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Alzheimer’s disease (AD) and ischemic stroke (IS) are an immense socioeconomic
burden worldwide. There is a possibility that shared genetic factors lead to their
links at epidemiological and pathophysiological levels. Although recent genome-wide
association studies (GWAS) have provided profound insights into the genetics of AD
and IS, no shared genetic variants have been identified to date. This prompted us to
initiate this study, which sought to identify shared pathways linking AD and IS. We took
advantage of large-scale GWAS summary data of AD (17,008 AD cases and 37,154
controls) and IS (10,307 cases and 19,326 controls) to conduct pathway analyses
using genetic pathways from multiple well-studied databases, including GO, KEGG,
PANTHER, Reactome, and Wikipathways. Collectively, we discovered that AD and IS
shared 179 GO categories (56 biological processes, 95 cellular components, and 28
molecular functions); and the following pathways: six KEGG pathways; two PANTHER
pathways; four Reactome pathways; and one in Wikipathways pathway. The more
fine-grained GO terms were mainly summarized into different functional categories:
transcriptional and post-transcriptional regulation, synapse, endocytic membrane traffic
through the endosomal system, signaling transduction, immune process, multi-
organism process, protein catabolic metabolism, and cell adhesion. The shared
pathways were roughly classified into three categories: immune system; cancer (NSCLC
and glioma); and signal transduction pathways involving the cadherin signaling pathway,
Wnt signaling pathway, G-protein signaling and downstream signaling mediated by
phosphoinositides (PIPs). The majority of these common pathways linked to both
AD and IS were supported by convincing evidence from the literature. In conclusion,
our findings contribute to a better understanding of common biological mechanisms
underlying AD and IS and serve as a guide to direct future research.

Keywords: Alzheimer’s disease, ischemic stroke, genome-wide association studies, gene-based analysis,
pathway-based analysis

INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly. It is
characterized pathologically by extracellular deposits of amyloid-β peptide (Aβ) and intracellular
neurofibrillary tangles (NFTs) containing tau protein (Cuyvers and Sleegers, 2016). Ischemic
stroke (IS) is a major health-threatening cerebrovascular disease with severe complications,
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such as post-stroke infection, physical disability, and cognitive
deficits (Donnan et al., 2008). These two neurological diseases
have immense socioeconomic impact worldwide (Norrving and
Kissela, 2013; Alzheimer’sAssociation, 2016).

Mounting evidence suggests that there is a potential
correspondence between AD and IS. Firstly, epidemiological
studies have revealed that AD is a contributing factor to the
development of IS (Chi et al., 2013; Tolppanen et al., 2013),
and vice versa (Gamaldo et al., 2006). Secondly, AD and IS
have common risk factors (e.g., hypertension, diabetes, obesity,
and hyperlipidemia) (de Bruijn and Ikram, 2014; Boehme
et al., 2017). Thirdly, recent evidence has indicated that brain
ischemia can promote the development of AD by inducing β-
/γ-secretase-mediated Aβ accumulation and tau protein gene
alterations (Salminen et al., 2017; Pluta et al., 2018). Fourth,
neuroinflammation elicited by the immune system is thought
to play essential roles in the development and progression of
both AD and IS (Liu Y.H. et al., 2013; Anrather and Iadecola,
2016). Lastly, research shows that abnormal tau protein also
plays crucial roles in IS (Tuo et al., 2017). Together, these
findings support the hypothesis that shared genetic risk factors
link AD and IS at the epidemiological and pathophysiological
levels.

Recent genome-wide association studies (GWASs) have
provided profound insights into the complex genetic architecture
of AD (Shen et al., 2015; Li et al., 2016; Liu et al., 2016; Zhang
et al., 2016; Jun et al., 2017; Sims et al., 2017) and IS (Traylor
et al., 2012; Williams et al., 2013; Kilarski et al., 2014; Malik
et al., 2016; Network et al., 2016; Crawford et al., 2018). Most
recently, 29 risk loci for AD (Jansen et al., 2018) and 28 loci
associated with IS and its subtypes [i.e., large vessel disease (LVD),
cardioembolic stroke (CE), and small vessel disease (SVD)]
(Malik et al., 2018) have been identified. Despite these findings,
no significant genetic variants shared by AD and IS or its subtypes
were discovered. From the perspective of pathways, however,
four gene ontology (GO) categories jointly associated with AD
and SVD were identified (Traylor et al., 2016). Moreover, single-
disease pathway analysis demonstrates that AD and IS share
common pathways that involve natural killer (NK) cells, i.e., NK
cell mediated cytotoxicity in AD (Lambert et al., 2010; Liu et al.,
2014; Chen et al., 2016; Jiang et al., 2017) and NK cell signaling in
IS (Malik et al., 2016). These findings imply that the link between
AD and IS may have to do with shared genetic signals at the
pathway level.

