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Embedded, continual learning for autonomous and adaptive behavior is a key application

of neuromorphic hardware. However, neuromorphic implementations of embedded

learning at large scales that are both flexible and efficient have been hindered by a lack of

a suitable algorithmic framework. As a result, most neuromorphic hardware are trained

off-line on large clusters of dedicated processors or GPUs and transferred post hoc to the

device. We address this by introducing the neural and synaptic array transceiver (NSAT),

a neuromorphic computational framework facilitating flexible and efficient embedded

learning by matching algorithmic requirements and neural and synaptic dynamics. NSAT

supports event-driven supervised, unsupervised and reinforcement learning algorithms

including deep learning. We demonstrate the NSAT in a wide range of tasks, including

the simulation of Mihalas-Niebur neuron, dynamic neural fields, event-driven random

back-propagation for event-based deep learning, event-based contrastive divergence

for unsupervised learning, and voltage-based learning rules for sequence learning.

We anticipate that this contribution will establish the foundation for a new generation

of devices enabling adaptive mobile systems, wearable devices, and robots with

data-driven autonomy.

Keywords: Neuromorphic computing, neuromorphic algorithms, three-factor learning, on-line learning, event-

based computing, spiking neural networks

1. INTRODUCTION

Brain-inspired computing paradigms can lead to massively distributed technologies that compute
on extremely tight power budgets, while being robust to ambiguities in real-world sensory
information and component failures. To devise such technology, neuromorphic electronic systems
strive to mimic key building blocks of biological neural networks and dynamics (Mead, 1989) in
custom digital (Furber et al., 2014; Merolla et al., 2014) or mixed signal (Schemmel et al., 2010;
Benjamin et al., 2014; Qiao et al., 2015) CMOS technologies.
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Recent progress has significantly advanced the systematic
synthesis of dynamical systems onto neural substrates and their
neuromorphic counterparts. For instance, the configuration of
spiking neural networks for inference tasks have been solved
using frameworks such as the neural engineering framework
(Eliasmith and Anderson, 2004) and STICK (Lagorce and
Benosman, 2015), direct mapping of pre-designed (Neftci et al.,
2013) or pre-trained neural networks (Cao et al., 2015).

Many of these approaches were successfully ported to
neuromorphic hardware (Neftci et al., 2013; Qiao et al., 2015;
Esser et al., 2016). While these solutions are promising from
an energetic point of view in inference tasks, they heavily
rely on computers (GPU or CPU) for their configuration and
largely abandon adaptive and autonomous behavior capabilities
in the presence of intrinsic and extrinsic variations. These
critical features can be introduced through embedded synaptic
plasticity and learning “on-the-fly.” However, learning using
data streaming to the neuromorphic device presents significant
challenges. One challenge is technological: synaptic plasticity
requires high memory bandwidth, but the realization of
adequate high density memory co-located with the neuron
is costly using current technologies. While emerging memory
technologies are poised to solve this problem, the solutions
remain difficult to control and lack precision. Another challenge
is algorithmic: the co-location of memory with the neuron leads
to significant algorithmic challenge: state-of-the-art algorithms
in machine learning rely on information that is temporally
and spatially global when implemented on a neural substrate.
Finally, the hardware implementation of learning involves a
hard commitment to the plasticity dynamics, but doing so in
a way that is both hardware-friendly and capable of learning
a wide range of tasks is a significant modeling challenge.
Our recent work in neuromorphic algorithms demonstrated
that most algorithmic challenges can be solved (Eliasmith
et al., 2012; Lagorce and Benosman, 2015), and can potentially
result in learning systems that require a thousandfold less
power than mainstream technologies (Neftci et al., 2016, 2017b;
Mostafa, 2017), while matching or surpassing the accuracy
of dedicated machine learning accelerators, and operating on-
line. In addition, neuromorphic learning-enabled devices are
expected to have similar energy per operation figures with
learning-enabled artificial neural networks, such as binary
neural networks (Neftci, 2018). Furthermore, it has been shown
that neural networks with binary activations are a class of
spiking neural networks (without states or dynamics) (Neftci,
2018), implying that the proposed framework is capable of
implementing neural networks without binary activations as well.

One outstanding question is whether one can formulate a
general event-based learning rule that is general and capable of
learning a wide range of tasks while being efficiently realizable
using existing memory technologies.

This article presents one such system, called Neural and
Synaptic Array Transceiver (NSAT), and demonstrates proof-of-
concept learning applications. Extreme efficiency in data-driven
autonomy hinges on the establishment of (i) energy-efficient
computational building blocks and (ii) algorithms that build
on these blocks. NSAT is a spiking neural network architecture

designed on these assumptions, using neural building blocks that
are constructed from algorithmic principles and an event-based
architecture that emphasizes locally dense and globally sparse
communication (Park et al., 2017).

To achieve extreme efficiency in dedicated implementations,
the NSAT framework consists of neural cores that take advantage
of tractable linear neural model dynamics, multiplier-less design,
fixed-width representation and event-driven communication,
while being able to simulate a wide range of neural and
plasticity dynamics. Each NSAT core is composed of state
components that can be flexibly coupled to form multi-
compartment generalized integrate-and-fire neurons, allowing
the implementation of several existing neural models (Figure 1).
The state components forming the neuron can be interpreted
as somatic potential, dendritic potential, synaptic currents,
neuromodulator concentration or calcium currents, depending
on its interactions with other state components or pre-synaptic
neurons. The communication between cores and event-driven
sensors is routed via inter-core spike events.

While several neuromorphic VLSI circuits for synaptic
learning exist (Arthur and Boahen, 2006; Pfeil et al., 2012;
Azghadi et al., 2015; Qiao et al., 2015), our framework is novel
in that it is equipped with a flexible and scalable event-based
plasticity rule that is tightly guided by algorithmic considerations
and matched to the neuron model. Scalability is achieved using
only forward lookup access of the synaptic connectivity table
(Pedroni et al., 2016), permitting scalable, memory-efficient
implementation compared to other implementations requiring
reverse table lookups or memory-intensive architectures such as
crossbar arrays. Flexibility in the learning dynamics is achieved
using a reconfigurable event-based learning dynamics compatible
with three-factor rules (Urbanczik and Senn, 2014), consistent
with other established plasticity dynamics such as STDP (Bi and
Poo, 1998; Markram et al., 2012), membrane-voltage based rules
(Clopath et al., 2010), calcium based dynamics (Shouval et al.,
2002; Graupner and Brunel, 2012), and reinforcement learning
(Florian, 2007).

NSAT is a framework intended to guide the design of an
optimized digital architecture, which we outline in the sections
2 and 3. To set sail toward hardware implementations of the
NSAT framework and assist algorithmic co-design efforts, we
wrote cNSAT, a multi-thread software simulator of the NSAT
framework that is behaviorally accurate with respect to the
envisioned optimized digital hardware implementation. Using
the cNSAT simulator, we show that learning in digital NSAT
requires fewer SynOps compared to MACs in equivalent digital
hardware, suggesting that a custom hardware implementation
of NSAT can be more efficient than mainstream computing
technologies by a factor equal to the J/MAC to J/Synop ratio.
Furthermore, to verify the viability of a digital implementation,
we validatedNSAT on a Field Programmable Gate Array (FPGA).

This article is organized as follows: In the section 2 we
describe the neuron model and its mathematical equations. We
present the NSAT architecture and software simulator (publicly
available under GPLv3 license). In section 3 we show that the
neuron model can simulate the Mihalas-Niebur neuron and
thus demonstrate a rich repertoire of spike behaviors and neural
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field models. Then, we demonstrate that the NSAT framework
supports a type of gradient back-propagation in deep networks,
unsupervised learning in spike-based Restricted Boltzmann
Machines (RBMs), and unsupervised learning of sequences using
a competitive learning.

2. MATERIALS AND METHODS

In this section we introduce the mathematical description of
the NSAT framework and the details regarding its architecture
and the main information processing flow. NSAT software
implementation (cNSAT) details are given in the Appendices.

2.1. Leaky Integrate-and-Fire Neurons as
Dynamical Systems
We start the discussion with the leaky integrate-and-fire neuron
(LIF) model, given by the following equations

τm
d

dt
V(t) = −V(t)+ RI(t). (1a)

If V(t) ≥ θ then V(t) = Vr and s = 1, (1b)

where V(t) is the neuron’s membrane potential, τm is the
membrane time constant, R is the membrane resistance and I(t)
is the driving current, which can be comprised of external current
Iext and/or synaptic one Isyn. When the membrane potential is
greater or equal to a threshold value (θ), the neuron fires a spike
and themembrane potential value at that time step is set to a reset
value Vr (resting potential).

