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We introduce a novel recurrent neural network (RNN) approach to account for temporal

dynamics and dependencies in brain networks observed via functional magnetic

resonance imaging (fMRI). Our approach directly parameterizes temporal dynamics

through recurrent connections, which can be used to formulate blind source separation

with a conditional (rather than marginal) independence assumption, which we call

RNN-ICA. This formulation enables us to visualize the temporal dynamics of both first

order (activity) and second order (directed connectivity) information in brain networks that

are widely studied in a static sense, but not well-characterized dynamically. RNN-ICA

predicts dynamics directly from the recurrent states of the RNN in both task and

resting state fMRI. Our results show both task-related and group-differentiating directed

connectivity.

Keywords: deep learning, ICA, RNN, neuroimaging methods, fMRI, resting-state fMRI, AOD

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) of blood oxygenation-level dependent (BOLD)
signal provides a powerful tool for studying temporally coherent patterns in the brain (Damoiseaux
et al., 2006; Calhoun et al., 2008; Smith et al., 2009). Intrinsic networks (INs, Biswal et al.,
1995) and functional connectivity are important outcomes of fMRI studies which illuminate our
understanding of healthy and diseased brain function (Calhoun et al., 2001b; Allen et al., 2012).
While deep or non-linear approaches for INs from fMRI and MRI exist (Hjelm et al., 2014; Plis
et al., 2014; Castro et al., 2016), of the tools available, the most widely used are generative models
with shallow and linear structure. Such models typically use a shared parameterization of structure
to learn a commonmodel across subjects which refactor the data into a constrained space that both
provides straightforward analysis and allows for efficient and effective learning algorithms.

The most popular of such methods, independent component analysis (ICA, Bell and Sejnowski,
1995), begins with the hypothesis that the data is a mixture of maximally independent sources.
ICA is trainable through one of many relatively simple optimization routines that maximize non-
Gaussianity or minimize mutual information (Hyvärinen and Oja, 2000). However, ICA, as with
other popular linear methods for separating INs, is order-agnostic in time: each multivariate
signal at each time step is treated as independent and identically distributed (i.i.d.). While model
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degeneracy in time is convenient for learning; as an assumption
about the data the explicit lack of temporal dependence
necessarily marginalizes out dynamics, which then must be
extrapolated in post-hoc analysis.

In addition, ICA, as it is commonly used in fMRI studies,
uses the same parameterization across subjects, which allows for
either temporal or spatial variability, but not both (Calhoun et al.,
2001a). The consequence of this is that ICA is not optimized
to represent variation of shape in INs while also representing
variation in time courses. This may encourage ICA to exaggerate
time course statistics, as any significant variability in shape or size
will primarily be accounted for by the time courses.

Despite these drawbacks, the benefits of using ICA for
separating independent sources in fMRI data is strongly
evident in numerous studies, to the extent that has become
the dominant approach for separating INs and analyzing
connectivity (Damoiseaux et al., 2006; Calhoun et al., 2008; Kim
et al., 2008; Smith et al., 2009; Zuo et al., 2010; Allen et al., 2012;
Calhoun and Adali, 2012). In order to overcome shortcomings
in temporal dynamics and subject/temporal variability, but
without abandoning the fundamental strengths of ICA, we
extend ICA to model sequences using recurrent neural networks
(RNNs). The resulting model, which we call RNN-ICA, naturally
represents temporal dynamics through a sequential ICA objective
and is easily trainable using back-propogation and gradient
descent.

2. BACKGROUND

Here we will formalize the problem of source separation with
temporal dependencies and formulate the solution in terms of
maximum likelihood estimation (MLE) and a recurrent model
that parameterizes a conditionally independent distribution (i.e.,
RNNs).

Let us assume that the data is composed of N ordered
sequences of length T,

Xn = (x1,n, x2,n, . . . , xT,n), (1)

where each element in the sequence, xt,n, is a D dimensional
vector, and the index n enumerates the whole sequence. The goal
is to find/infer a set of source signals,

Sn = (s1,n, s2,n, . . . , sT′ ,n), (2)

such that a subsequence st1 : t2 = (st1 ,n, st1+1,n, . . . , st2 ,n) generates
a subsequence of data, xt′1 : t

′
2
= (xt′1 ,n, xt

′
1+1,n

, . . . , xt′2 ,n), for t1 ≤

t′1 < t′2 and t1 < t2 ≤ t′2. In particular, we are interested in finding
a generating function,

Xn = G(Sn, ǫ), (3)

where ǫ is an additional noise variable.
This problem can generally be understood as inference

of unobserved or latent configurations from time-series
observations. It is convenient to assume that the sources, Sn,
are stochastic random variables with well-understood and

interpretable noise, such as Gaussian or logistic variables with
independence constraints. Representable as a directed graphical
model in time, the choice of a-priori model structure, such as the
relationship between latent variables and observations, can have
consequences on model capacity and inference complexity.