Complex diseases like AD and IS are mostly driven by
the joint interactions of associated genes affected by large
proportions of SNPs well below genome-wide significance, and
the crosstalk of regulatory pathways (Furlong, 2013). Based
on this concept, pathway-based analysis has been an effective
strategy to investigate the potential mechanisms of complex
disease (Luo et al., 2010; Jin et al., 2014), thus is widely used to
unravel either single disease etiology or pleiotropism of clinically
distinct diseases (Lesnick et al., 2007; Liu G. et al., 2012; Liu Y.
et al., 2013; Liu et al., 2014; Bao et al., 2015; Xiang et al., 2015).
Taken together, these considerations prompted us to perform
pathway analyses using AD and IS GWAS data to further dissect
their common molecular mechanisms.

MATERIALS AND METHODS

Samples
We obtained AD GWAS summary data from the International
Genomics of Alzheimer’s Project (IGAP). IGAP performed a
large, two-stage joint association analysis of AD on individuals
of European descent (Lambert et al., 2013). In stage 1 (discovery
stage), 17,008 AD cases and 37,154 controls from four previously
published GWAS samples were included. These were the
European Alzheimer’s disease Initiative (EADI), the Alzheimer
Disease Genetics Consortium (ADGC), the Cohorts for Heart
and Aging Research in Genomic Epidemiology Consortium
(CHARGE), and the Genetic and Environmental Risk in
AD Consortium (GERAD). After quality control procedures,
7,055,881 SNPs remained for further analysis. In stage 2
(replication stage), the top SNPs with a P-value less than 1E-3
in stage 1 were selected for replication in an independent sample
(8,572 cases and 11,312 controls). Finally, the results of the two
stages were combined in a meta-analysis in order to identify loci
reaching genome-wide significance (P < 5.00E-08). In the present
study, we used the GWAS summary data from stage 1.

We selected the IS GWAS summary results from the
METASTROKE collaboration published by Malik et al (Malik
et al., 2016). In the discovery stage, METASTROKE conducted
a meta-analysis of 12 case-control GWAS comprising 10,307
Caucasian IS cases and 19,326 Caucasian controls, producing
quality-controlled 8.3 million SNPs for further analysis. In
the replication stage, the top SNPs (P < 1.00E-05) in the
discovery meta-analysis were selected for replication in three
independent samples consisting of Caucasian (13,435 cases and
29,269 controls) and South Asian (2,385 cases and 5,193 controls)
samples. Ultimately, a transethnic meta-analysis combining the
two stages was conducted. Here, we used the IS GWAS summary
statistics from the discovery phase.

Statistical Analyses
Firstly, we computed gene-level association statistics through
gene-based association tests. Next, gene-based pathway analysis
was performed to identify pathways shared between AD and IS.

Gene-Based Testing for AD and IS GWAS Datasets
We performed gene-level analysis implemented in the
versatile gene-based association study software (VEGAS).
By incorporating the effects of a full set of markers within a gene
and correcting for linkage disequilibrium (LD) between SNPs,
we were able to calculate gene-based P-values. Compared with
other gene-based testing approaches like PLINK, a set-based
test based on permutations (Purcell et al., 2007), VEGAS is
much more computationally efficient by using simulations
from multivariate normal distributions (Liu et al., 2010). In
addition, because VEGAS only requires SNP rs IDs and P-values,
it is particularly appropriate for GWAS summary results, in
which individual genotyped information is not available. We
used VEGAS2, a recently updated version of VEGAS that
uses LD estimates from the 1000 Genomes Project phase I
panel (Mishra and Macgregor, 2015). We chose the following
defaults to define the gene boundaries for locating SNPs in
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VEGAS2: “SNPs within a gene plus SNPs outside of the gene
with r2 > 0.8 with SNPs in the gene” (Mishra and Macgregor,
2015). By using this default setting, we were able to capture the
effects of regulatory SNPs and minimize non-specificity caused
by large boundaries (i.e., ±50 kb) (Mishra and Macgregor,
2015).

