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Error backpropagation is a highly effective mechanism for learning high-quality

hierarchical features in deep networks. Updating the features or weights in one layer,

however, requires waiting for the propagation of error signals from higher layers. Learning

using delayed and non-local errors makes it hard to reconcile backpropagation with

the learning mechanisms observed in biological neural networks as it requires the

neurons to maintain a memory of the input long enough until the higher-layer errors

arrive. In this paper, we propose an alternative learning mechanism where errors are

generated locally in each layer using fixed, random auxiliary classifiers. Lower layers

could thus be trained independently of higher layers and training could either proceed

layer by layer, or simultaneously in all layers using local error information. We address

biological plausibility concerns such as weight symmetry requirements and show that

the proposed learning mechanism based on fixed, broad, and random tuning of each

neuron to the classification categories outperforms the biologically-motivated feedback

alignment learning technique on the CIFAR10 dataset, approaching the performance of

standard backpropagation. Our approach highlights a potential biological mechanism

for the supervised, or task-dependent, learning of feature hierarchies. In addition, we

show that it is well suited for learning deep networks in custom hardware where it

can drastically reduce memory traffic and data communication overheads. Code used

to run all learning experiments is available under https://gitlab.com/hesham-mostafa/

learning-using-local-erros.git.

Keywords: backpropagation, local errors, hardware accelerators, supervised learning, biological learning

1. INTRODUCTION

Gradient descent training techniques (Bottou, 1991) have been remarkably successful in training
a broad range of network architectures. This success is often attributed to the use of deep
architectures with many non-linearity stages (Ba and Caruana, 2014) where backpropagation
is used to calculate the direction of weight updates in deep layers. In convolutional networks
in particular, multiple cascaded convolutional layers allow simple, lower-level, features to be
successively composed into more complex features, allowing networks to obtain highly complex
and relevant features from the top convolutional layers (Razavian et al., 2014). Deep convolutional
neural networks trained using backpropagation are thus achieving record performance in a variety
of large-scale machine vision tasks (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014;
LeCun et al., 2015; He et al., 2016; Zagoruyko and Komodakis, 2016; Huang et al., 2016). For
deep convolutional networks trained in a supervised setting, the training objective is typically
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the minimization of classification error at the top network layer.
This objective is sometimes augmented by auxiliary objectives
defined using the outputs of intermediate classifiers in the
network (Szegedy et al., 2014; Lee et al., 2015). These auxiliary
objectives provide additional sources of error to deeper layers.
Training, however, involves error signals that must propagate
backwards from the top layer.

Standard backpropagation is biologically unrealistic for
several reasons: the need to buffer network states until errors
arrive from the top layer; weight symmetry in the forward and
backward passes; and the need to precisely interleave the forward
and backward passes. Several biologically-motivated learning
mechanisms have been proposed to explain how circuits in the
brain are able to learn complex, hierarchical representations.
One broad class of these proposals is based on contrastive
learning in energy-based models (Xie and Seung, 2003; Bengio
and Fischer, 2015; Scellier and Bengio, 2017). In these models,
the network is trained to minimize the discrepancy between its
equilibrium points when running freely and when observables
clamp the values of some units in the network. Weight symmetry
is required, though: each synaptic connection from one neuron
to another assumes a matching synaptic connection of identical
strength in the reverse direction. In Lillicrap et al. (2016) and
Baldi et al. (2016), weight symmetry is avoided by using an
independent set of fixed random weights to backpropagate
errors between the network layers. However, like standard
backpropagation, the error signals are non-local. Instead of
backpropagating errors layer by layer through the random
feedback connections, the networks inNøkland (2016) andNeftci
et al. (2017) directly use a fixed random projection of the top layer
error as the error signal in deep layers. Although this permits a
single global error signal communicated in common to all layers,
is still incurs substantial wait times andmemory requirements for
the weight updates as a forward pass through the entire network
has to be completed before the error signal is available, which
requires deep layers to hold their states for the duration of the
full forward pass.