The dynamical properties of LIF neurons can be extendedwith
synaptic dynamics or other internal currents such as calcium
channels, potassium channels and other biophysical variables.
For instance, the concentration of some neurotransmitter or ion,
U(t), can be captured by the linear dynamics:

τU
d

dt
U(t) = −U(t)+

∑

k

δ(t − tk), (2)

where U(t) is the concentration within the neuron cell reflecting
for example calcium concentration, although the biological
interpretation is not indispensable for the NSAT framework. The
term

∑

k δ(t − tk) indicates the pre-synaptic incoming spikes to
the current post-synaptic neuron (δ is the Dirac function1). If
we rewrite the summation term as S(t) =

∑

k δ(t − tk) then the
dynamics become the linear system:

[

V̇(t)

U̇(t)

]

=

[

− 1
τm

0

0 − 1
τU

]

·

[

V(t)
U(t)

]

+

[
RI(t)
τm
S(t)
τU

]

. (3)

A generalization of such linear dynamics to N dimensions can be
written in the following vector notation:

d

dt
x(t) = Ax(t)+ Z(t), (4)

1δ(t) = ∞, if t = 0 otherwise δ(t) = 0. In the discrete version we have δ(t) = 1, if

t = 0 otherwise δ(t) = 0.

where the temporal evolution of state x(t) =

(x0(t), x1(t), x2(t), · · · , xN(t)) is characterized by the solution
of Equation (4). In the equation above, A is the state transition
matrix and Z(t) the time-varying external inputs or commands to
the system. Solutions to linear dynamical systems of Equation (4)
are given by:

x(t) = exp(At)x(t0)+

∫ t

t0

exp(A(t − τ ))Z(τ )dτ . (5)

Equation (5) can be computed numerically by using the Putzer
algorithm (Putzer, 1966) for computing the matrix exponential.
Numerical solutions of Equation (4) can be obtained using
several numerical integration methods, such as the Forward
Euler which is computationally simple, fast, less expensive than
other Runge-Kutta methods which require more operations, and
compatible with stochastic differential equations (Kloeden and
Platen, 1991). Furthermore, even in the case where Equation (4)
is stiff we can adjust the time-step such that the Forward Euler
is stable. For these reasons, Forward Euler is a common choice
for digital simulations of neural networks (Zenke and Gerstner,
2014; Davies et al., 2018).

2.2. NSAT Neuron and Synapse Model
In continuous form, the NSAT neuron consists of linear
dynamics described in general by Equation (4) extended with
firing thresholds, resets mechanisms and inputs Z(t) written in
open form:

dx(t)

dt
= Ax(t)

+ (444(t) ◦W(t)) · s(t)+ ηηη(t)+ b
︸ ︷︷ ︸

Z(t)

. (6a)

If x(t) ≥ θθθ then x(t) = Xr, (6b)

If x0(t) ≥ θ0 then s0(t) = δ(t). (6c)

The state components x = (x0, ..., xk) describe the dynamics of
a neural compartment or variable such as membrane potential,
internal currents, synaptic currents, adaptive thresholds and
other biophysical variables, although a biological interpretation is
not essential.A is the state-transition squarematrix that describes
the dynamics of each state component and their couplings. 444

is a random variable drawn from a Bernoulli distribution and
introduces multiplicative stochasticity to the NSAT, which is
an important feature for learning (Hinton et al., 2012; Wan
et al., 2013) inspired by synaptic failures (Vogelstein et al.,
2002; Neftci et al., 2016). Probabilistic synapses support Poisson-
like variability in the of spiking neural networks and provide a
mechanism for performing highly robust probabilistic inference
under noisy and ambiguous conditions (Moreno-Bote, 2014).
Furthermore, stochasticity at the synaptic level accounts for
optimizing the energetic efficiency of neurons (Levy and Baxter,
2002).

W is the synaptic strength matrix and defines the connectivity
and the strength of each connectivity between neurons. s is a
vector that takes values in {0, 1} and registers whether the neuron
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has spiked. The ◦ symbol defines an element-wise multiplication
(or Hadamard product). ηηη is the additive normal noise with
zero mean and programmable variance, allowing for shifting the
equilibrium of Equation (8) and decorrelating repetitive spiking
patterns (Tuckwell and Jost, 2010). And finally, b is a constant
value that is added to each state component acting as a constant
input (i.e., current injection from a neuroscience point of view or
bias from a machine learning point of view). When a component
xi crosses its threshold value (θi) then it is subject to reset to some
predefined value Xri . Additionally if the zero state of a neuron
(x0(t)) crosses its threshold value then that neuron fires a spike
as shown in Equation (6), with (s0(t) = δ(t)) and a new setting
of Xr0 . After the neuron has spiked, the membrane potential is
clamped during a programmable refractory period, during which
it is not permitted to fire.

2.2.1. Event-driven Synaptic Plasticity and the NSAT

Plasticity Model
Spike-Timing Dependent Plasticity (STDP) is a popular learning
rule used throughout computational neuroscience models,
thanks to empirical evidence and its simplicity. It is a form
of Hebbian learning that modifies the synaptic strengths of
connected pre- and post-synaptic neurons based on their
spikes firing history in the following way (Bi and Poo, 1998;
Sjöström et al., 2008): if a post-synaptic neuron generates
action potential within a time interval after the pre-synaptic
neuron has fired multiple spikes then the synaptic strength
between these two neurons potentiates (causal update, long-
term potentiation-LTP). On the other hand if the post-synaptic
neuron fires multiple spikes before the pre-synaptic neuron
generates action potentials within that time-interval then the
synapse depotentiates (acausal update, long-term depression-
LTD).

Like Hebb’s rule, STDP is an unsupervised rule that depends
on pre-synaptic and post-synaptic factors (here spike times),
and so STDP alone is impractical for learning with reward or
error signals extrinsic to the STDP neuron pairs. On the other
hand, three factor rules solve this problem by adding a factor
indicative of reward, error, gradients provided extrinsically or
through other neural states (Clopath et al., 2010; Urbanczik and
Senn, 2014). Several theoretical work underline that gradient
descent on spike train distances or classification loss indeed take
the form of such three factor rules (Pfister et al., 2006; Urbanczik
and Senn, 2014; Neftci et al., 2017b; Zenke and Ganguli,
2017). These results also indicate that optimal gradient descent
learning rules involve continuous-time dynamics. However,
because continuous-time updates are prohibitive in digital
hardware, one must resort to event-based learning such as
STDP.

To implement multiple learning scenarios in a fully event-
based fashion with minimal memory overhead, NSAT
follows a modulated, index-based STDP rule. Index-based
architectures are memory-efficient with realistic and practical
sparse connectivities, but are challenging to implement
in neuromorphic hardware because synaptic memory is
typically localized at the pre-synaptic neurons, and so
causal updates require reverse look-up tables or reverse

search for the forward table at every spike-event. Although
reverse lookups are not an issue in crossbar memories
(they are compatible with the data structure associated
with the crossbar), they can incur a significant memory
overhead for non-dense connectivities and are not considered
here.

Recent implementations of STDP in the Spinnaker
hardware use dedicated synaptic plasticity cores (Galluppi
et al., 2015) for implementing STDP. While this approach
gives additional flexibility in the STDP learning rule, it
relies on relatively large SDRAMs and more communication
for its realization. Furthermore, it has the disadvantage
of segregating synaptic memory from neural states, which
as argued above, may contain important information for
learning.

To mitigate these problems, NSAT uses a forward table-
based, pre-synaptic event-triggered, nearest-neighbor STDP rule
(Pedroni et al., 2016) coupled with the neuron dynamics. This
method implements both causal and acausal weight updates
using only forward lookup access of the synaptic connectivity
table. A single timer variable for each neuron is sufficient to
implement this rule, permitting implementation that requires
onlyO(N) memory, whereN is the number of neurons. The basic
nearest-neighbor STDP (Sjöström et al., 2008) is recovered in the
case of refractory periods greater than the STDP time window,
and otherwise it closely approximates exact STDP cumulative
weight updates.

This method is related to the deferred event-driven (DED)
rule used in Spinnaker (Jin et al., 2010), which does not allow
the pre-synaptic spike to trigger the STDP until a predetermined
time limit is reached. The time that a pre-synaptic spike occurred
is recorded as a time-stamp and is used in the future once
the missing information from the future spikes has been made
available (post-synaptic neurons have fired action potentials).
Such STDP schemes are called “pre-sensitive”, as STDP takes
place only when a pre-synaptic neuron fires an action potential.

Similar to DED, the three-factor NSAT STDP learning
rule implements a pre-sensitive scheme: The NSAT framework
learning rule keeps track of the spike times using a time counter
per neuron. When a pre-synaptic neuron fires then all the
corresponding acausal STDP updates are triggered and the post-
synaptic weights are updated based on a linear or exponential
approximation STDP kernel (see Figure A2 in Appendix A). If
the counter of the pre-synaptic neuron expires, then only the
causal STDP update takes place. As long as the counter has
not expired and post-synaptic neurons fire within the STDP
time-window then the acausal updates are computed. If, now, a
new spike from the pre-synaptic neuron is emitted then causal
updates are computed.