Recently, Boyle et al. proposed the hypothesis that most
complex traits are largely driven by the vast majority of peripheral
genes with smaller effects by propagating through regulatory
networks to core genes (Boyle et al., 2017). As such, genes in AD
and IS with P < 0.05, rather than with stringent threshold like
gene-wide statistical significance, were selected for subsequent
pathway analysis.

Pathway-Based Analysis for Shared Disease
Pathways
It is likely that genes of AD and IS are involved in one pathway,
but in different proportions, such as in the upstream and
downstream of the pathway, respectively. Hence, we performed
pathway analysis for AD and IS separately by integrating genes
for each disease from VEGAS2 (P < 0.05) into known functional
annotations using WebGestalt (Wang et al., 2017). Next, their
respective enrichment results were overlapped to identify shared
pathways jointly associated with AD and IS.

The latest version of WebGestalt 2017 included genetic
pathways from GO annotations (Ashburner et al., 2000), KEGG
(Kanehisa et al., 2004), PANTHER (Mi et al., 2016), Reactome
(Fabregat et al., 2016), and WikiPathways (Pico et al., 2008). We
chose over-representation analysis (ORA), a hypergeometric test,
to identify the enrichment of the disease-related genes among all
the genes in a given pathway. The P-value for observing at least
m disease-related genes in a given pathway can be calculated as
follows:

P = 1−
m∑

i=0

(
n
i

)(
N− n
M− i

)
(

N
M

)
where M is the total number of genes of interest that are
associated with a given disease, N is the number of reference
genes, and n is the number of genes in the pathway. The smaller
the P-value is, the more likely the list of disease-related genes of
interest will be overrepresented in this pathway. To avoid testing
overly narrow or broad pathways, which could result in some
false positives, we chose pathways comprising at least 20 and at
most 300 genes for analysis (Jiang et al., 2017). The threshold of
statistical significance for a pathway associated with AD and IS
was P < 0.05 in both diseases.

Meta-Analysis Using Fisher’s Method
Here, Fisher’s method was used to combine the P-values of each
shared pathway in AD and IS into one test statistic. For a given
pathway, the Fisher equation for the statistic is:

x2
= −2

k∑
i=1

ln(Pi)

where Pi is the P-value of the pathway in the ith study and k is the
number of total studies. x2 follows chi-square distribution with
2k degrees of freedom (Begum et al., 2012).

RESULTS

Gene-Based Testing for AD and IS GWAS
Datasets and Validation of VEGAS2
We identified 1915 AD genes and 1288 IS genes with P < 0.05.
More detailed results are provided in Supplementary Table
S1. To verify the reliability of the VEGAS2 gene-based testing
approach, we compared our gene-based association results
of AD with previously established AD risk loci identified
through conventional GWAS approaches. We replicated 15
genes (APOE, TOMM40, APOC1, EXOC3L2, PVRL2, CR1,
HLA-DRB6, EPHA1, CLU, PICALM, ABCA7, CD33, MS4A2,
MS4A6A, BIN1) with gene-wide significance (P < 2.35E-6,
Bonferroni corrected for 21,244 genes). These genes belong to 12
established risk loci for AD (i.e., APOE/TOMM40/APOC1 locus;
EXOC3L2/BLOC1S3/MARK4 locus; PVRL2; CR1; HLA-DRB5-
DRB1 region; EPHA1; CLU; PICALM; ABCA7; CD33; MS4A
locus; BIN1). In addition, we replicated 11 genes (SORL1, CD2AP,
MS4A6E, MS4A4A, MS4A3, HLA-DQB1, HLA-DRB1, HLA-
DQA1, PTK2B, CELF1, and SLC24A4) with suggestive association
(P < 1.00E-04); these belong to seven known significant loci
(SORL1, CD2AP, MS4A locus, HLA-DRB5-DRB1 region, PTK2B,
CELF1, and SLC24A4). Thus, the replication of these established
findings shows that VEGAS2 can be trusted as a validated tool for
our subsequent pathway analysis.