We propose a learning approach where weights in any given
layer are trained based on local errors that are generated solely
based on neural state variables in that layer. These errors are
generated directly from the training labels using a classifier
with fixed random weights and no hidden layers, and whose
input is the neural activations in the layer being trained.
Instead of minimizing a global objective function, training thus
minimizes many local objective functions. As such this approach
compromises one of the core tenets of standard backpropagation:
the adjustment of all parameters in concert to minimize a unified
objective. Nevertheless, training with local errors still allows a
deep network to compose the features learned by lower layers
into more complex features in higher layers. This is evidenced
by the improvement in accuracy of the random local classifiers
in deeper layers. Training with local errors thus retains the
hierarchical composition of features, one of the key strengths
of deep networks. Our learning approach based on local errors
still lags behind backpropagation in terms of test-set accuracy,
though.

To implement weight updates based on backpropagation in a
biologically inspired network, the pre- or post-synaptic neurons

need to buffer the past activity of the pre-synaptic neurons and
reproduce this past activity in sync with the corresponding errors
arriving from top layers in order to update the weights. This is
incompatible with biologically motivated synaptic weight update
rules that are typically triggered by pre-synaptic events and
depend on the relative timing of pre- and post-synaptic spikes
and/or state variables in the post-synaptic neuron. Our learning
mechanism bypasses biological implausibility arguments against
standard backpropagation by generating errors locally in each
layer using fixed random projections. Weight updates could
thus be carried out while the synaptic currents in post-synaptic
neurons (the neurons receiving the local error signal) still retain
a memory of recent pre-synaptic activity. Weight symmetry in
the forward and backward passes in standard backpropagation
learning is another biologically unrealistic aspect. In our case,
the weight symmetry requirement arises in the one-step error
backpropagation from the output of the local random classifier
to the neurons in the layer being trained. Similar to Lillicrap
et al. (2016), we experimented with relaxing this symmetry
requirement by using a different set of random, fixed weights to
map the classifier error to the error at the layer being trained.

We analyze the implications of the proposed learning
approach for the design of custom hardware devices for learning
the parameters of deep networks. In the proposed learning
approach, there is no explicit backward pass as errors are locally
generated and can be used to directly update the weights.
We show that our approach drastically reduces memory traffic
compared to standard backpropagation in the typical situation
when the network weights and activations can not all fit into
the compute device memory. We achieve this reduction even
despite an increased number of parameters in the network due to
the addition of the random local classifier weights in each layer.
These weights, however, are fixed allowing them to be generated
on the fly using pseudo-random number generators (PRNGs).
Only the negligibly small random seeds of the PRNGs for each
layer need to be stored.

We discuss related work in section 2. We describe the
proposed learning mechanism in section 3 and quantitatively
assess the hardware-related computational and memory
access benefits compared to standard learning with global
objective functions in section 4. We present the results of
applying the proposed learning method to standard supervised
learning benchmarks in section 5 and compare our learning
method’s performance to that of the feedback alignment
technique (Lillicrap et al., 2016) . We present our conclusions
and further discussion on the biological plausibility of the
proposed learning mechanism in section 6.

2. RELATED WORK

Training of deep convolutional networks is currently dominated
by approaches where all weights are simultaneously trained
to minimize a global objective. This is typically done in a
purely supervised setting where the training objective is the
classification loss at the top layer. To ameliorate the problem
of exploding/vanishing errors in deep layers (Hochreiter et al.,
2001), auxiliary classifiers are sometimes added to provide
additional error information to deep layers (Szegedy et al., 2014;
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Lee et al., 2015). Unlike our training approach, however, training
still involves backpropagating errors across the entire network
and simultaneous adjustments of all weights.