To enable learning using extrinsic and intrinsic modulation,
the NSAT three-factor learning rule is modulated by the
neural state components, which enables modulation based on
continuous dynamics using both local and global information.
Since NSAT connectivity allows extrinsic inputs to drive its
state components, modulation can be driven by extrinsic
rewards, error or the dynamics of entire neural population.
The mathematical formulation of the NSAT three-factor STDP
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learning rule is given by:

ǫij(t) = x
j
m(t)

(

K(t − ti)+ K(tj − t)
)

, (7a)

d

dt
wij(t) = ǫij(t)δj(t), (7b)

where ǫij(t) is the eligibility of the synapse between the i-th pre-
synaptic neuron and the j-th post-synaptic neuron update, K(·)
is the STDP learning window, ti is the last time that the i-th
pre-synaptic neuron fired a spike, and tj is the last time that
the post-synaptic neuron fired a spike. The kernel (or learning
window) K(t− ti) refers to the causal (positive) STDP update and
the term K(tj − t) refers to the acausal (negative) STDP update.

x
j
m(t) is the m-th state component of the post-synaptic neuron
that dynamically modulates the amplitude of the STDP kernel.

A remark with respect to learning rule (7) is that rate-
based learning schemes can be implemented on NSAT, as NSAT
neurons are compatible with firing rate neurons. To achieve this,
NSAT neurons configured as integrators to read-out estimates of
the firing rate, and the synaptic plasticity rule can be configured as
a membrane voltage-modulated learning rule. Another example
of rate-based learning is the BCM learning rule (Bienenstock
et al., 1982), from which one can derive a modulated STDP rule
compatible with NSAT assuming stochastic firing of the pre- and
post-synaptic neurons (Izhikevich and Desai, 2003). The latter
can be realized using additive or multiplicative noise.

2.3. Difference Equations of NSAT
(Quantized) Framework
The NSAT software simulator consists of discrete-time versions
of the above equations, based on fixed point arithmetics without
any multiplications. The continuous-time dynamics of NSAT
described by Equations (6) and (7) are rewritten here in a discrete
(quantized) form:

x[t + 1] = x[t]+ A�x[t]+

+ (444[t] ◦W[t]) · s[t]

+ ηηη[t]+ b. (8a)

If x[t + 1] ≥ θθθ then x[t + 1]← Xr. (8b)

If x0[t + 1] ≥ θ0 then s0[t + 1]← 1, (8c)

where the entries of matrices A and b are integer constants,
and ηηη is the variance of the additive noise. More details
regarding the parameters are provided in Appendix A and in the
Supplementary Information.

The binary operator D(·, ·) :GF(2n)→ GF(2n) (or�), where
n = 4 or n = 5, is defined as

D(a, x) = a�x =

{

sign(−a ⋄ x) if d(a, x) 6= 0 and a = 0
a otherwise,

(9)

(described also by Algorithm 2 in Appendix A) plays the role
of a multiplication implemented with bit shift operations. In
particular, it ensures that all state components leak toward the
resting state in the absence of external input (current).

The binary operator d(·, ·) :GF(2n) → GF(2n) (or ⋄), where
n = 4 or n = 5, defines a custom bit shift. It performs a
multiplication by power of two using only bitwise operations, and
it is defined as

d(a, x) = a ⋄ x =

{

x << a if a ≥ 0
sign(x)(|x| >> −a) otherwise

(10)

(see also Algorithm 3 in Appendix A).
The reason for using ⋄ rather than left and right bit shifting is

because integers stored using a two’s complement representation
have the property that right shifting by a values such that x >

−2a
′
,∀a′ < a is −1, whereas 0 is expected in the case of a

multiplication by 2−a. The ⋄ operator corrects this problem

by modifying the bit shift operation such that −2a
′
⋄ a =

0, ∀a′ < a. In addition, such multiplications by powers of 2 have
the advantage that the parameters are stored on a logarithmic
scale, such that fewer bits are required to store parameters. For
example, −(−3�x0) is the NSAT equivalent of −2−3x0[t]. A
logarithmic scale for the parameters is suitable since solutions to
the equations consist of sums of exponentials of these parameters
(5).

The learning rule given by Equation (7)is also discretized:

ǫij[t] = xmj [t] ⋄
(

K[t − ti]+ K[tj − t]
)

, (11a)

wij[t + 1] = Clip(wij[t]+ ǫij[t]sj[t]
︸ ︷︷ ︸

1wij

). (11b)

Where Clip(x) = max{wmin, min{x,wmax}} clips its first
argument to within the range [wmin,wmax] dictated by the fixed
point representation of the synaptic weights at every time step.

In addition, the weight updates can be randomized using
a discretized version of randomized rounding (Muller and
Indiveri, 2015), which interprets the r least significant bits of 1w
as a probability, as follows:

1wr
ij = (1w≫ r)+

{

1 if random(0, 1)<p

0 otherwise.
, (12)

where p is the number formed by the r least significant bits of
1wij.

Figure 1A shows an example of the NSAT learning rule
(Equation 11). In this example, each neuron consisted of
4 components. The first and second component correspond
to classical leaky integrate and fire dynamics with current-
based synapses. The third state component driven externally to
modulate the STDP update. As a result most weights updates
concentrate around high modulation states.

2.4. The NSAT Architecture
Figures 1C,D, 2 illustrate the NSAT architecture consisting of
multiple interconnected cores (or threads each simulating one
NSAT core). Only addresses of a neuron’s spike are transmitted in
inter- and intra-thread communication. At every simulation time
step (or tick) each thread runs independently, executing NSAT
dynamics in two stages. In the first stage each thread integrates
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FIGURE 1 | The Neural and Synaptic Array Transceiver (NSAT). (A) Sample run externally modulated STDP, showing raster plot of 25 neurons and detailed temporal

dynamics of the four components of the first neuron’s (neuron number 0) state. The first component represents the membrane potential (Vm), the second component

represents the synaptic state (Isyn), while the third is the plasticity modulation (xm). The latter state is driven externally by a spike train that is active between time steps

400 and 600, and white noise of constant amplitude. (B) NSAT Neurons consist of compartments that can be coupled to trading off the number of neurons vs. neuron

complexity (number of compartments). (C–D) NSAT information flow and envisioned layout of the NSAT cores using Hierarchical Address-Event Routing (HiAER) (Park

et al., 2017) for scalable and expandable neural event communication with reconfigurable long-range synaptic connectivity.

the neural dynamics of its neurons based on Equation (8) without
accumulating the synaptic inputs on the neuron state. At that
stage all the threads are synchronized (thread barrier) and then
they detect new spike-events and transmit them accordingly to
their destinations. All the detected inter- and intra-core spike
events at time t are made available to the next time step (t + 1).
After the distribution of all the spikes (intra- and inter-core) all
the threads are synchronized once again before proceed to the
next stage.

In the second stage, the detected spike events (including
the external ones) are accumulated onto the neural states
components xi according to (444[t] ◦ W[t]) · s[t]. Synaptic
weights are multiplied with a predefined constant (implemented
as a bit shift operation) to trade off precision and range
limitations imposed by fixed point integer arithmetic. Our
previous work (Neftci et al., 2017a) and Drop Connect (Wan
et al., 2013) showed that a probability of 1

2 work best as
multiplication constant. Consequently, we use a blank-out factor
as close as possible to 1

2 throughout our simulations. The blank-
out factor does not directly affect the required weight precision.
When the learning is enabled, Equation (11)is computed. First,
threads compute the causal and then the acausal part of the
STDP learning curve. After learning, the STDP counters of

neurons that have spiked are set to their new values (either the
last time that a neuron spiked, or a neuron clock starts ticking
until expiration). The final steps in the second stage perform
update of modulator dynamics (xmi ) and reset of the neuron
state components that spiked. The modulator state component
(xm) adjusts the amplitude of the STDP function as described
in Equation (11). Algorithm 1 provides in pseudo-code the flow
of the NSAT operations. Furthermore, in the Appendix A we
provide more details regarding the data structures, simulation
details and in the Supplementary Material the parameters for all
of our results presented in the next section.

2.5. NSAT Hardware Architecture
A synchronous digital architecture with the same functionality
as the cNSAT was written in Verilog and its functionality was
validated by emulating the same on FPGA. This section provides
an overview of the architecture and provides an idea on the
potential power savings that result from optimized NSAT data-
structure and functions.

Figure 3A shows the top level organization of the NSAT
architecture. We refer to this as a single NSAT tile. Note that
such tiled architecture has been proposed earlier in the context of
neuromorphic hardware with multi-tile communication enabled
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FIGURE 2 | The NSAT Architecture. Multiple NSAT threads receive external

events and generate event responses in two stages. Each thread consists of

two major instruction sets (cyan boxes), one for evaluating neuron dynamics

and the other for implementing an event-based STDP learning rule. The

instructions are shown in the two large gray boxes. Arrows indicate the flow of

the information within an NSAT thread during simulation.

FIGURE 3 | Top-level NSAT Architecture. The NSAT tile block (A) and the

organization of a spike packet (B).

through a hierarchical AER communication fabric (Park et al.,
2017). The contribution of this work therefore focused on
specifics of the digital implementation inside each tile. Each
tile is hierarchically organized into four NSAT cores, which
communicate via a packet-switched router conforming to the
Address Event Representation (AER) protocol (Lazzaro et al.,

Algorithm 1 Algorithmic (software) NSAT implementation (see
text for more details).