Directed graphical models often require complex approximate
inference which introduces variance into learning. Rather than
solving the general problem in Equation (3), we will assume
that the generating function, G(.), is noiseless, and the source
sequences, Sn have the same dimensionality as the data, Xn,
with each source signal being composed of a set of conditionally
independent components with density parameterized by a RNN.
We will show that the learning objective closely resembles that
of noiseless independent component analysis (ICA). Assuming
generation is noiseless and preserves dimensionality will reduce
variance which would otherwise hinder learning with high-
dimensional, low-sample size data, such as fMRI.

2.1. Independent Component Analysis
ICA (Bell and Sejnowski, 1995) hypothesizes that the observed
data is a linear mixture of independent sources: xt,n =
∑

m st,n,mmm, where st,n = {st,n,m} are sources and mm

are the columns of a mixing matrix, M. ICA constrains the
sources (a.k.a., components) to be maximally independent. This
framework presupposes any specific definition of component
independence, and algorithms widely used for fMRI typically
fall under two primary families, kurtosis-based methods and
infomax (Hyvärinen and Oja, 2000), although there are other
algorithms providing a more flexible density estimation (Fu et al.,
2014).

For the infomax algorithm (Bell and Sejnowski, 1995), the
model is parameterized by an unmixing matrix W = M−1,
such that Sn = f (Xn) = W · Xn. In the context of fMRI, the
infomax objective seeks to minimize the mutual information of
sn,t for all subjects at all times. This can be shown to be equivalent
to assuming the prior density of the sources are non-Gaussian
and that they factorize, or ps(st,n) =

∏M
m=1 psm (st,n,m), where

st,n = {st,n,m} is anM-dimensional vector. When the sources are
drawn from a logistic distribution, it can be shown that infomax
is equivalent to MLE, with the log-likelihood objective for the
empirical density, px(Xn), being transformed by f (X) =W · X:

log px(Xn) = log ps(W · Xn)+ T log | detW|, (4)

where | detW| = | det Jf (X)| is the absolute value of the
determinant of the Jacobian matrix.

With ICA, generating example sequences can be done by
applying the inverse of the unmixing matrix to an ordered set
of sources. However, one cannot simply sample from the model
and generate samples of the observed data: any attempt to do so
would simply generate unordered data and not true sequences.
The sources in ICA are constrained to be marginally independent
in time; ICA does not explicitly model dynamics, and training
on shuffled observed sequences will regularly produce the same
source structure.

There are numerous graphical models and methods designed
to model sequences, including hidden Markov models (HMMs)
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and sequential Monte Carlo (SMC, Doucet et al., 2001). HMMs
are a popular and simple generative directed graphical models
in time with tractable inference and learning and a traditional
approach in modeling language. However, HMMs place a high
burden on the hidden states to encode enough long-range
dynamics to model entire sequences. Recurrent neural networks
(RNNs), on the other hand, have the capacity to encode long-
range dependencies through deterministic hidden units. When
used in conjunction to the ICA objective, the resulting algorithm
is a novel and, as we will show, much more powerful, approach
for blind source separation based on a conditional independence
assumption.

2.2. Recurrent Neural Networks
An RNN is a type of neural network with cyclic connections that
has seen widespread success in neural machine translation (Cho
et al., 2014), sequence-to-sequence learning (Sutskever et al.,
2014), sequence generation (Graves, 2013), and numerous other
settings. When computing the internal state across a sequence
index (such as time or word/character position), RNNs apply
the same set of parameters (i.e., connective weights) at each step.
This gives the model the properties of translational symmetry
and directed dependence across time, which are desirable if we
expect directed dependence with the same update rules across
the sequence. In addition, this makes RNN relatively memory-
efficient, as one set of parameters are used across the sequence
dimension.

RNNs have many forms, but we will focus on those that act as
probabilistic models of sequences, i.e.:

p(X) = p(x1 :T) = p(x1)

T
∏

t=2

p(xt|x1 : t−1). (5)

Better known as a “language model" or generative RNN, the exact
form of the conditional density typically falls under a family of
transformations,

p(xt|x1 : t−1) = f (ht;ψ); ht = g(ht−1, xt−1;φ), (6)

where ht are a set of deterministic recurrent states (or “recurrent
unit"). g(.;φ) are recurrent connections that take the current
observation and hidden state as input and output the next
recurrent state. The output connections, f (.;ψ), take the
recurrent states as input at each step and output the parameters
for the conditional distribution. Note that the model parameters,
ψ and φ, are recurrent: the same parameters are used at every
time step and are not unique across the sequence index, t.

