgRP
on emotional disruption mechanisms leading to the anxiety and
depression states observed after menopause. Further experiments
are required to verify the role played by AgRP as a modulator of
anxious- and depressive-like behaviors.

The present findings contributed to the characterization of
the metabolic, neurochemical and behavioral changes induced
by ovarian failure and demonstrated the effects of diet
manipulations, highlighting a positive effect of high-fat feeding
on the anxiety-like behavior shown by ovariectomized animals.
Since the polyunsaturated omega-3 intake (fish diet), unlike
the saturated fat intake (lard diet), failed to induce deleterious
metabolic or neurochemical consequences, further studies are
needed focusing on the potential of this dietary component as an
adjuvant anxiolytic agent after menopause.
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