Pathway-Based Analysis for Shared
Pathways Between AD and IS
Using the 1915 AD genes and 1288 IS genes having a P < 0.05,
pathway analysis for AD and IS were separately conducted
followed by overlapping their respective significant enrichment
results.

In GO, we identified 179 common GO categories associated
with both AD and IS: 56 biological processes, 95 cellular
components, and 28 molecular functions (Supplementary Table
S2). Here, we paid more attention to the more fine-grained
GO terms and weeded out their ancestors to solve the problem
of redundancy. Taken as a whole, the remaining GO terms of
biological process, cellular component and molecular function
mainly fall into categories listed below: transcriptional and post-
transcriptional regulation, synapse, endocytic membrane traffic
through the endosomal system, signaling transduction, immune
process, multi-organism process, protein catabolic metabolism,
cell adhesion, and others (Figure 1 and Supplementary Table
S2). The detailed information about complete GO annotation
results and summarized GO annotation results as well as their
relevant GO terms is displayed in Supplementary Table S2.

In KEGG, we identified six significant pathways shared by
AD and IS: NK cell mediated cytotoxicity [hsa04650], Toll-
like receptor signaling pathway [hsa04620], non-small cell lung
cancer [hsa05223], glioma [hsa05214], phospholipase D signaling
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FIGURE 1 | Summarized GO annotation results shared by AD and IS. The complete GO annotation results shared by AD and IS are summarized and reorganized
here, with only more fine-grained terms labeled and classified into different functional categories: transcriptional and post-transcriptional regulation, synapse,
endocytic membrane traffic, signaling transduction, immune process, multi-organism process, protein catabolic metabolism, cell adhesion, and others, which are
shown in nodes. The relevant GO terms of biological process, cellular component, and molecular function are shown in targets. The threshold for statistical
significance for a GO term is P < 0.05 in both AD and IS. The edges connecting the nodes and targets are attributed by the value of –log10 P.

pathway [hsa04072], and hepatitis B [hsa05161]. Besides these,
we also identified 2 shared significant PANTHER pathways
between AD and IS: cadherin signaling pathway [P00012] and
Wnt signaling pathway [P00057]. Four significant Reactome
pathways shared by AD and IS were immunoregulatory
interactions between a lymphoid and a non-lymphoid cell
[R-HSA-198933], synthesis of PIPs at the plasma membrane
[R-HSA-1660499], PI metabolism [R-HSA-1483255] and
cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein
beta folding [R-HSA-6814122]. In the WikiPathways dataset,
one significant pathway was identified: signaling pathways in
glioblastoma [WP2261]. The detailed results are described in
Table 1.

DISCUSSION

Large-scale GWAS of AD and IS have identified a set of risk loci
with genome-wide significance and provided deep insights into
the genetics of AD and IS (Cuyvers and Sleegers, 2016; Boehme
et al., 2017). Despite these discoveries, a large proportion of
heritability remains underappreciated (Zhang et al., 2013; Markus
and Bevan, 2014). To date, no shared genetic determinants jointly
associated with AD and IS have been revealed. However, AD
and IS have common biological pathways that may account for

their similarities at the epidemiological, neuropathological, and
molecular levels. Indeed, our pathway-based association tests
using large-scale GWAS summary datasets for AD and IS prove
the genetic links between these two diseases at the pathway level.

In order to fully understand the biological features shared
by AD and IS, we included in our analyses different functional
annotation databases (i.e., GO annotation, KEGG, PANHTER,
Reactome, and Wikipathways). GO annotation sets represent
the most comprehensive spectrum of functional categories
but are mainly computationally inferred, with less than 1%
being experimentally confirmed (Ashburner et al., 2000). In
contrast, KEGG, PANTHER, and Reactome pathway databases
are manually curated from the literature based on experimentally
validated evidence (Kanehisa et al., 2004; Fabregat et al., 2016;
Mi et al., 2016). Compared to the centrally curated databases
above, open community-based Wikipathways allows for broader
exploration into the entire biological spectrum (Pico et al., 2008).
Altogether, we uncovered 179 GO annotation terms, 6 shared
KEGG pathways, 2 PANTHER pathways, 4 Reactome pathways,
and one pathway in Wikipathways jointly associated with AD
and IS.