The most canonical RNN for sequence modeling has the a
simple parameterization (e.g., see Figure 1):

g(ht;ψ) = tanh(URht−1 + UIxt−1 + b), (7)

whereUR is a square matrix of recurrent weights,UI are the input
weights, and b is a bias term. The mappings between the various
variables in the model need not be shallow: an RNN with deep
neural networks can model more complex recurrent transitions.
Parameterizations that use gating and other types of memory

FIGURE 1 | (A) a basic RNN with recurrent units ht, recurrent connections,

UR, input connections, UI, and output connections, UO. (B) An RNN with the

recurrent connections rolled out. (C) An RNN for sequence modeling and

generation.

functions, such as long short-term memory (LSTM, Hochreiter
and Schmidhuber, 1997) and gated recurrent units (GRUs, Cho
et al., 2014), can be used to better model longer sequences and
are also widely used.

Training an RNN for simple sequence modeling is easily done
with the back-propagation algorithm, using the negative log-
likelihood objective over the output conditional distributions:

L = −
1

N

N
∑

n=1

(

T
∑

t=2

log p(xt|x1 : t−1)+ log p(x1)

)

. (8)

Typically the loss is computed with mini-batches instead of
over the entire dataset for efficiency, randomizing mini-batches
at each training epoch. The marginal density, p(x1), can be
learned by fitting to the average marginal across time, either to
parameters of a target distribution directly or by training a neural
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network to predict the hidden state that generates x1 (Bahdanau
et al., 2014).

3. METHODS

3.1. RNN-ICA
RNNs have already been shown to be capable of predicting
signal from BOLD fMRI data (Güçlü and van Gerven, 2017),
though usually in the supervised setting. An unsupervised RNN
framework for sequence modeling can easily be extended to
incorporate the infomax objective. Define, as with ICA, a linear
transformation for each observation to source configuration:
st,n = Wxt,n, and define a high-kurtosis and factorized source
distribution, pst,n (st,n) (such as a logistic or Laplace distribution)
for each time step, t, and each fMRI sequence, n. We apply this
transformation to an fMRI time series: s1 :T,n = f (x1 :T,n) =
(Wx1,n,Wx2,n, . . .WxT,n). The log-likelihood function over the
whole sequence, Xn = x1 :T,n, can be re-parameterized as:

log p(x1 :T,n) = log p(x1,n)+

T
∑

t=2

log p(xt,n|x1 : t−1,n)

= log ps1 (Wx1,n)+

T
∑

t=2

log pst,n (Wxt,n|x1 : t−1,n)

+ log | det Jf (x1 :T,n)|

= T log | detW| + log ps1,n (Wx1,n)+

T
∑

t=2

log pst,n

(Wxt,n|x1 : t−1,n), (9)

where Jf is the Jacobian over the transformation, f , and the
source distribution, pst,n , has parameters determined by the
recurrent states, ht,n. A high-kurtosis distribution is desirable to
ensure independence of the sources (or minimizing the mutual
information, e.g., the infomax objective Bell and Sejnowski,
1995), so a reasonable choice for the outputs of the RNN at each
time step are the mean, µ, and scale, σ , for a logistic distribution:

µt,n =Wµht,n; σ t,n =Wσht,n. (10)

Figure 2 illustrates the network structure for a few time steps as
well as the forward and back-propagated signal, andAlgorithm 1

demonstrates the training procedure for RNN-ICA. For our
model, all network parameters and the ICA weight / un-mixing
matrix,W, are the same for all subjects at all times. Our treatment
assumes the ICA weight matrix is square, which is necessary to
ensure a tractable determinant Jacobian and inverse. fMRI data is
very high dimensional, so to reduce the dimensionality, we must
resort to some sort of dimensionality reduction as preprocessing.
A widely used for dimensionality reduction in ICA studies of
fMRI is principle component analysis (PCA) (Calhoun et al.,
2001b; Allen et al., 2012), used to reduce the data to match the
selected number of sources, st,n.

Note that RNNs with deeper architectures have been very
successful for generative tasks (e.g., WaveNets, Van Den Oord
et al., 2016), and RNN-ICA could benefit from a deeper

Algorithm 1 : RNN-ICA

W← initialize the unmixing matrix
θ = (UR,UI , b) ← initialize the RNN recurrent

and input weights and bias (see Equation 7)
ψ = (Wµ,Wσ ) ← initialize the RNN output weights (see

Equation 10)
D = {x1 :T,n}

N
n=1 ← N sequences of PCA-preprocessed fMRI

sequences, windowed at T time steps.
repeat

x1 :T,n ∼ D ⊲ Draw random samples from the set of PCA
sequences

s1 :T,n ← (Wx1,n,Wx2,n, . . .WxT,n) ⊲ Transform the PCA
component sequence with the unmixing matrix

h1,n ← f (x1,n) ⊲ Initialize the first hidden state, as
discussed in Section 2.2

(µ1,n, σ 1,n)← (Wµh1,n,Wσh1,n) ⊲ Compute the
parameters of the initial probability distribution

for t from 2 to T do

ht,n ← tanh(URht−1,n + UIxt−1,n + b) ⊲ Update each
hidden state and conditional in-sequence