Several learning mechanisms have been traditionally used
to pre-train a deep network layer-by-layer using local error
signals in order to learn the probability distribution of the input
layer activations, or in order to minimize local reconstruction
errors (Hinton et al., 2006; Hinton and Salakhutdinov, 2006;
Bengio et al., 2007; Vincent et al., 2008; Erhan et al., 2010).
These mechanisms, however, are unsupervised and the networks
need to be augmented by a classifier layer, typically added
on top of the deepest layer. The network weights are then
fine-tuned using standard backpropagation to minimize the
error at the classifier layer. Supervised layer-wise training
has been pursued in Bengio et al. (2007), with auxiliary
classifiers that are co-trained, unlike the random fixed auxiliary
classifiers proposed here. The supervised layer-wise training
is used only as a pre-training step, and results are reported
after full network fine-tuning using backpropagation from
the top classifier layer. Some approaches forego the fine-
tuning step and keep the network fixed after the unsupervised
layer-wise training phase, and only train the top classifier
layer or SVM on the features learned (Ranzato et al., 2007;
Lee et al., 2009; Kavukcuoglu et al., 2010). Local learning
in Ranzato et al. (2007) and Kavukcuoglu et al. (2010)
involves an iterative procedure for learning sparse codes which
is computationally demanding. The network architectures in
Ranzato et al. (2007), Lee et al. (2009), and Kavukcuoglu
et al. (2010) fail to yield intermediate classification results
from the intermediate layers. Moreover, their applicability to
datasets that are more complex than MNIST is unclear since
labels are not used to guide the learning of feature. In more
complex learning scenarios with an abundance of possible
features, these networks could very well learn few label-relevant
features, thereby compromising the performance of the top
classifier.

Instead of layer-wise pre-training, several recent approaches
train the whole network using a hybrid objective that contains
supervised and unsupervised error terms (Zhao et al., 2015).
In some of these network configurations, the unsupervised
error terms are local to each layer (Zhang et al., 2016). The
supervised error term, however, requires backpropagating errors
through the whole network. This requirement is avoided in
the training approach in Ranzato and Szummer (2008) used
to learn to extract compact feature vectors from documents:
training proceeds layer by layer where the error in each layer
is a combination of a reconstruction error and a supervised
error coming from a local classifier. The local auxiliary decoder
and classifier pathways still require training, however. Other
approaches also make use of a combination of supervised (label-
dependent) and unsupervised error signals to train Boltzmann
machines as discriminative models (Larochelle and Bengio,
2008; Goodfellow et al., 2013). Learning in Goodfellow et al.
(2013), however, is more computationally demanding than our
approach as as it involves several iterations to approach the
mean-field equilibrium point of the network, and errors are
still backpropagated through multiple layers. In Larochelle and

Bengio (2008), multi-layer networks are not considered and only
a single layer RBM is used.

Several approaches use clustering techniques to learn
convolutional layer features in an unsupervised manner (Coates
and Ng, 2012; Dundar et al., 2015). A biologically-motivated
technique that yields clustering-like behavior is the technique
used in self-organizing maps (Kohonen, 1988) where
competition between different feature neurons coupled
with Hebbian plasticity fosters the formation of dissimilar
and informative features. These methods share the limitation
that features are not learned in a label-guided manner. Auto-
encoding-based methods learn features locally by minimizing
the error in reconstructing one layer using the activity of the
layer above (Bengio, 2014). Predictive coding methods attempts
to minimize a similar reconstruction loss (Rao and Ballard,
1999).The unsupervised auto-encoding loss can be augmented
by a supervised label-dependent loss to learn features that are
label-guided and can thus be used to discriminate between
different classes (Rasmus et al., 2015; Valpola, 2015). The
supervised label-dependent error, however, is non-local.

In Baldi et al. (2016), Lillicrap et al. (2016), Nøkland
(2016), and Neftci et al. (2017), the backpropagation scheme is
modified to use random fixed weights in the backward path.
This relaxes one of the biologically unrealistic requirements of
backpropagation which is weight symmetry between the forward
and backward pathways. Errors are still non-local, however, as
they are generated by the top layer. A learning mechanism
that is able to generate error signals locally is the synthetic
gradients mechanism (Jaderberg et al., 2016; Czarnecki et al.,
2017) in which errors are generated by dedicated error modules
in each layer based only on the layer’s activity and the label.
The parameters of these dedicated error modules are themselves
updated based on errors arriving from higher layers in order to
make the error modules better predictors of the true, globally-
derived, error signal. Our approach generates errors in a different
manner through the use of a local classifier, and each layer
receives no error information from the layer above.