Require: Synaptic Weights, Parameters, Learning Parameters
Ensure: Spike events, States, Synaptic Weights

for all p in {Threads} do
for t← 1 . . . tfinal do

for all i in {Neurons} do
spike_list← external_events
xi[t]← xi[t]+ A�xi[t]+ ηηη[t]+ b

if ref_periodi > 0 then
ref_periodi ← ref_periodi − 1
xi[t]← Xi

reset

end if

if Spike is Enabled then

if xi[t] ≥ θθθ i then

spike_list→ id← i
spike_list→ ts← t
si[t] = 1

end if

else if Adaptive θ is Enabled then

if xi0[t] ≥ xi1[t] then
spike_list→ id← i
spike_list→ ts← t
si[t] = 1

end if

end if

xi[t]← xi[t](444[t] ◦W[t]) · si[t]
W[t]←W[t] ◦ Gi

if Learning is Enabled then

Compute Equations (11) and (12)
end if

if si[t] == 1 and Reset is Enabled then

xi[t]← Xi
reset

ref_periodi ← Xi
ref

end if

end for

end for

end for

1993). The AER packets are routed from/to the primary AER
interface at each tile to each core following a wormhole routing
strategy implemented in the router. The digital implementation
of the router is inspired from Vangal et al. (2007), which is
adopted to work on single-flit packets. These packets have the
format as shown in Figure 3B.

As shown in Figure 3B, the packet is functionally diverse. It
can act as (i) a memory write packet—to initialize the weight
memory and the configuration register inside each core. The
Neuron and Delay fields then carry the address and the payload
for writing to the memory location, (ii) a memory read packet—
to read from a memory location in a given core. The payload is
then the memory address. In response to a memory read packet,
the core responds by sending out the data being read from the
memory location. (iii) A spike packet, representing a spike from
another core or tile, carries the destination core and neuron
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addresses along with an axonal delay information. This conforms
to the general AER definition where an event is tagged with a
destination address. Each core is logically divided into an always-
ON router interface and the core logic which is active only at the
arrival of an input spike or at the beginning of each time-stamp.
If no spike is present in a given time-stamp, only the neuron
dynamics are evaluated and the core logic is thereafter put in a
low-power retention mode.

2.5.1. NSAT Core Architecture
Figure 4 shows the detailed breakdown of each core. The Always-
ON (AON) router interface consists of two channels—packetizer
and de-packetizer corresponding to the outgoing and incoming
streams of packets. The AONmodule also generates a gated clock
for the rest of the NSAT core. In absence of input activity, the core
clock is gated to prevent dynamic power dissipation. Each NSAT
core contains logic and memory to map 512 8-component state
neurons which can also be reconfigured as 4096 1-component
state neuron. Following are the primary components of the NSAT
core.

The synaptic weight memory is physically the largest of the
NSAT core modules, with 128KB of synaptic weight storage.
Input to this module are spikes and output are its fanout weights.
In addition to the synaptic storage, decoder logic selects the
appropriate memory array for weight retrieval. In order to store
weights for sparse fanouts, we have implemented a compressed
storage scheme for the weights. The weight memory is divided
into a pointer array which stores the pointers to the weight data
array, while the weight data array stores the actual weights. The
compression scheme we used is Run Length Encoding (RLE)
which skips zero weights corresponding to missing connections.
The pointer memory is also useful for storing pointers for weight
parameters that are shared across multiple neurons (e.g., in
convolutional filters). A decompression engine following the
weight data array decompresses the weights before sending them
out for accumulation to destination neurons. The organization is
illustrated in Figure 4B.

The fanout weights obtained are accumulated on the
destination neurons in the weight accumulation module. While,
one memory array is used to store and update the partial
sums from weight accumulation in the current time-stamp,
another array is used to feed the accumulated weights from
the previous time-stamp to the neuron evaluation unit. This
approach decouples weight look-up and accumulation from
neuron evaluation. The total memory size is proportional to the
number of neurons, number of state components/neuron and
the number of bits per component. Figure 4C illustrates the
organization of the weight accumulation module.

The neuron evaluation block evaluates the neuron dynamics
in the NSAT core. It receives the accumulated weights from the
weight accumulation block. The previous state components are
stored in the neuron state memory in the neuron evaluation
block. The neuron configuration parameters are also locally
stored in the neuron evaluation block. The NSAT neural
dynamics is implemented as a 4-stage pipeline where all the state
components of a neuron are evaluated in parallel and all the
neurons are evaluated in a time-multiplexed fashion. The output

from the block are neuronal responses, i.e., spikes. Figure 4D
shows the block diagram of the neuron evaluation unit.

The learning engine implements multiple learning algorithms
as available in cNSAT (Figure 4E). This includes weight update
corresponding to conventional STDP as well as the state
dependent weight update. For STDP weight update, both the
causal and acausal pipelines were used, using a forward table-
based pre-synaptic event-triggered STDP (as described in section
2.2.1), accordingly to which the state dependent weight updates
use only the acausal pipeline. A dedicated latch-based memory
module implements the STDP counters. The latch-based design
instead of a register file/SRAM based approach allows multiple
counters to be updated at the same time corresponding to
multiple spikes. In addition to the input spikes (from internal and
external to the core), in order to perform state-dependent weight
update, the learning engine reads (from the neuron evaluation
unit) the state of its fanout neurons. The learning configuration
parameters are stored in a small memory in the learning engine.

The axon module holds the routing information to route
spikes into the same core or to other cores (Figure 4F). The
routing information is stored per each neuron that is mapped
to a given core. A flag in the routing table indicates whether a
spike generated in the core is routed back or routed outside. If
it is expected to be routed back, it is inserted into the queue
at the input of the synaptic weight memory module. It then
performs weight look-up and accumulation in a manner similar
to other spikes coming from other cores. For spikes destined for
other cores, the output from the axon module is routed to the
packetizer unit in the AON router interface block.

Stochastic learning (stochastic synapses and randomized
rounding) have proven to be extremely effective in the NSAT
framework (see supervised and unsupervised in section 3). To
support randomness we implement a robust Linear-feedback
Shift Register (LFSR)-based pseudo-random number generator
(Tkacik, 2002). There are four individual uniform random
number generators, which are combined to generate a normal
random sequence which can also be used as a random noise on
the neuron membrane potential (Neftci et al., 2017b).

The control unit oversees the overall control of operations
in the NSAT core. It is implemented as a state-machine which
is responsible for triggering smaller state-machines in each
individual block in the design. The sequence of operations in each
core follow the behavior as shown in Figure 4G. The beginning
of a time step is indicated by the start_tstep signal, which
is a global signal that is broadcasted from the main control
center (PC in this case), while the 4 cores in the NSAT tile act
as slave accelerator cores. Each core indicates the completion of
its neuron evaluation and learning periods by sending out the
done_tstep signal to the control center. Once done_tstep
is received from all cores, the control center waits for any
global time-step constraint (e.g., simulated time-constant of 1ms)
to elapse before sending out the start_tstep for the next
time-step. This simple approach allows us to achieve multi-core
synchronization which can be easily scaled to multiple NSAT
tiles.

In addition, the control unit also stores spikes which
are attributed with non-zero delays. An array with a size
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FIGURE 4 | NSAT Hardware Core Architecture. (A) The architectural organization of an NSAT hardware core and the different modules constitute the core. (B)

Synaptic weight memory module, (C) synaptic weights accumulation module, (D) neuron evaluation module, (E) learning engine, and (F) neuron axon module, (G)

time-step duration indicating the sequence of operations in each core.

corresponding to the total neuron space×max future delay time-
steps in the control unit stores spikes to be retrieved and used
at a future time-step. Configuration parameters corresponding
to overall mapping of neurons and learning strategy (STDP or
state-based) are stored in these global configuration registers.

2.5.2. Validation of the Architecture
FPGA was used as a means of validating the NSAT architecture
and pre-Si demonstration of NSAT software (see Figure 5). It
is also intended to capture performance statistics of various
parts of the NSAT pipeline (e.g., NSAT dynamics, learning
module) which would otherwise be extremely slow to capture
using RTL simulations. We intend to leverage these statistics
for designing better power-management scheme for the NSAT
ASIC. The NSAT mapping on the FPGA consumes all types of
resources including logic, DSP and memory. DSP utilization is
low (< 1%) since NSAT does not use any large multiplier, but
only accumulators and shifters. Memory utilization is high (80
BRAMs), primarily due to large synaptic weight memory, pointer
memory, neuron state table. One quarter of the logic resources is
used to map a single NSAT tile. We expect logic resources and
routing (interconnect resources) to be the limiter to mapping
multiple tiles. The design was synthesized for a clock frequency of
200Mhz, which was found enough for a real-time demonstration
of spiking neural networks (SNN) based inference workload. At

this target frequency, all timing paths were satisfied. However the
most critical path was found in the logic for neuron dynamics for
a 8-state neuron scenario. Since the goal of the FPGA mapping
was only emulation, no power measurement was done.