(µt,n, σ t,n)← (Wµht,n,Wσht,n) ⊲ Compute the
parameters of the conditional probability at time t

end for

L ← −T log | detW| − log ps1,n (s1,n) +
∑T

t=2 log pst,n (st,n|x1 : t−1,n) ⊲ Compute the negative log
likelihood

φ = (W, θ ,ψ)← φ − γ∇φL ⊲ Perform gradient descent
on the parameters
until convergence

architecture capable of inferring more complex relationships
in the data. However, as fMRI data is often composed of
a low number of training samples, we found it necessary
to demonstrate the ability of RNN-ICA to learn meaningful
sources with a simple RNN architecture. We leave architectural
improvements for RNN-ICA for future research.

4. EXPERIMENTS AND RESULTS

We first apply RNN-ICA to synthetic data simulated to evaluate
the model performance and subsequently on real functional
magnetic imaging (fMRI) data. FMRI analyses typically falls
under two categories: task-based and resting state analysis. Task
experiments typically involve subjects being exposed to a time-
series of stimulus, from which task-specific components can be
extrapolated. In the case of RNN-ICA, this should reveal task-
related directed connectivity and spatial variability, in addition
to the usual task-relatedness of activity from ICA. Resting-
state data is often used to confirm the presence of distinct and
functional states of the brain. We chose a dataset resting state
experiment that also had simultaneous Electroencephalography
(EEG) from which ground-state subject neurobiological states
could be derived. For RNN-ICA, we should be able to find
a correspondence between predicted activation as defined in
our model and changes in state. As a result, this should
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FIGURE 2 | RNN ICA. Preprocessed fMRI images are transformed and dimensionality-reduced using pre-trained PCA. The PCA components are passed through a

square matrix which is the same for every subject and time-point. The PCA components are also passed as input to an RNN to compute the hidden states with the

help of the previous state. These states are used to compute the likelihood of the next source in time. After the source time series is computed as well as likelihoods,

the loss is back-propagated through the network for training.

provide a means to prevent false positives or negatives when
interpreting resting state network or inter-group differences
owing to (systematically) different sleep stages present in their
examined cohorts.

4.1. Experiments With Simulated Data
To test the model, we generated synthetic data using SimTB
toolbox (Erhardt et al., 2012) in a framework developed to
assess dynamics functional connectivity (Allen et al., 2012) and
described in Figure 1 of Lehmann et al. (2017). A total of 1, 000
subjects corresponding to two groups of subjects, simulated
healthy (SimHC) and simulated schizophrenia patients (SimSZ)
were generated. A set of 47 time courses were generated for each
SimHC and SimSZ subject with the constraint that they have five
states (covariance patterns) and a transition probability matrix
per group that dictates state transitions derived from data from
prior work on real data (Damaraju et al., 2014). The initial state
probabilities were also derived from that work. A sequence of
480 time points with a TR of 2 seconds were generated. A total
of 1, 000 subjects (500 per group) were generated of which first
400 from each group were used during training and remaining
200 samples were used in testing the model. The parameters of
hemodynamic response model (delay, undershoot etc) used to
simulate the data were also varied per subject to introduce some
heterogeneity. The known initial state of a subject and a transition
probability matrix that governs transitions ensured a ground

truth state transition vector (a vector of transitions between five
simulated states unique to each subject).

An RNN-ICA model was then trained on the 800 subject
training data for 500 epochs with model parameters similar
to those in subsequent sections. The resultant sources S, the
source distributions predicted by RNN (µ, and σ ), and the RNN
hidden unit activations for each subject were then correlated
to the subject’s ground truth state vector. The trained model
was then run on the test data and correlations were again
computed between their model outputs and state vectors.
We then computed group differences between the correlation
distributions of SimHC and SimSZ groups and are summarized
for both training and test cases in Figure 3). Our results show that
RNN-ICA generalized group differences well to the test set in this
setting, as represented in the hidden state activations and scaling
factor.

4.2. Task Experiments
To demonstrate the properties and strengths of our model, we
apply our method to task fMRI data. Data used in this work
is comprised of task-related scans from 28 healthy participants
and 24 subjects diagnosed with schizophrenia, all of whom gave
written, informed, Hartford hospital and Yale IRB approved
consent at the Institute of Living and were compensated for their
participation. All participants were scanned during an auditory
oddball task (AOD) involving the detection of an infrequent
target sound within a series of standard and novel sounds. More
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FIGURE 3 | The SimHC vs. SimSZ group differences of correlation between RNN hidden unit activations (A) and component scale factors (B) to the ground truth

state vectors for train (blue) and test (red) subjects. Shown are − log10(p) values. Note same hidden units or component scale factors track group differences in both

train and test cases although with lower strength in test cases. The dashed black line corresponds to the false discovery rate threshold of 0.001.

detailed information regarding participant demographics and
task details are provided in Swanson et al. (2011).