Shared GO Annotations
The GO annotation provides a knowledge base for understanding
the roles of genes and proteins in cells. Complete GO schema
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TABLE 1 | Shared biological pathways between AD and IS.

Pathway ID Pathway name AD IS Pcombined

C O E R P-value C O E R P-value

KEGG

hsa05214 Glioma 66 11 5.19 2.12 1.82E-02 66 8 3.38 2.37 3.62E-03 6.59E-05

hsa04620 Toll-like receptor signaling
pathway

106 14 8.33 1.68 1.09E-02 106 10 5.42 1.84 7.15E-03 7.79E-05

hsa05223 Non-small cell lung cancer 56 10 4.4 2.27 1.30E-02 56 8 2.86 2.79 1.86E-02 2.42E-04

hsa04650 Natural killer cell mediated
cytotoxicity

135 18 10.61 1.7 8.60E-03 135 15 6.91 2.17 3.25E-02 2.80E-04

hsa04072 Phospholipase D signaling
pathway

144 20 11.32 1.77 3.68E-02 144 13 7.37 1.76 3.57E-02 1.31E-03

hsa05161 Hepatitis B 146 18 11.48 1.57 3.72E-02 146 13 7.47 1.74 4.40E-02 1.64E-03

PANTHER

P00012 Cadherin signaling pathway 153 24 13.30 1.80 2.46E-03 153 21 8.94 2.35 1.32E-04 3.25E-07

P00057 Wnt signaling pathway 294 35 25.57 1.37 2.71E-02 294 30 17.17 1.75 1.07E-03 2.90E-05

REACTOME

R-HSA-198933 Immunoregulatory interactions
between a Lymphoid and a
non-Lymphoid cell

132 20 10.23 1.96 2.79E-03 132 14 6.54 2.14 5.75E-03 1.60E-05

R-HSA-1660499 Synthesis of PIPs at the plasma
membrane

49 8 3.8 2.11 3.32E-02 49 8 2.43 3.29 2.58E-03 8.57E-05

R-HSA-6814122 Cooperation of PDCL (PhLP1)
and TRiC/CCT in G-protein
beta folding

43 8 3.33 2.4 1.60E-02 43 6 2.13 2.81 1.85E-02 2.96E-04

R-HSA-1483255 PI metabolism 78 11 6.04 1.82 3.72E-02 78 9 3.87 2.33 1.47E-02 5.47E-04

WIKIPATHWAYS

WP2261 Signaling pathways in
glioblastoma

83 12 6.81 1.76 3.68E-02 83 10 4.65 2.15 1.67E-02 6.15E-04

C, the number of reference genes in the category; O, the number of genes in the list of disease-related genes of interest and also in the category; E, the expected number
in a category; R, the ratio of enrichment. The threshold of statistical significance for a pathway associated with AD and IS was P < 0.05.

generates a huge number of annotation terms with parent–
child relationships, which are non-independently arranged as
a directed acyclic graph (DAG). To assist in interpretation,
we tried to focus on more fine-grained terms, allowing
more specific biological mechanisms to be dissected. These
descendants turned out to be relevant to the following functional
categories: transcriptional and post-transcriptional regulation,
synapse, endocytic membrane traffic through the endosomal
system, signaling transduction, immune process, multi-organism
process, protein catabolic metabolism, cell adhesion and others
(Figure 1). In particular, dysfunction of endocytic membrane
dynamics plays a key role in AD pathogenesis by enhancing
the processing of amyloid precursor protein (APP) into Aβ

(Wu and Yao, 2009; Rajendran and Annaert, 2012). However,
the relationship between the endosomal system and IS remains
unknown and warrants further extensive investigation.