3. METHODS

We train multi-layer networks, with either convolutional or fully
connected layers, based on local errors generated by random
classifiers. Consider a fully connected ith hidden layer in a
network whose activation vector is denoted by yi ∈ RN receiving
an input xi ∈ RM :

yi = f (Wixi + bi) (1)

yi
′ = f ′(Wixi + bi) (2)

where Wi is the N × M weight matrix of layer i and bi ∈ RN is
the bias vector, and f is the neuron’s activation function, and f ′ is
the neuron’s activation function derivative. In all the networks we
train, we use Rectified Linear Units (ReLUs) (Nair and Hinton,
2010), i.e., f (x) = max(x, 0), with corresponding derivatives
f ′(x) = H(x) where H(·) is the Heaviside step function. f(x)
= max(0,x) is a piecewise linear function. If the argument, x,
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is negative, then the function has a fixed output (zero) and its
derivative is thus zero. If x is positive, then f is the identity
function and its derivative is one. i.e., f ’(x) = H(x) where H(x)
is the Heaviside step function whose output is zero for negative
x and one for positive x. We pre-define for this hidden layer a
fixed random classifier matrixMi which is a C×N matrix where
C is the number of classification categories. The random matrix,
Mi, is used to convert the layer activation vector, yi, to a category
score vector si ∈ RC where si = Miyi. Since this is a supervised
learning setting, the correct input category t is known during
training, which allows the layer to generate a scalar loss or error
signal, E(t, si). E could be for example the cross-entropy loss or
the square hinge loss. This error is then backpropagated in order
to calculate the weight and bias updates, 1Wi and 1bi:

es
i =

dE(t, si)

dsi
(3)

ey
i = Kieis ⊙ yi

′
(4)

1Wi = −ηey
i×xi (5)

1bi = −ηey
i (6)

where ⊙ is the element-wise multiplication operator, × is the
outer product operator, and η is the learning rate. Ki is theN×C
matrix used to backpropagate the classifier error to the layer

being trained. If we set Ki = MiT , then the weight and bias
updates are executing exact gradient descent to minimize the
random classifier error, E. In that case, training of each layer is
equivalent to training a network with one hidden layer where
only the hidden layer’s input weights and biases are trainable,
while the output weights, Mi are fixed. Equations 3–6 are then
the standard backpropagation equations implementing gradient
descent in order to minimize the local error. These equations
were derived by applying the derivative chain rule in order to

calculate the gradient of the error E(t, si) with respect to the layer’s
weights and biases. The weights and biases are then updated to
move in the negative gradient direction in order to minimize
the error. With a small enough learning rate, gradient descent
is guaranteed to converge to a local minimum of the error. The
learning scheme is illustrated in Figure 1. Note that all random
classifiers are always trained with the real labels to solve the
actual learning task, whether it is MNIST or CIFAR10. When
we say “random classifier,” we mean a classifier with random
fixed weights, not that it solves a random task. The local random
classifiers attain good accuracy because the layers feeding into
them learn the right features that allow each particular random
classifier to produce the correct label.

For convolutional layers, the learning scheme remains
unchanged. The post-activation feature maps tensor is simply
flattened to yield a 1D vector before multiplying by the random
classifier matrix M as shown in Figure 1B. The flatten operation
is just a reorganization of the activation tensor. We use an
automatic differentiation (AD) package, PyTorch, to calculate the
updates to a layer’s weight in order to minimize the local classifier
scalar cross-entropy loss. Convolutional layer kernels sweep over
the input feature maps and are the same at different spatial
positions. A convolutional layer can be thought of as a fully-
connected layer, but with many weights tied together to reflect
the spatial invariance of the convolution kernels. An AD package
takes care of accumulating the gradient of each tied weight and
summing these gradients to obtain the gradient of the underlying
parameter.