3. RESULTS

In this section we demonstrate the NSAT capabilities by
performing five different tasks using the cNSAT simulator.
First, we show that NSAT supports a wide variety of neural
responses, such as tonic, bursting and phasing spiking. The
second task is a simulation of Amari’s neural fields (Amari, 1977)
in three different applications: stationary “bump” solutions,
target selection and target tracking. Then, we illustrate three
learning tasks in supervised and unsupervised settings.

3.1. NSAT Neuron Dynamics Support a
Wide Variety of Neural Responses
TheMihalas-Niebur neuron (MNN)model (Mihalas and Niebur,
2009) is a linear leaky integrate-and-fire neuron that is able
to capture a wide spectrum of neural responses, such as tonic
spiking, bursts of spikes, type I and type II spike responses. Here,
we show that the NSAT neuron model can implement the MNN
model and thus simulate a similar spectrum of neural responses.
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FIGURE 5 | FPGA-based emulation of NSAT. (A) Flow of information from a

computer to the Xilinx FPGA board. (B) NSAT tile mapped to a Virtex-7 2000T

device.

The MNN model consists of N + 2 equations, where the first
two equations describe the membrane potential and an adaptive
threshold, respectively. The remaining N equations define
internal currents of the neuron. The subthreshold dynamics of
MNN neuron are given by,

dV(t)

dt
=

1

Cm

(

Ie − g(V(t)− EL)+

N
∑

j= 1

Ij(t)
)

, (13a)

d2(t)

dt
= a(V(t)− EL)− b(2(t)−2∞), (13b)

dIj(t)

dt
= −kjIj(t), j = 1, . . . ,N, (13c)

where V(t) is the membrane potential of the neuron, 2(t) is
the instantaneous threshold, Ij(t) is the j-th internal current of
the neuron. Cm is the membrane capacitance, Ie is the external
current applied on the neuron, g is a conductance constant, EL is a
reversal potential. a and b are some constants, 2∞ is the reversal
threshold and kj is the conductance constant of the j-th internal
current. The MNN neuron generates spikes when V(t) ≥ 2(t)
and updates neural state as follows:

Ij(t)← Rj × Ij(t)+ Pj, (14a)

V(t)← Vr , (14b)

2(t)← max{2r ,2(t)}, (14c)

where Rj and Pj are freely chosen constants, Vr and 2r are
the reset values for the membrane potential and the adaptive
threshold, respectively.

We implement the MNN model using the NSAT framework
and following the configuration provided in Mihalas and Niebur
(2009). Therefore, we assume N = 2 (the number of the internal
currents), which has been demonstrated to be sufficient for a wide
variety of dynamics (Mihalas and Niebur, 2009).

FIGURE 6 | NSAT Mihalas-Niebur Simulation. Results from an NSAT

simulation of MNN model. (A) Tonic spiking, (B) mixed mode, (C) class I

neuron, (D) class II neuron, (E) phasic spiking, and (F) tonic burst. Black and

red lines indicate the membrane potential (state x0(t)) and the adaptive

threshold (state x1(t)), respectively. Blue vertical line segments represent spike

events.

We simulated the MNN in six different cases, tonic spiking,
phasic spiking, mixed mode, class I and II, and tonic bursting.
These six neural responses are important because (i) they
are the most frequently used neural responses in the field of
computational neuroscience and (ii) in Mihalas and Niebur
(2009) all the 20 different neural behaviors reduce to three
different classes in terms of implementation. Our results produce
very similar responses compared to the original MNN ones.
Figure 6 illustrates the results of all these six simulations. The
black lines show the membrane potential of the neuron (V(t)),
the red dashed lines indicate the adaptive threshold (2(t)), and
the vertical blue line segments show the spike trains for each
simulation. Some of the simpler neural responses and behaviors
provided by Mihalas and Niebur can be achieved by NSAT in a
simpler way. For instance, a linear integrator can be implemented
in the NSAT by just solving the equation x0[t + 1] = x0[t] +
(x0[t]+

∑n
j= 1 wijsj[t]), where the sum reflects the synaptic input

to the neuron.
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3.2. Amari’s Neural Fields
Neural fields are integro-differential equations usually modeling
spatiotemporal dynamics of a cortical sheet, firstly introduced
by Shun’ichi Amari in 1977 in his seminal paper (Amari, 1977).
Neural fields have a rich repertoire of dynamics (Bressloff, 2011)
(waves, breathers, stationary solutions, winner-take-all) and are
thus key components of neural computational models. The
original Amari’s neural field equation is given by:

τ
∂u(r, t)

∂t
= −u(r, t)+ Iext + h

+
∫

�
w(|r − r′|)f (u(r′, t))dr′, (15)

where u(r, t) is the average neural activity at position r and at
time t of a neural population, τ is a time constant, � denotes a
compact subset ofRq, where q ∈ N≥1,w(|r−r

′|) is a connectivity
function that defines the connectivity strength between neurons
at positions r and r′. Iext is an external input that is applied on
the neural field (subcortical inputs for instance) and h is the
resting potential of the neural population. The function f (r) is
the activation or transfer function of the system and in Amari’s
case is a Heaviside function:

f (r) =

{

1, if x > 0
0, otherwise.

(16)

The kernel function in this case is a Difference of Gaussians
(DoG, see Figure A4a in Supplementary Information),

w(r) = Ke exp
(

− r2

2σ 2
e

)

− Ki exp
(

− r2

2σ 2
i

)

, (17)

where Ke, Ki, and σe, σi are the excitatory and inhibitory
amplitudes and variances, respectively.

Here, we show the implementation of neural fields in the
NSAT framework. First, we observe that the dynamics of each
i unit in Equation (A1) is a leaky integrate-and-fire neuron if
we consider f (r) as a pre-synaptic spike-event indicator function.
Taking into account that the transfer function f (r) is a Heaviside,
we can then model every unit i as a leaky integrate-and-fire
neuron. This implies that the first state component of neuron i
reflects the i-th neural field unit, and the rest of the neuron’s state
components remain idle. This methodology has been previously
used to implement spiking neural fields (Vazquez et al., 2011;
de Vangel et al., 2015).

We quantize the kernel function w(r) using a uniform
quantizerQ(r) = 1 · ⌊ r

1
+ 0.5⌋ (see Figure 7A). Neural resetting

is disabled to match the neural fields behavior (described by
Equation 15 and Equation A1): Neurons fire when they reach the
firing threshold, but their states do not reset after spiking.

We test the NSAT neural fields implementation on three
different tasks. The first model expresses a sustained activity
or stationary “bump” solution (Amari, 1977). We simulate 100
internal neurons, all-to-all connected and 100 external neurons
(no dynamics) connected with internal neurons in a one-to-one
relation. The external neurons transmit spikes generated by a
Poisson distribution with maximum firing rate 35Hz for neurons
indexed from i = 40 to i = 60 and 10Hz for the rest of

FIGURE 7 | Neural Field Implementation. Three different neural field models

were simulated in NSAT. Three different lateral connectivity kernels (w(r)) are

illustrated in (A). Blue, green and red lines correspond to stationary solution,

action-selection and tracking neural field models, respectively. The first neural

field model generates a stationary (or “bump”) solution (B), a tracking neural

field model follows a moving target on the vertical axis (y) as (C) illustrates.

Finally the action-selection model selects one out of two input stimuli (D), red

lines indicate the firing rate of the two stimuli. In (C,D), the purple colormap

indicates the neural activity (white-no activity, purple-high activity).

the neurons. The total duration of the input signal injection
is 400 simulation ticks and the total simulation time is 2500
ticks. Thus, the input is similar to the Gaussian function used in
the continuous case (see Figure A4 in Appendix A). Figure 7A
shows the quantized kernel wij (blue line) and Figure 7B

indicates the spatial solution of the neural field implementation
at the equilibrium point. The solution obtained with the NSAT
neural field implementation in Figure 7B is similar to the one in
Figure A4a inAppendix A (red line, Amari’s neural field “bump”
solution).

The second task involves target tracking. Asymmetric neural
fields have been used for solving target tracking (Cerda and
Girau, 2013). We use the same number of neurons (internal and
external) and the same simulation time as above, and modify the
kernel to an asymmetric one as Figure 7A indicates (red line).
The stimulus consists of Poisson-distributed spike trains that are
displaced along the y-axis every 500 ticks. Figure 7C illustrates
the NSAT neural field to track the moving target. In this case, a
small fraction of neurons receive Poisson-distributed spike trains
at a firing rate of 50Hz, while the rest of the neurons do not
receive any input.

Finally, we implemented neural fields’ models of action-
selection and attention (Vitay and Rougier, 2005). In this case we
use the same architecture as in the previous task. The difference
is that now we have changed the kernel function and the input.
The modified kernel function has weaker excitatory component
as Figure 7A shows (green line). The input consists of spike trains
drawn from a Poisson distribution with two localized high firing
rates regions (50Hz, neurons indexed from i = 20 to i = 40
and from i = 70 to i = 90) for 500 simulation ticks (all the
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other internal units receive no input). Figure 7D shows activity
when we apply the input stimulus for 500 simulation ticks. The
neural field selects almost immediately one of the two stimuli and
remains there during the entire simulation (even after the stimuli
removal).