Shared KEGG Pathways
Together with one Reactome pathway [R-HSA-198933
immunoregulatory interactions between a lymphoid and a
non-lymphoid cell], two KEGG pathways are related to the
immune system (i.e., Toll-like receptor signaling pathway
[hsa04620] and NK cell mediated cytotoxicity [hsa04650]).
Toll-like receptor signaling pathway has also been reported

to be associated with AD (Liu et al., 2014). It is now widely
accepted that Toll-like receptors (TLRs) play essential roles
in Aβ-induced microglial inflammatory activation in AD (Liu
S. et al., 2012). The persistent inflammatory stimuli fueled by
activated microglia in turn leads to a disturbance in microglial
clearance of Aβ, eventually causing neuronal degeneration
(Heneka et al., 2015). Following IS, damage-associated molecular
patterns (DAMPs) released from the intracellular compartment
of dying and dead cells activate microglia and perivascular
macrophages by pattern recognition receptors (PRRs), especially
TLRs. The triggering cascades of innate immunity further
exacerbate stroke lesions in the acute phase of IS (Iadecola and
Anrather, 2011).

Natural killer cell mediated cytotoxicity has been reported by
previous GWAS and brain expression datasets of AD (Lambert
et al., 2010; Liu et al., 2014; Chen et al., 2016; Jiang et al.,
2017). The association for IS and NK cell signaling was also
observed (Malik et al., 2016), and supported by evidence that
infiltrating NK cells exacerbate ischemia lesions and increase
neuronal death either in experimental IS models or in human
IS (Gan et al., 2014). The inflammatory responses in both
AD and IS are initiated locally within the central nervous
system (CNS) under aberrant local conditions, and presumably
elicited by the innate immune system. Therefore, the similarity
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of their pathophysiological processes may provide a reasonable
explanation for our findings that AD and IS share common
biological pathways involved in the immune system.

Another two KEGG pathways are related to cancer (i.e.,
glioma [hsa05214] and non-small cell lung cancer [hsa05223]).
Convincing evidence suggests an inverse relationship and
significant genetic overlap between AD and cancer (Roe et al.,
2005; Driver et al., 2012; Musicco et al., 2013; Ou et al., 2013).
For instance, the cellular behavior of proliferative cells in cancer
is essentially the opposite of the processes leading to degenerating
neurons in AD (Behrens et al., 2009; Driver and Lu, 2010;
Driver, 2014). Bioinformatics analyses has unraveled shared
genes and signaling pathways connecting AD and glioblastoma
(Liu T. et al., 2013). The one significant pathway we found in
the Wikipathways dataset (signaling pathways in glioblastoma
[WP2261]) also supports this linkage. Though some illustrative
cases suggested that glioblastoma should be considered in the
etiology of acute IS (Pina et al., 2014; Lasocki and Gaillard, 2016),
little is known about the relationship between IS and glioma or
other prevalent cancers.

The biological significance of the phospholipase D (PLD)
signaling pathway [hsa04072] has been suggested for both AD
and IS (Oliveira and Di Paolo, 2010; Stegner et al., 2013;
Frohman, 2015). Hepatitis B pathway [hsa05161] has already
been revealed in hippocampal CA1 region of AD patients
(Mastroeni et al., 2018). Epidemiology studies suggested that
hepatitis B virus (HBV) infection was associated with decreased
risk of IS, although the underlying mechanism was unclear (Sung
et al., 2007; Kuo et al., 2017). Part of the GO terms we deciphered,
i.e., positive regulation of viral transcription [GO:0050434],
positive regulation of viral life cycle [GO:1903902] and defense
response to virus [GO:0051607] appeared to support this linkage.

Shared PANTHER Pathways
In the present study, we uncovered 2 significant PANTHER
pathways shared by AD and IS (cadherin signaling pathway
[P00012] and Wnt signaling pathway [P00057]). Similar to
cadherin signaling pathway, cadherin binding involved in cell-
cell adhesion [GO:0098641] was implied in GO. Both enriched
PANTHER pathways primarily arose from the Pcdhα gene
cluster (Pcdhα) shared by AD and IS in our VEGAS2 gene-
based analysis. Protocadherins (Pcdhs) constitute the largest
group of the cadherin superfamily of cell-adhesion molecules.
Pcdhs are predominantly expressed in the CNS (i.e., neurons,
astrocytes, pericytes, choroid plexus epithelial cells, and brain
microvascular endothelial cells), and are crucial for neuronal
survival, neural circuit assembly, and maintenance of the
blood-brain barrier (BBB) (Takeichi, 2007; Dilling et al.,
2017). Moreover, the interactions between Pcdhs and Wnt
signaling pathway have recently been uncovered (Mah and
Weiner, 2017). Wnt signaling pathway plays critical roles in
neurogenesis and synaptic transmission and plasticity, whereby
its deregulation shows significant linkage to the development
of AD (Caruso et al., 2006; De Ferrari et al., 2007; Inestrosa
and Varela-Nallar, 2014). For IS, experimental evidence has
demonstrated that Wnt signaling activation may exert effective
neuroprotection by providing an appropriate compensatory

microenvironment for neurogenesis or neuronal survival in
focal ischemic injury (Shruster et al., 2012; Wu et al.,
2015).