Scans were acquired at the Olin Neuropsychiatry Research

Center at the Institute of Living/Hartford Hospital on a Siemens
Allegra 3T dedicated head scanner equipped with 40mT/m

gradients and a standard quadrature head coil. The functional

scans were acquired trans-axially using gradient-echo echo-

planar-imaging with the following parameters: repeat time (TR)

1.50 s, echo time (TE) 27ms, field of view 24 cm, acquisition
matrix [64 × 64], flip angle 70◦, voxel size [3.75 × 3.75 ×
4]mm3, slice thickness [4]mm, gap [1]mm, 29 slices, ascending
acquisition. Six “dummy" scans were acquired at the beginning to
allow for longitudinal equilibrium, after which the paradigm was
automatically triggered to start by the scanner. The final AOD
dataset consisted of 249 volumes for each subject.

Data underwent standard pre-processing steps using the
SPM software package (see Calhoun et al., 2008, for further
details). Subject scans were masked below a global mean
image then each voxel was variance normalized. Each voxel
timecourses was then detrended using a 4th-degree polynomial
fit, and this was repeated for all subjects. PCA was applied
to the complete dataset without whitening, and the first 60
components were kept to reduce the data. Finally, each PCA
component had its mean removed before being entered into the
model.

4.2.1. Model and Setup

For use in RNNs, the data was then segmented into windowed
data, shuffled, and then arranged into random batches. Each
PCA loading matrix for subject was comprised of 60 PCA
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time courses of length 249. These were segmented into 228
equal-length windowed slices using a window size of 20 and
stride of 1. The number of components roughly corresponds
to the number found in other studies (Calhoun et al., 2001b,
2008; Allen et al., 2012), and 20 time steps is equivalent to 30
seconds, which has been shown provides a good trade-off in
terms of capturing dynamics and not being overly sensitive to
noise (Vergara et al., 2017). The final dataset was comprised
of 228 volumes for each of the 52 subjects with 60 pca time
courses each. These were then randomly shuffled at each epoch
into batches of 100 volumes each from random subjects and time
points.

We used a simple RNN with 100 recurrent hidden
units and a recurrent parameterization as in Equation
7, as we do not anticipate needing to model long range
dependencies that necessitate gated models (Hochreiter
and Schmidhuber, 1997). The initial hidden state of the
RNN was a 2-layer feed forward network with 100 softplus
(

log(1+ exp(x))
)

units using 20% dropout. An additional
L2 decay cost, λ

∑

i,j W
2
i,j, was imposed on the unmixing

matrix, W, for additional regularization with a decay rate
of λ = 0.002. The model was trained using the RMSProp
algorithm (Hinton, 2012) with a learning rate of 0.0001 for 500
epochs.

4.2.2. Results

Figure 4 shows 34 spatial maps back-reconstructed. The spatial
maps were filtered from the original 60, omitting white matter,
ventricle, and motion artifact features. Each of the spatial maps
along with their respective time-courses were sign-flipped to
ensure that each back-reconstructed distribution of voxels had
positive skew. The maps are highly analogous to those typically
found by linear ICA (Calhoun et al., 2001b; Allen et al., 2012),
though with more combined positive/negative features in one
map.

Figure 5 shows the functional network connectivity (FNC,
Calhoun et al., 2001b; Jafri et al., 2008) matrix, in which the
components are grouped according to a multi-level community
algorithm Blondel et al. (2008) using the symmetric temporal
cross-correlation matrix. For each subject and component, we
performed multiple linear regression of the sources, st,n, the
predicted means, µt,n, and the predicted scale-factor, σ t,n from
each subject to the target and novel stimulus. Table 1 shows the
p-values from a 1-sample t-test on the beta values across subjects
for components with values of p ≤ 10−7. Many components
show similar task-relatedness across the source time courses
and predicted means, notably temporal gyrus features, parietal
lobule, and the default mode network (DMN, which is negatively
correlated). In addition, the DMN shows the strongest task-
relatedness in the scale factor.

In order to analyze how the RNN encodes dynamics, we
analyze the Jacobian of the predicted mean of each component
i at time t over all components at previous times, t′:

∂µi,t

∂sj,t′
=
∑

k

∂xk,t′

∂sj,t′

∂µi,t

∂xk,t′
. (11)

TABLE 1 | p-values from a 1-sample t-test over beta-values with p ≤ 10−7 for the

target and novel stimulus for the sources, st,n, the predicted means, µt,n, and the

predicted scale-factor, σ t,n.