3.1. Implementation Details
In many experiments, we use dropout (Srivastava et al., 2014)
to minimize overfitting. All incoming/outgoing weights to/from
dropped neurons are not updated in the iteration in which
the neuron is dropped. In custom hardware devices, dropout

FIGURE 1 | (A) Supervised learning in a multi-layer network using local errors. Biases are omitted for clarity. Red arrows indicate the error pathways. Hidden layer i is

trained using local errors generated by a classifier with random fixed weights Mi . The errors are randomly projected back using the fixed random matrix Ki , and

multiplied element-wise with the layer’s activation derivative to yield the error signal ey
i which is then used to update the weights. (B) Same training method as (A) but

applied to convolutional layers. The activation tensor of the convolutional layers is flattened to yield a 1D vector which is then used as an input to the local classifier.
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regularization can be implemented easily if we have access to
a steady source of random bits. Uniformly distributed pseudo
random numbers can be generated cheaply using a linear
feedback shift register (LFSR) Klein (2013) as implemented in
ref. Mostafa et al. (2017) on FPGAs. Generating new random
numbers from LFSRs is very computationally cheap as it involves
only few bit-wise XOR operations and no MAC operations.
For example, in the scheme used in Cauwenberghs (1996), the
number of flip flops needed to produce Nb random bits per
cycle grows with

√
Nb. This scheme was adopted in Mostafa

et al. (2017) that used 60 flip flops and 650 XOR gates to
generate 320 random bits every clock cycle. In the training
experiments reported in this paper, we did not use an explicit
LFSR, but instead used a standard software-based random
number generator. The end result is the same as if using an LFSR-
based random number generator as both schemes can be used to
generate uniformly distributed random numbers.

In some networks, we use batch normalization (Ioffe and
Szegedy, 2015) before the layer’s non-linearity. The layer’s
learnable parameters will then include a scaling factor (one for
each neuron in a fully connected layer, or one for each feature
map in a convolutional layer) that is also trained using local
errors. Batch normalization is a common technique used in
deep neural networks in order to normalize the input statistics
to each neuron to have zero mean and unit variance. Batch
normalization operates by calculating the mean and variance
statistics of the input to each neuron (either independently in
each mini-batch or using an exponential moving average across
the whole training set). These statistics are then used to normalize
the input to each neuron. Experimentally, batch normalization
greatly accelerates learning by ensuring the inputs to the neurons
do not take extreme values, thereby making learning more stable.
During inference, batch normalization incurs a minor extra
computational overhead of one multiplication and one division
per neuron.

For a fully connected layer, the input to the local classifier
is taken after the dropout mask is applied (if dropout is used).
For a convolutional layer, the input to the layer’s local classifier
is taken after pooling and after applying the dropout mask. In
all experiments, we initialize the fixed random classifier weights
from a zero-mean distribution whose standard deviation depends
on the fan-out of the neurons in the source layer, nout , and the
fan-in of the neurons in the target layer, nin, according to

std =

√

2

nin + nout
(7)

We experimented with both uniform distributions and Gaussian
distributions when choosing the random weights of the local
classifier.

We compare our approach to the feedback alignment training
method (Lillicrap et al., 2016) in which random fixed weights
are used to backpropagate the error layer-by-layer from the
top layer. The layer’s activation derivative is still used when
backpropagating errors. In the presence of max-pooling layers,
errors only backpropagate through the winner(max) neuron in
each pooling window. When using feedback alignment training

in the presence of dropout, a neuron that is dropped during the
forward pass is also dropped during the backward pass. When
using convolutional layers, we use fixed random filters that we
convolve with the errors of one convolutional layer to yield the
errors at the outputs of the previous/lower convolutional layer.
We also use batch normalization when training using feedback
alignment. The extra scaling parameters introduced by batch
normalization are trained using the randomly backpropagated
errors arriving at the batch-normalized layer’s output.