Shared Reactome Pathways
Two shared Reactome pathways are PI (phosphatidylinositol)
metabolism [R-HSA-1483255] and synthesis of PIPs
(phosphoinositides) at the plasma membrane [R-HSA-
1660499], which are connected by a parent–child relationship.
Similarly, phosphatidylinositol binding [GO:0035091] was also
identified in GO. PIPs consist of seven diverse phosphorylated
forms of phosphatidylinositol. Among these, PI(4,5)P2 and
PI(3,4,5)P3 occur in relatively high abundance at the plasma
membrane (Di Paolo and De Camilli, 2006; Riehle et al.,
2013). PI(4,5)P2 primarily serves as a pool for the formation of
intracellular second messengers—inositol 1,4,5-trisphosphate
(IP3), diacylglycerol (DAG), and PI(3,4,5)P3— to mediate
downstream signal cascades [e.g., Ca2+ response, PKC activation
and PI(3,4,5)P3/Akt/mTOR pathway] from plasma membrane
receptors like GPCRs (Riehle et al., 2013). PIPs play important
roles in the nervous system by regulating lipid signaling, receptor
signaling and membrane dynamics (e.g., endocytic membrane
traffic). Thus, deregulation of these pathways has been implicated
in neurological diseases including AD and IS (Waugh, 2015).

Another significant Reactome pathway shared by AD and IS is
cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta
folding [R-HSA-6814122]. Recent studies reveal the interplay of
the protein-folding chaperone CCT (also called TRiC) and its co-
chaperone PhLP1 in G-protein βγ (Gβγ) dimer formation, which
is a particularly critical step in G-protein signaling (Plimpton
et al., 2015). Comparably, heterotrimeric G-protein complex
[GO:0005834] was also identified in GO. In AD, G-protein signal
transduction pathways mediated by G protein-coupled receptors
(GPCRs) are strongly related to α-/β-/γ-secretase-mediated APP
processing through the endosomal system (Teng et al., 2010;
Thathiah and De Strooper, 2011; Heese, 2013).

In summary, we discovered several shared significant
pathways jointly associated with AD and IS, which can roughly be
classified into three categories: immune system, cancer (NSCLC
and glioma), and signal transduction pathways. The latter
includes cadherin signaling pathway, Wnt signaling pathway,
G-protein signaling, and downstream signaling mediated by PIPs.
Convincing evidence in the literature corroborates the majority
of these shared pathways.

Despite these interesting and consequential findings, our
study had some limitations. Firstly, we were able to analyze
only the overall IS summary data. However, IS is genetically
heterogeneous, as nearly all its risk loci are specific to
individual subtypes. Secondly, the input lists of significant
genes for pathway analysis were selected by setting an arbitrary
threshold (P < 0.05), which might lead to information loss
of some marginally less significant genes (e.g., P = 0.051).
Lastly, the statistical model we used for pathway analysis
was ORA, a hypergeometric test, which treats each gene
equally and does not take into account interdependencies
between genes in a pathway. However, the significance of each
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gene (P-value) can be informative in assigning different weights
to input genes in the pathway analysis. In the future, we aim to
conduct more robust statistical analysis using multiple pathway
analysis methods and multiple datasets to replicate and expand
our findings.

CONCLUSION

Collectively, in our gene-based tests and comprehensive pathway
analyses of AD and IS summary GWAS datasets, we discovered
several shared novel functional pathways linking AD and IS. By
providing an in-depth investigation here of the shared biological
mechanism associated with these two neurological disorders, our
findings may advance the current understanding of the biology
of AD and IS and guide future research on AD or IS in new
directions.
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