µi si σ i

ID Label Targets Novels Targets Novels Targets

2 FF 3.1e-13 (+) 2.1e-08 (+)

13 CG 2.2e-13 (+) 1.5e-11 (+)

14 STG (−) 4.9e-08 (−) 1.4e-08 (−)

16 Temp. 2.2e-10 (+) 1.9e-17 (+)

17 L FP (+) 2.6e-11 (+)

20 Precun. (+) 8.5e-09 (+)

21 MeFG. 4.1e-08 (+)

34 DMN 1.0e-18 (−) 1.3e-18 (−) 1.8e-10 (+)

42 IPL 4.7e-19 (+) 4.4e-08 (+) 1.3e-14 (+) 1.1e-08 (+)

43 MTG (−) 2.1e-19 (+) 7.0e-15 (+) 4.4e-15 (+) 1.2e-14 (+)

45 AG (+) 3.9e-09 (−) 9.4e-08 (−)

46 Cere. (+) 5.4e-10 (+)

47 AG (+) 1.4e-12 (−) 4.5e-10 (+) 6.6e-13 (−) 2.0e-11 (−)

57 PCing 1.7e-09 (−)

Beta-values were found for each subject and component using multiple regression to

target and novel stimulus, and t-tests were performed for each component over all

subjects. Among the most-significant task-related components to target stimulus include

the middle temporal gyrus, default mode network, and the parietal lobule. A legend for ROI

label names can be found in the caption of Figure 4. The (±) in the label name specify

the sign of the map in Figure 4, while the (±) in the p-values specifies the sign of the

corresponding t-value.

The derivatives are tractable, as the means, µi,t(x0 : t−1), are
differentiable functions w.r.t the input x0 : t−1. These derivatives
can can be interpreted as being a measure of directed
connectivity between components in time, as they represent
the predicted change of a future component (as understand
through the change of its mean value) given change of a
previous component. While the full Jacobian provides directed
connectivity between source between all pairs of time, (t, t′), to
simplify analysis, we only looked at next-time terms, or t′ =
t − 1.

A representative graph is given in Figure 6, where the
thickness of the edges represents the strength of the directed
connection as averaged across time and subjects with the sign

removed (|
∂µi,t

∂sj,t′
|). The color/grouping of the nodes corresponds

to the similarity in directed connectivity as measured by the
Pearson correlation coefficient:

ρi,j =
Cov

(

ν̄i, ν̄j
)

σν̄iσν̄j
, where ν̄i =

1

T

∑

t

∂µk,t

∂si,t
, (12)

Cov (., .) is the covariance, and σν̄i is the standard deviation
across the components indexed by k. Grouping was done
by constructing an undirected graph using the Pearson
coefficients, clustering the vertices using the same community-
based hierarchical algorithm as with the FNC above. An example
directed connectivity graph with the spatial maps is given in
Figure 7.

Each of the next-step Jacobian terms were used as time-
courses with a multiple-regression to target and novel
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FIGURE 4 | Selected set of spatial maps from RNN-ICA without spatial map corrections. Maps were filtered by hand, omitting gray matter, ventricle, and motion

artifact features. Source (green), mean-predicted with uncertainty (blue), and target (red) and novel (cyan) stimulus time courses are shown, each normalized to their

respective variance and offset for easier visualization. Each map was thresholded at 2 standard deviations and grouped according to FNC (see Figure 5). The spatial

maps were sign flipped along with their respective time courses to ensure the distribution of back-reconstructed voxels had a positive skew. The truncated ROI labels

were found by visual inspection with the aid of the AFNI package (Cox, 1996) and correspond to: MiFG, middle frontal gyrus; MeFG, medial frontal gyrus; SMeFG,

superior medial frontal gyrus; IFG, inferior frontal gyrus; MOrbG, middle orbital gyrus; IPL, inferior parietal lobule; SPL, superior parietal lobule; IOG, inferior occipital

gyrus; MOG, middle occipital gyrus; SOG, superior occipital gyrus; ITG, inferior temporal gyrus; STG, superior temporal gyrus; SMG, supramarginal Gy; PoCG,

postcentral gyrus; PreCG, precentral gyrus; ParaCL, paracentral Lob; MCing, middle cingulate; ACing, anterior cingulate; PCing, posterior cingulate; AG, angular

gyrus; BG, basal ganglia; SMA, supplementary motor area; FF, fusiform gyrus; CV, cerebellar vermis; CG, calcarine gyrus; FP, frontoparietal; DMN, default-mode

network; ParaG, parahippocampal gyrus; LingG, lingual gyrus; WM, white matter; GM, white matter; Precun., precuneus; Thal., thalamus; Vis., visual; Temp.,

temporal; Cere., cerebellum; Cun., cuneus; Puta., putamen; Cing., cingulate; Caud., caudate; Pari., parietal; Front., frontal; Ins, insula; Vent., ventricle.