We have shown how NSAT can simulate neural fields (Amari,
1977; Bressloff, 2011), a sort of firing rate models. NSAT
can thus contribute a generic framework for neuromorphic
implementations of neural fields (Sandamirskaya, 2013) and
potentially enhance them with learning features, as described in
the following results.

3.3. Supervised Event-Based Learning
Deep neural networks, and especially their convolutional and
recurrent counterparts constitute the state-of-the-art of a wide
variety of applications, and therefore a natural candidate for
implementation in NSAT. The workhorse of deep learning,
the gradient descent Back Propagation (BP) rule, commonly
relies on high-precision computations and the availability
of symmetric weights for the backward pass. As a result,
its direct implementation on a neuromorphic substrate is
challenging and thus not directly compatible with NSAT. Recent
work demonstrated an event-driven Random Back Propagation
(eRBP) rule that uses a random error-modulated synaptic
plasticity for learning deep representations. eRBP builds on the
recent advances in approximate forms of the gradient BP rule
(Lee et al., 2014; Baldi et al., 2016; Lillicrap et al., 2016) for
event-based deep learning that is compatible with neuromorphic
substrates, and achieves nearly identical classification accuracies
compared to artificial neural network simulations on GPUs
(Neftci et al., 2017b).

We use a two-layer network in NSAT for eRBP equipped
with stochastic synapses, and applied to learning classification in
the MNIST dataset. The network consists of two feed-forward
layers (Figure 8) with Nd “data” neurons, Nh hidden neurons
andNp prediction (output) neurons. The class prediction neuron
and label inputs project to the error neurons with opposing
sign weights. The feedback from the error population is fed
back directly to the hidden layers’ neurons through random
connections. The network is composed of three types of neurons:
hidden, prediction, and error neurons.

The dynamics of a hidden neuron follow integrate-and-fire
neuron dynamics:

τsyn
dVh

dt
+ Vh =

∑

k

ξ (t)wksk(t) (18a)

τm
dmh

dt
+mh =

∑

k

gEk (s
E+
k

(t)− sE−
k

(t)) (18b)

if Vh(t) > VT then Vh
i ← 0 during refractory period τrefr .

where sk(t) are the spike trains produced by the previous layer
neurons, and ξ is a stochastic Bernouilli process with probability
(1−p) (indices k are omitted for clarity). Each neuron is equipped
with a plasticity modulation compartment mh following similar
subthreshold dynamics as the membrane potential. The term

sE(t) is the spike train of the error-coding neurons and gE
k
is

a fixed random vector drawn independently for each hidden
neuron. The modulation compartment is not directly coupled to
the membrane potential Vh, but indirectly through the learning
dynamics. For every hidden neuron,

∑

k g
E
k
= 0, ensuring that

the spontaneous firing rate of the error-coding neurons does
not bias the learning. The synaptic weight dynamics follow an
error-modulated and membrane-gated rule:

d

dt
wh
j ∝ mh2(Vh)sj(t). (19)

where 2 is a boxcar function with boundaries bmin and bmax

and the proportionality factor is the learning rate. Weight values
were clipped to the range [−128, 127] (8 bits). To mitigate
the adverse effect of low-precision weights in gradient descent
learning, we used randomized rounding where the first r = 6
bits of 1w were interpreted as probability. Prediction neurons
and associated synaptic weight updates follow the same dynamics
as the hidden neurons except for the modulation, where one-to-
one connections with the error neurons are formed (rather than
random connections).

Error is encoded using two neurons, one encoding positive
error E+, the other encoding negative error E−. The positive
error neuron dynamics are:

d

dt
VE+
i = wL+(sPi (t)− sLi (t)) (20)

if VE+ > VE
T then VE+ ← VE+ − VE

T ,

where sPi (t) and s
L
i (t) are spike trains from the prediction neurons

and labels. The membrane potential is lower bounded to 0 to
prevent negative activity to accumulate across trials. Each error
neuron has one negative counterpart neuron. Negative error
neurons follow the exact same dynamics but with wL− = −wL+.
The firing rate of the error-coding neurons is proportional to a
linear rectification of the inputs. For simplicity, the label spike
train is regular with firing rate equal to τ−1

refr
. When the prediction

neurons classify correctly, (sPi (t) − sLi (t))
∼= 0, such that the

error neurons remain silent. Input spike trains were generated as
Poisson spike trains with rate proportional to the intesenity of the
pixel. Label spikes were regular, i.e., spikes were spaced regularly
with inter-spike interval equal to the refractory period. All states
were stored in 16 bit fixed point precision (ranging from−32, 768
to 32, 767), except for synaptic weights which were stored with
8 bit precision (ranging from −128 to 127). To prevent the
network from learning (spurious) transitions between digits, the
synaptic weights did not update in the first 400 ticks of each digit
presentation (1, 500 ticks).

We trained fully connected feed-forward networks MNIST
hand-written digits, separated in three groups, training,
validation, and testing (50,000, 10,000, 10,000 samples
respectively). During a training epoch, each of the training
digits were presented in sequence during 150ms (Figure 8).
Although experiments here focused on a single layer network,
random back-propagation can be extended to networks with
several layers, including convolutional and pooling layers (Baldi
et al., 2016).
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FIGURE 8 | Training an MNIST network with event-driven Random Back-propagation compared to GPU simulations. (A) Network architecture. (B) MNIST

Classification error on the test set using a fully connected 784-100-10 network on NSAT (8 bit fixed-point weights, 16 bits state components) and on GPU

(TensorFlow, floating-point 32 bits). (C) Energy efficiency of learning in the NSAT (lower left is best). The number of operations necessary to reach a given accuracy is

lower or equal in the spiking neural network (NSAT-SynOps) compared to the artificial neural network (GPU-MACs) for classification errors at or above 4%. (D)

Histogram of synaptic weights of the NSAT network after training. One epoch equals a full presentation of the training set.

Simulations of eRBP on NSAT in a quantized 784-100-
10 network demonstrate results consistent with previous
findings (Neftci et al., 2017a). To highlight the potential
benefits of the NSAT, we compare the number of synaptic
operations (SynOp) necessary to reach a given classification
accuracy (Figure 8C) to the number of multiply operations in
standard artificial neural networks. Although larger networks
trained with eRBP were reported to achieve error rates as low
as 2.02% (Neftci et al., 2017b), this NSAT network with 100
hidden units converges to around 4% error. As two meaningful
comparisons, we used one artificial neural network with the
same number of hidden units (100) and one with 30 hidden
units. The latter network was chosen to achieve similar peak
accuracies as the simulated NSAT network. The artificial neural
network was trained using mini-batches (the size of each mini-
batch was 30 images) and exact gradient back-propagation
using TensorFlow (GPU backend). As previously reported, up
moderate classification accuracies (here 4%), the NSAT requires
an equal or fewer number of SynOps compared to MACs to
reach a given accuracy for both networks. We note here that
only multiply operations in thematrix multiplications were taken
into account in the artificial network. Other operations such
as additions, non-linearities were ignored, which would further
favor NSAT in this comparison. Finally, Figure 8D illustrates
the distribution of synaptic weights at the end of learning. It is
apparent that synaptic weights concentrate mostly around 0 with
a variance of 30. This means that 5 bits precision is sufficient to
represent the final synaptic weights. With randomized rounding
enabled, lower synaptic precision during learning converges to
similar results as with 8 bits of precision, but requires more time
to do so (see Figure A5 in Appendix A).

These results suggests that a standard computer (e.g., GPU)
remains the architecture of choice if classification accuracy
on a stationary dataset is the target, regardless of energy
efficiency. However, the smaller or equal number of operations,
compounded with the fact that a SynOp requires many fold
less energy (Merolla et al., 2014) makes a very strong argument
for NSAT in terms of energy efficiency for low to moderate
accuracies. Therefore, if real-time learning is necessary, or if
the streaming data is non-stationary, our results suggest that

NSAT can outperform standard architectures in terms of energy
efficiency at least by a factor equal to the achieved J/MAC to
J/SynOp ratio. Furthermore, the NSAT implementation of the
event-driven Random Backprogation can serve as the building
block for neuromorphic deep neural network architectures in the
future.

3.3.1. Real-Time Learning With Event-Driven Random

Back-Propagation
The simplicity of the eRBP algorithm and the efficiency of
cNSAT render it suitable for on-line real-time learning. To this
end we implemented eRBP on cNSAT and interfaced it with
a Davis camera (Brandli et al., 2014). A 28x28 pixel, center
crop of the Davis camera provides spike events as input to the
cNSAT while the user feeds the labels during learning through
a keypad. To interleave learning and inference, weight updates
were only allowed when a label was presented. This mechanism
was implemented within the network through an additional
“label-on” neuron, which when active gates the positive and
negative error neurons.We trained the network using theMNIST
data by alternatively presenting three different MNIST digits.
The network was able to learn the MNIST classes on real-time
after less than 5 presentations and the results are shown in the
Video S1.