The local error learning mechanism we describe in this paper
can either be applied in a mini-batch setting or in an online
learning setting where data is presented sample by sample (mini-
batch size of 1). In the training experiments we present, we
use mini-batch training in order to accelerate learning on the
GPUs we use. This decision was purely for GPU performance
reasons in order to complete training in a reasonable amount
of time. Evidence points that using smaller mini-batch sizes
down to a mini-batch size of 1 will improve our results by
improving the network stability (Masters and Luschi, 2018) and
generalization ability (Keskar et al., 2016). All experiments in
this paper were carried out using Pytorch, and all parameters
were optimized using stochastic gradient descent with Nesterov
accelerated gradient (NAG) (Nesterov, 1983; Ruder, 2016). We
use a momentum of 0.9 and a starting learning rate of 0.1. We
train for 100 epochs and reduce the learning rate by a factor
of 5 every 25 epochs. The full code used to run all experiments
is available under https://gitlab.com/hesham-mostafa/learning-
using-local-erros.git.

4. HARDWARE IMPLICATIONS OF
LEARNING USING LOCAL ERRORS

Standard learning techniques based on backpropagating errors
through the whole network require the hardware executing the
learning algorithm to store the activation values and activation
derivatives of all network layers in order to calculate weight
updates and backpropagate errors once errors are available
from the top layer. This imposes several communication and
memory access overheads if learning is executed on hardware
whose memory can not accommodate all the network weights
and activations. For large scale convolutional networks, this
practically includes all CPU and GPU devices where on-chip
memory is limited to few tens of MBytes, while state of
the art deep convolutional networks typically require several
hundred MBytes to several GBytes in order to store the network
weights and mini-batch activations (Rhu et al., 2016). Data
thus has to be continuously shuttled between the compute
device and external memory. This is the case even in custom
accelerators developed to accelerate just the inference (feed-
forward) phase (Himavathi et al., 2007; Cavigelli et al., 2015;
Ardakani et al., 2017; Chen et al., 2016; Han et al., 2016; Aimar
et al., 2017; Jouppi et al., 2017), where a complete forward
pass through a large-scale convolutional network can not be
executed completely on the accelerator without having to access
external memory to store intermediate activations and to load
weights.
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Energy needed to drive off-chip traffic from/to external
memory as well as memory read/write energy often contribute
significantly to the overall energy consumption of a data intensive
task such as deep learning (Lefurgy et al., 2003; Vogelsang,
2010; Chen et al., 2016). Reducing memory traffic can thus
have significant impact on the overall energy consumption of
the learning hardware. Moreover, since communication with
external memory is typically done through the chip border (in
the absence of 3D stacking), external memory bandwidth scales
linearly with chip size, whereas compute resources and internal
memory scale quadratically with chip size. Minimizing external
memory access is thus key to improving performance and power
efficiency. In this section, we analyze the savings in memory
traffic volume obtained using the learning approach based on
local errors that we propose in this paper. Note that the random

weights used in the local classifiers have virtually zero memory
overhead as they can be generated on the fly using a PRNG.

Consider a neural network with L layers. Pi and Ai are the
parameters and the mini-batch activations of layer i, respectively.
|Pi| and |Ai| are the number of elements in Pi and Ai. A neuron
in layer i has a fanout of Ri, i.e., a neuron in layer i projects to
Ri neurons in layer i + 1. In convolutional layers, we ignore any
border effects which might cause the neurons at the borders of
the feature maps to project to fewer neurons than neurons away
from the borders. We divide the training data set into Nb mini-
batches and train the network for Ne epochs. Each weight and
each neuron activation takes up one memory word (which we
assume is 32 bits).

Figure 2A illustrates the data traffic and the number of MAC
operations needed during standard backpropagation training.