stimulus, with significance tested using a one-sample t-test
as with the time courses and a two-sample t-test across
groups. The resulting task-related directed connectivity

are represented in Figure 8 for both targets and novels,
with an example graph with spatial maps presented in
Figure 9. Group-differentiating relationships are given in
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FIGURE 5 | Functional network connectivity (FNC, Jafri et al., 2008) matrix, which is essentially the temporal cross correlation matrix, in this case averaged across

subjects. Grouping were found using a multi-level community algorithm Blondel et al. (2008), ordering the FNC axes according the groups. (+) and (−) in the labels

indicate regions of interest which have majority positive and negative voxel values, respectively.

Figure 10 with an example graph with spatial maps given in
Figure 9.

4.3. Resting State Experiments
We evaluated our model on resting state data to show RNN-
ICA as a viable model and to demonstrate that properties of the
network correspond to wake/sleep states. Resting state functional
MRI data was collected from 55 subjects for 50 min each (1, 505
volumes, TR= 2.08 s) with a Siemens 3T Trio scanner while
the subjects transitioned from wakefulness to at most sleep
stage N3 (see Tagliazucchi et al., 2012, for more details). This
data was approved by ethics committee of Goethe University.
Simultaneous EEG was acquired facilitating sleep staging per
AASM criteria resulting in a hypnogram per subject (a vector
assignment of consecutive 30 s EEG epochs to one of wakeful(W),
N1, N2 and N3 sleep stae). We discarded first 5 time points to
account for T1 equilibration effects.

After performing rigid body realignment and slice-timing
correction, subject data was warped to MNI space using SPM12.

Then voxel time courses were despiked using AFNI. We then
regressed out voxel time courses with respect to their head
motion parameters (and their derivatives and squares), their
mean white matter and CSF signals. Next, we bandpass filtered
the data with a passband of 0.01–0.15Hz. We extracted mean
ROI time courses from 268 nodes extracted from the bioimage
suite (Papademetris et al., 2006) and reported in Shen et al.
(2013).

4.3.1. Model and Setup

We used the same model and training procedure as with our
task data analysis in the previous section. Of the 55 subjects,
50 subjects were used during training and 5 subjects were
left out for testing. We then examined the correspondence
between hidden recurrent units of the trained model and
subject hypnogram as well as between mean and scale of
predictive source distribution and hypnogram. Similar tests
were run on the model outputs on the 5 left out test
cases.
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FIGURE 6 | A graphical representation of the next-time Jacobian terms, |
∂µi,t
∂sj,t−1

|, averaged over time and subjects. The features were grouped by a multi-level

community algorithm Blondel et al. (2008), using the Pearson correlation coefficient to define an undirected graph (see Equation 12). Corresponding ROIs are provided

on the right, and the complete legend can be found in Figure 4. Grouping (and coloring) was done by constructing an undirected graph using the Pearson

coefficients, clustering the vertices using a standard community-based hierarchical algorithm.

FIGURE 7 | An example of directed connectivity in task data derived from the

Jacobian, as represented by the spatial maps.

4.3.2. Results

The activity of several hidden recurrent units of trained model
was predictive of wakefulness across all subjects (see Figure 11

for an example subject). The RNN hidden unit activity (bound
between -1 and 1) stays at the extremes during awake state
exhibiting higher standard deviation and the activity tends
toward zero with lower standard deviation as the subject
transitions from wakefulness to sleep. One-way ANOVA on the
absolute mean and standard deviation of hidden unit activity
by hypnogram state shows significant group differences in
mean (p ≤ 10−29) and standard deviation (p ≤ 10−14).
Subsequent post-hoc t-tests reveal significant reductions in both
from wakefulness and light sleep N1 state to deeper sleep
stages N2 and N3 states, and also between N2 and N3 states
(means:[0.6642 0.6554 0.4558 0.2033], and standard deviations:
[0.1868 0.1997 0.1567 0.0579]; all these p-values ≤ 10−5

after correcting for multiple comparisons). In addition, the
scaling factor tended to correlate well with changes of state,
as measures by correlation with a smoothed derivative of the
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FIGURE 8 | A graphical representation of target (Left) and novel (Right) task-significant next-time Jacobian terms (see Figure 6 on grouping). Target stimulus

directed connectivity were thresholded at p ≤ 10−10, while novel directed connectivity where thresholded at p ≤ 10−7. Target and novel graphs were thresholded at

different values for cleaner graphical representations. Legend for nodes is in Figure 6.