3.4. Unsupervised Representation Learning
Synaptic Sampling Machines (S2M) are a class of neural network
models that use synaptic stochasticity as a means to Monte Carlo
sampling in Boltzmannmachines (Neftci et al., 2016). Learning is
achieved through event-driven Contrastive Divergence (eCD), a
modulated STDP rule and event-based equivalent of the original
Contrastive Divergence rule (Hinton, 2002). Previous work has
shown that, when pre-synaptic and post-synaptic neurons firing
follow Poisson statistics, eCD is equivalent to CD (Neftci et al.,
2014). Unsupervised learning in RBMs and S2Ms are useful
for learning representations of unlabeled data, and perform
approximate probabilistic inference (Hinton, 2002; Neftci et al.,
2014, 2016).

The NSAT synaptic plasticity dynamics are compatible with
eCD under the condition that the refractory period is larger
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than the STDP learning window in order to maintain weight
symmetry. Here, we demonstrate on-line unsupervised learning
implementing S2Ms in NSAT using the network architecture
depicted in Figure 9A. First, we use two types of input neurons,
excitatory and inhibitory (red and blue nodes in Figure 9A,
respectively). These are the external units that provide the inputs
to the event-based Restricted BoltzmannMachine (eRBM) visible
units and their synaptic strengths are constant during learning.
The visible units (see Figure 9A) are all-to-all connected with
the hidden ones. Two modulatory units, one excitatory and one
inhibitory, are connected with the visible and hidden units (black
and gray nodes in Figure 9A). The two modulatory units are
active in an alternating way, providing an implementation for
the positive (only the excitatory unit is on) and the negative (only
the inhibitory unit is active) phases of the Contrastive Divergence
rule.

In the S2M, weight updates are carried out even if a spike
is dropped at the synapse. This speeds up learning without
adversely affecting the entire learning process because spikes
dropped at the synapses are valid samples in the sense of the
sampling process. During the data phase, the visible units were
driven with constant currents equal to the logit of the pixel
intensity (bounded to the range [10−5, 0.98] in order to avoid
infinitely large currents), plus a white noise process of low
amplitude σ to simulate sensor noise.

We run the eRBM with eCD using single precision arithmetic
(eRBMhp-integers of 16 and eRBM-8 bits), as well as a classical
RBM with batch size 32 samples as a reference, on the bars
and stripes data set (MacKay, 2003) (see Figure 9B). We
trained eRBM and eRBMhp using 32 samples per epoch and
for 50 epochs. The RBM was trained using 1 batch of 32
samples and 3,000 epochs (until it reaches a similar error as
the eRBM and eRBMhp did). At every epoch of the eRBM
and the eRBMhp learning we run a test on all 32 different
samples and measure the classification error (how many missed
classifications), whereas testing is undertaken every 50 epochs
in the RBM. Figure 9C shows the test set error against the
training epochs. The eRBM (black discs) and eRBMhp (green

triangles) approach the performance of the classical RBM (blue
crosses) faster. Figure 9D shows the test set error against the
number of operations required for each of the implementations
to reach the minimum acceptable error (orange solid line).
Similarly to the supervised learning case, eRBM (black discs) and
eRBMhp (green triangles) perform less or the same number of
operations (synaptic operations) with the classical RBM (MACs).
The three Figures A6a–c in Appendix A illustrate the synaptic
weights (receptive fields) of hidden units for the RBM, eRBMhp,
and eRBM, respectively. For all three implementations we used
100 hidden units and 18 visible ones. It is apparent that the
receptive fields are qualitatively similar among the three different
implementations (for illustration purposes we show only 64 out
of 100 receptive fields).

The similarity of this S2M implementation with previous
ones and the RBM suggest that NSAT is capable of unsupervised
learning for representation learning and approximate
probabilistic inference at SynOp–MAC parity. This NSAT
implementation of S2Ms requires symmetric (shared)
connections and is thus limited to single core implementation.
This requirement can be overcome with random contrastive
Hebbian learning, as described in Detorakis et al. (2018). There
we show that a systems of continuous non-linear differential
equations compatible with NSAT neural dynamics is capable
of representation learning similarly to restricted Boltzmann
machines, while improving the speed of convergence at
maintaining high generative and discriminative accuracy on
standard tasks.

3.5. Unsupervised Learning in Spike Trains
So far, the results have mostly focused on static data encoded in
the firing rates of the neurons. The NSAT learning rule is capable
of learning to recognize patterns of spikes. Here we demonstrate a
recently proposed post-synaptic membrane potential dependent
plasticity rule (Sheik et al., 2016) for spike train learning. Unlike
STDP, where synaptic weights updates are computed based on
spike timing of both pre- and post-synaptic neurons, this rule
triggers a weight update only on pre-synaptic spiking activity.

FIGURE 9 | Event-based Restricted Boltzmann Machine (eRBM). (A) Event-based RBM neural network architecture. One excitatory and one inhibitory unit project on

the visible units providing the input to the eRBM. Two modulatory units project to all the visible and hidden units. (B) Bars and stripes data set. (C) Training error over

300 epochs for the eRBMhp (single precision, green triangles), eRBM (low precision, discs) and the classic RBM (blue crosses). The orange solid line indicates the

minimum acceptable error for all three different algorithms. (D) Number of operations vs. test error for the eRBMhp (single precision, green triangles, number of

synaptic operations), eRBM (low precision, discs, number of synaptic operations) and the classic RBM (blue crosses, MACs). The orange dashed line indicates the

minimum acceptable error for all three different implementations.
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The neuron and synapse dynamics are governed by the following
equations.

τm
dV

dt
= −V +

N
∑

j= 1

wjsj(t), (21a)

τCa
dCai

dt
= −Ca+ wγ s(t), (21b)

where V is the membrane potential and Ca is the calcium
concentration, wj is synaptic weight, γ the constant increment of
the calcium concentration, and sj(t), s(t) are the pre-synaptic and
post-synaptic spike trains. The synaptic weight update dynamics
are given by the equations below:

2m = δ(V(t) > Vlth)η+ − δ(V(t) < Vlth)η− (22a)

mod = 2− ηh(C̄a− Ca), (22b)

1wj = mod sj(t), (22c)

Vlth is the membrane threshold that determines LTP or LTD,
η+ = 8 and η− = −2 the corresponding magnitudes of LTP
and LTD, C̄a is a constant denoting the steady-state calcium
concentration and ηh magnitude of homeostasis.

These equations can be efficiently translated to the NSAT
using four (4) components per neuron state. Hence component
x0 is the membrane potentialVmem, x1 the calcium concentration
Cai, x2 the LTP/LTD state based on thresholded membrane
component x0 (2), and x3 represents the weight modulation
(value by which a weight will be updated). The first two
state components follow exponential decay dynamics. State
components x2 and x3 are used to compute the effective weight
updates based on the current value of membrane potential and
calcium concentration. This is done by exploiting the fact that, at
any given point in time, the weight update magnitude (if any) is
given purely by the post synaptic states and is the same for every
incoming spike within one time step.

We demonstrate these dynamics in learning to identify a
hidden spike pattern embedded in noisy spike train. We use 100
input neurons projecting to 5 neurons. A randomly generated
fixed spike pattern is repeatedly presented, interspersed with
random spike patterns of the same firing rate as Figure 10A top
raster plot indicates. The initial weights were randomly initialized
from a uniform distribution. Over time the synaptic weights
converge such that the post-synaptic neurons (indexed 1–5, black
line segments in the bottom raster plot of Figure 10A) selectively
spike only on presentation of the spike pattern as Figure 10A

bottom raster plot illustrates. The temporal evolution of four
components dynamics of the first neuron’s state are given in
Figure 10C–E.

This particular learning rule is a type of unsupervised
temporal learning suitable for hardware implementation as
demonstrated in Sheik et al. (2016).When coupled with a winner-
take all mechanism, it can account for the self organization of
spatio-temporal receptive fields.

FIGURE 10 | Unsupervised Learning of Spike Patterns. (A) On top is a raster

plot of 100 input spike trains (pre-synaptic neurons) projecting to 5

post-synaptic neurons. The main goal here is the post-synaptic neurons to

learn a hidden spike pattern indicating by the blue vertical bars. The bottom

raster plot shows 5 post-synaptic neurons firing when they have learned the

hidden spatiotemporal spike pattern. (B) Indicates the membrane potential

(Vm[t]) of the first post-synaptic neuron, (C) its calcium concentration ([Ca+][t]),

(D) LTP/LTD state based on thresholded membrane potential, and (E) its

weight modulation over time.