FIGURE 2 | Memory traffic and number of MAC operations for different training methods. Arrows between compute device and external memory indicate memory

traffic while green arrows indicate data buffered and reused by the compute device. Each computation stage is executed a number of times given by the enclosing

repeat block. (A) Standard backpropagation learning. (B) Training all layers simultaneously using local errors. Note that there is no backward pass as weights are

updated during the forward pass.
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The data traffic in Figure 2A assumes the compute device has
enough on-board memory to buffer the output activations of
one layer in order to use these activations to calculate the next
layer’s activation. We also assume the compute device does not
need the parameters of any layer to be streamed in more than
once during each forward pass and during each backward pass.
These assumptions would hold true if the accelerator has at
least maxi(|Pi| + Nb|Ai|) words of on-board memory. For layer
i, the compute device needs to read in the layer’s parameters
Pi. It will calculate the layer’s activations, Ai. It will then have
to stream out these activations so that they can be used to
update the weights during the backward pass. The number of
MAC operations needed to calculate the activation of layer i is
Ri−1|Ai−1| which is the product of the number of neurons in
layer i− 1 and the number of each neuron’s output connections.
During the backward pass, the compute device buffers the back-
propagated errors of one layer and uses them to calculate the
errors at the preceding layer. Ri|Ai| MAC operations are needed
to calculate the weight updates for Pi+1. An additional Ri|Ai|
MAC operations are needed to backpropagate the errors from
layer i+ 1 to layer i. We ignore the special case of the input layer
where errors do not need to be backpropagated. We also ignore
the MAC operations needed to calculate the error at the top
layer.

Figure 2B illustrates the case when learning is done using
errors generated by random local classifiers. As in standard
backpropagation, Ri−1|Ai−1| MAC operations are needed to
calculate the activations of layer i. To calculate the local classifier
output, C|Ai|MAC operations are needed where C is the number
of classification classes. Note that the random classifier weights
can be generated on the fly using a PRNG, and thus only require
the PRNG seed (whose size can be 32 bits for 32-bit weights) to
be stored. To backpropagate the local classifier error to obtain
the error at layer i, an additional C|Ai| MAC operations are
needed and Ri−1|Ai−1| MAC operations are needed to update
the parameters of layer i, Pi, based on the layer’s error. Note
that the crucial difference between standard backpropagation and
learning using local errors is that the latter does not need to
stream out the activations since these activations are immediately
used to update the layer’s parameters based on the locally
generated errors and do not need to be remembered for later.
Moreover, learning using local errors only needs to read in the
parameters once (not twice as in standard backpropagation) as
the parameters are updated immediately using local errors as
soon as they are used to calculate the activations of the current
layer.

Table 1 summarizes the number of MAC operations and
the memory read/write volume required by the two training
methods. Learning using local errors has a decisive advantage
when it comes to memory traffic as it requires drastically less read
and write operations compared to standard backpropagation.
The reduction in the number of MAC operations is less
unequivocal as it depends on the number of classification classes,
C, and the fanout of the neurons in the network, Ri. Learning
using local error reduces the MAC operations count if L × C <

0.5
∑

i R
i. This condition is easily satisfied when the number of

classes is small and it was satisfied by all the networks presented
in this paper.

5. RESULTS

5.1. MNIST
We first validate the performance of our training approach
on the MNIST hand-written digit recognition task. We
used the standard split of 50,000/10,000/10,000 examples for
training/validation/testing respectively. The validation set was
added to the training set after choosing the hyper-parameters.We
use a network with 3 fully connected hidden layers with 1,000
neurons per layer and train the weights in the entire network
using local errors. As a baseline, we also train a 3-hidden layers
network using standard backpropagation where each hidden
layer also has 1,000 neurons. We experimented with using
dropout to reduce overfitting. We first used fixed symmetric
random weights in the forward and backward pathways in the