FIGURE 9 | An example of left: task-related (target stimulus) and right: group-differentiating causal relationships derived from the Jacobian, as represented by the

spatial maps.

hypnogram. Figure 12 shows the correlation coefficients between
RNN hidden units to subject hypnogram state, component scale
factors, σ to subject hypnogram vector. Several hidden states
show consistent correlation to hypnograms, indicating the RNN
is encoding subject sleep state. Similarly some component scale
factors also encode sleep states. Surprisingly, however, the source
time courses, s, and the means, µ, did not. Finally, some
component scale factors correlate somewhat consistently with
changes in state across subjects. This indicates that the model is
encoding changes of state in terms of uncertainty.

5. DISCUSSION AND CONCLUSION

5.1. Summary
In this work, we demonstrate how RNNs can be used to separate

conditionally independent sources analogous to independent
component analysis but with the benefits of modeling temporal

dynamics through recurrent parameters. Results show that this

approach is effective for modeling both task-related and resting-
state functional magnetic imaging (fMRI) data. Using this

approach, we are able to separate similar components to ICA,
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but having the additional benefit of directly analyzing temporal
dynamics through the recurrent parameters.

Notably, in addition to finding similar maps and task-
relatedness as with ICA, we are able to derive directed temporal
connectivity which is task-related and group-differential, and
these are derived directly from the parameters of the RNN.

FIGURE 10 | A graphical representation of target (Left) and novel (Right)

group-differentiating next-time Jacobian terms (see Figure 6 on grouping).

Target stimulus directed connectivity were thresholded at p ≤ 0.001. Legend

for nodes is in Figure 6. This shows that the influence between components

across time when different stimulus is present can vary across groups.

In addition, for resting state data, we found that some
hidden unit activity corresponded very well with wake/sleep
states and that the uncertainty factor was consistent with

FIGURE 12 | Correlation values of subject hypnogram to learned RNN model

hidden units (Top) and to component scale factors σ (Bottom) for train (blue)

and test (red) subjects. The same units and scale factors track subject

neurobiological state as derived from EEG for both train and test cases. Note

some hidden unit activations are flat and so the correlation value is empty.

FIGURE 11 | Select hidden unit time courses with the corresponding hypnogram for two subjects in the training data (Left) and two test subjects (Right) not used

while training. Hidden states track subject neurobiological state [Wakeful (W) or N1, N2, and N3 sleep stages] just using fMRI activity. The bold lines are the median

filtered activation time courses.
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changes of state, both of which were learned in a completely
unsupervised way.

5.2. Related Work
Our method introduces deep and non-linear computations
in time to MLE independent component analysis (MLE
ICA) without sacrificing the simplicity of linear relationships
between source and observation. MLE ICA has an equivalent
learning objective to infomax ICA, widely used in fMRI
studies, in which the sources are drawn from a factorized
logistic distribution (Hyvärinen et al., 2004). While the model
learns a linear transformation between data and sources
through the unmixing matrix, the source dynamics are
encoded by a deep non-linear transformation with recurrent
structure, as represented by an RNN. Alternative non-linear
parameterizations of the ICA transformation exist that use
deep neural networks have been shown to work with fMRI
data (Castro et al., 2016). Such approaches allow for deep and
non-linear static spatial maps and are compatible with our
learning objective. Temporal ICA as used in group ICA (Calhoun
et al., 2009), like spatial ICA, does capture some temporal
dynamics, but only as summaries through a one- to two-stage
PCA preprocessing step. These temporal summaries are captured
and can be analyzed, however they are not learned as part
of an end-to-end learning objective. Overall, the strengths of
RNN-ICA compared to these methods are the dynamics are
directly learned as model parameters, which allows for richer and
higher-order temporal analyses, as we showed in the previous
section.

Recurrent neural networks do not typically incorporate latent
variables, as this requires expensive inference. Versions that
incorporate stochastic latent variables exist, are trainable via
variational methods, and working approaches for sequential
data exist (Chung et al., 2015). However, these require complex
inference which introduces variance into learning that may
make training with fMRI data challenging. Our method instead
incorporates concepts from noiseless ICA, which reduces

inference to the inverse of a generative transformation. The
consequence is that the temporal analyses are relatively simple,
relying on only the tractable computation of the Jacobian of
component conditional densities given the activations.

5.3. Future Work
The RNN-ICA model provides a unique mode of analysis
previously unavailable to fMRI research. Results are encouraging,
in that we were able to find both task-related and group-
differentiating directed connectivity, however the broader
potential of this approach is unexplored. It is our belief that this
method will expand neuroscience research that involves temporal
data, leading to new and significant conclusions.

Finally, the uncertainty factor in our resting state experiments
may indicate a novel application for imaging data through RNN-
ICA, that is change-of-state detection. The model we employed
was simple, as was not intended to take advantage of this. It is
quite possible that further modifications could produce a model
that reliably predicts change-of-state in fMRI and EEG data.
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