4. DISCUSSION

We introduced a neuromorphic computing platform and
framework, called Neural and Synaptic Array Transceiver
(NSAT), that is able to provide flexible and dynamic learning
(on-line) suited for efficient digital implementation. The NSAT
takes advantage of tractable linear neural model dynamics and
three-factor rules for flexibility in processing and learning. As
with existing neuromorphic systems based on Address Event
Representation, only (digital) spike events are communicated
across cores and between cores using event-based routing.
For reasons related to efficiency in projected digital hardware
implementations, the proposed framework operates using fixed-
point representation. In addition, all the multiplications are
implemented as bit shift operations, i.e., multiplications by
powers of two. These operations are many-fold more power-
efficient compared to floating-point multiply accumulates
implemented in digital CMOS (Horowitz, 2014). Taken together,
the multiplier-less design, fixed-width representation and event-
driven communication enable an energy-efficient and scalable
system.

In this work, we demonstrated the capabilities of NSAT by
showing first that neuron models with rich behavior such as
the Mihalas-Niebur neuron (Mihalas and Niebur, 2009) can
be implemented, with comparable spiking dynamics (Mihalas
and Niebur, 2009). Next, we demonstrated the simulation of
neural field models (Amari, 1977; Bressloff, 2011; Coombes,
2005). We demonstrated three core neural field behaviors, (i) a
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stationary “bump” solution (winner-take-all, working memory),
(ii) an action-selection process where the neural field chooses
between two input signals, and (iii) a target tracking task,
where the neural field tracks a moving target. These neural field
behaviors form the backbone of many computational models
using neural field, such as movement (Erlhagen and Schöner,
2002), pattern generation (Schoner and Kelso, 1988), soft state
machines (Neftci et al., 2013) and navigation (Milde et al.,
2017).

NSAT is capable of on-line, event-based learning in supervised
and unsupervised settings. Embedded learning algorithms are
necessary components for real-time learning, which can confer
adaptability in uncontrolled environments and more fine-
grained context awareness in behaving cognitive agents. This
makes NSAT suitable for environments where data are not
available a priori but are instead streamed in real-time to the
device, i.e., using event-based sensors (Liu and Delbruck, 2010).

The implementation of machine learning algorithms in
NSAT is a significant achievement, as most machine learning
algorithms rely on network-wide information and batch learning.
In contrast to machine learning algorithms implemented in
standard computers, the NSAT learning is based on information
that is locally available at the neuron, i.e., (i) neurons only
read weights on their own synapses, (ii) they communicate
through all-or-none events (spikes), and (iii) their elementary
operations are limited to highly efficient multi-compartment
integrate-and-fire. Such implementations can be more scalable
compared to their Von Neumann counterparts since the
access to system-wide information funnels through the von
Neumann bottleneck, which dictates the fundamental limits of
the computing substrate.

Learning in NSAT is achieved using three-factor, spike-
driven learning rules, i.e., where the third factor modulates
the plasticity, in addition to a programmable STDP-like
learning rule (Pedroni et al., 2016). In the NSAT, the third,
modulating factor is one of the state components of the
neuron. The use of a neural state component as a third
factor is justified by the fact that gradient descent learning
rules in spiking neurons often mirror the dynamics of
the neurons and synapses (Pfister et al., 2006; Zenke and
Ganguli, 2017), while being addressable by other neurons
in the network for error-driven or reward-driven learning.
Three factor rules are thus highly flexible and can support
multiple different learning rules on a single neuron, thereby
enabling the NSAT neuron model to be programmed for
supervised, unsupervised and reinforcement learning. Building
on previous work, we demonstrated three specific algorithms:
(i) event-based deep learning and event-based Random Back-
propagation algorithm for supervised settings, (ii) a Contrastive-
Divergence algorithm used to train a Restricted Boltzmann
Machine implemented on NSAT for unsupervised settings, and
(iii) a Voltage-based learning rule for spike-based sequence
learning.

The NSAT computes with limited numerical precision in its
states (16 bits in this work) and in its weights (8 bits in this
work). Often, artificial neural networks require higher precision
parameters to average out noise and ambiguities in real-world
data (e.g., stochastic gradient descent) (Courbariaux et al., 2014;

Stromatias et al., 2015), and introduce challenges at all levels of
implementation (Azghadi et al., 2014; Indiveri and Liu, 2015).
The NSAT framework mitigates the effect of low precision
using a discretized version of randomized rounding (Muller
and Indiveri, 2015), where a programmable number of bits are
interpreted as update probability. The randomized rounding has
been demonstrated in the event-based random back propagation
algorithm (Neftci et al., 2017b), a model that is sensitive to weight
precision. Moreover, the randomized rounding has a significant
effect on the learning rate. We find that the networks perform
well even when the synaptic weights are bounded to 256 levels (8
bits precision).

Under the selected specification, large-scale hardware
implementation of NSAT is well within reach of current
memory technology and can guide (and benefit from) the
development of emerging memory technologies (Mostafa
et al., 2015; Querlioz et al., 2015; Eryilmaz et al., 2016; Naous
et al., 2016). While it is not possible provide direct energy
comparisons at this stage, our results consistently highlight
a SynOp to MAC parity in learning tasks, i.e., the number
of operations required to reach a given task proficiency.
The significance of this parity is that the SynOp requires
manyfold less energy in reported large-scale neuromorphic
implementations (Merolla et al., 2014) compared to equivalent
algorithms implemented on standard computers and GPUs.
Thus, learning in NSAT is potentially more power efficient
compared to standard architectures by a factor at least equal
to the ratio J/MAC to J/SynOp, while achieving comparable
accuracies.

4.1. Relation to State-of-the-Art and Other
Research
Several research groups investigated brain-inspired computing as
an alternative to non-von Neumann computing and as a tool for
understanding the mechanisms by which the brain computes.

IBM’s TrueNorth delivered impressive machine learning
implementations in terms of power (Esser et al., 2016).
TrueNorth’s domain of application is limited to off-line learning,
partly to be able to meet targeted design specifications, and partly
due to the lack of suitable learning algorithms.

On-chip spike-driven, bistable learning rules were successfully
demonstrated in mixed signal neuromorphic hardware. Also,
significant effort has gone into learning in digital systems
(Venkataramani et al., 2014): Earlier prototypes of IBM’s
TrueNorth (Seo et al., 2011) also demonstrated the feasibility
of low-power embedded learning using STDP, and evolutionary
algorithms were recently applied to FPGA-based spiking
neural networks (Dean et al., 2014). Stanford’s Neurogrid
team was among the first to demonstrate STDP learning in
mixed-signal neuromorphic hardware (Arthur and Boahen,
2006). Other related neuromorphic projects on learning with
neuromorphic hardware are the SpiNNaker (Furber et al.,
2014) and BrainScales (Schemmel et al., 2010), as part of
the Human Brain Project. SpiNNaker is a parallel multi-
core computer architecture composed of half million ARM968
processors (each core is capable of simulating 1, 000 neurons)
providing a massive implementation of spiking neural networks.
The BrainScales project and their subsequent developments
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are based on an analog neuromorphic chip, with its main
functional blocks consisting of time-accelerated leaky integrate-
and-fire neurons (Aamir et al., 2016). There, the proposed
learning rule is a hybrid implementation using an on-chip
SIMD processor programmable with a range of modulated STDP
rules (Friedmann et al., 2017). Both projects are targeted to
accelerating simulations of biological neural networks, using
technologies that favor speed over compactness and/or power.
In contrast, the NSAT design favors compactness and power
over speed, and targets application-oriented, flexible, ultra low-
power neural and synaptic dynamics for real-time learning
tasks.

From the design perspective, the NSAT framework is closest to
the TrueNorth ecosystem, but adds on-line learning capabilities
and inference dynamics that are compatible with some existing
event-based learning dynamics. For instance, NSAT allows for
programmable weights and stochastic synapses, a combination
that has been shown to be extremely successful in both
unsupervised and supervised learning settings.

We believe that the algorithmic-driven design of the
NSAT framework, combined with the provided open-source
implementation will engage the research community to further
investigate brain-inspired, event-based machine learning
algorithms.

4.2. NSAT Software Developments
The software stack is a critical component to interface between
the majority of potential end-users and the NSAT framework.
Our software development efforts are targeted to providing a
general purpose framework for Computational Neuroscience
and Machine Learning applications that combines the power
of machine learning frameworks [such as TensorFlow (Abadi
et al., 2015), Neon2] and neuromorphic hardware network
description [e.g., pyNCS (Stefanini et al., 2014), TrueNorth
Corelet (Amir et al., 2013)]. To this end, we are expanding the

2https://neon.nervanasys.com/index.html/

software for automatic network generation in deep neural
network-like scenarios (e.g., automatic differentiation). Such a
software stack will enable end users to simulate neural networks
(artificial, spiking or compartmental and even firing rate models)
without knowledge of NSAT’s technical details.

In this article, we briefly introduced PyNSAT (see
Appendix A), an interface for our NSAT software
implementation that can serve as an Application Programming
Interface (API) for the NSAT framework. PyNSAT offers a rapid
way to program and use the NSAT framework through the
Python environment, thereby leveraging the wide capabilities
of Python’s application ecosystem. Current developments of
pyNSAT are targeting proof-of-concept approaches for network
synthesis in machine learning applications, in-line with existing
machine learning libraries such as Keras (Tensorflow) or Neon.
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