local error loops, i.e., Ki = MiT in all layers. The local classifier
errors improve for the second and third hidden layers compared
to the first hidden layer, implying that the network is able to
make use of depth to obtain better accuracy. The local classifier
errors in the second and third layers are similar implying that
the network is unable to make use of the increased depth beyond
two hidden layers for this simple dataset. When training using
local errors, we also ran experiments where the local classifier
weights were trainable parameters, i.e., the local classifier weights,
Mi, are trainable. When training local classifier weights, these
weights are updated during each training iteration in order to
minimize the error of the local classifier using standard gradient
descent, i.e., the gradient of the local classifier error with respect
to these weights was calculated and the weights were updated
to move in the negative gradient direction to minimize the
local error.This had minimal effect on accuracy as shown in
Table 2. We experimented with changing the distribution of
the local random classifier weights from a uniform distribution

TABLE 1 | Memory traffic and number of MAC operations for different learning methods.

Training method Memory read (words) Memory write (words) MAC operations

Standard backpropagation NeNb
∑

i

(2|Pi | + |Ai |) NeNb
∑

i

(|Pi | + |Ai |) NeNb
∑

i

3Ri |Ai |

Learning using local errors Ne
∑

i

|Pi | Ne
∑

i

|Pi | NeNb
∑

i

(2Ri + 2C)|Ai |

Ne and Nb are the numbers of epochs and the number of minibatches in an epoch, respectively. P
i is the layer’s parameter tensor and Ai is the layer’s mini-batch activations. Ri is the

fan-out of each neuron in layer i.
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TABLE 2 | MNIST final train and test accuracy after 100 training epochs.

Layer 1 Layer 2 Layer 3

LEL(SYM) Train 99.8 ± 0.00% 100.0 ± 0.00% 100.0 ± 0.00%

Test 97.8 ± 0.03% 98.2 ± 0.07% 98.2 ± 0.05%

LEL(SYM) + DO Train 99.1 ± 0.01% 99.6 ± 0.01% 99.7 ± 0.02%

Test 97.9 ± 0.03% 98.5 ± 0.04% 98.6 ± 0.05%

LEL(SYM) + DO/GI Train 99.0 ± 0.02% 99.6 ± 0.02% 99.6 ± 0.02%

Test 98.0 ± 0.06% 98.5 ± 0.05% 98.6 ± 0.05%

LEL(SCFB) + DO Train 98.8 ± 0.03% 99.5 ± 0.02% 99.5 ± 0.02%

Test 97.8 ± 0.05% 98.5 ± 0.04% 98.5 ± 0.02%

LEL(TLC) + DO Train 100.0 ± 0.00% 100.0 ± 0.00% 100.0 ± 0.00%

Test 98.5 ± 0.05% 98.7 ± 0.04% 98.7 ± 0.03%

LEL(TLC) Train 100.0 ± 0.00% 100.0 ± 0.00% 100.0 ± 0.00%

Test 98.2 ± 0.06% 98.4 ± 0.04% 98.4 ± 0.03%

FA + DO Train – – 99.4 ± 0.04%

Test – – 98.5 ± 0.05%

BP Train – – 100.0 ± 0.0%

Test – – 98.8 ± 0.04%

BP + DO Train – – 99.9 ± 0.01%

Test – – 98.9 ± 0.01%

When learning using local errors, the local classifier errors in all layers are reported. Mean

and standard deviation from 4 runs. LEL, Local error learning; SYM, Symmetric feedback

weights; SCFB, Sign-concordant feedback weights; TLC, Trainable local classifier; DO,

Dropout; FA, Feedback alignment; BP, Backpropagation; GI, Gaussian initialization of local

classifier weights. For local error learning, local classifier weights were initialized from a

uniform distribution, except for cases with marker GI.

to a Gaussian distribution. As shown in Table 2, performance
was unchanged. Figure 3 summarizes the main findings from
Table 2.

Next, to lessen concerns about the biological implausibility
of exact symmetry in feedforward and feedback weights, we
relaxed the weight symmetry requirement in the local error
loops and initialized the error feedback weights Ki randomly and
independently of Mi, except we then modified the sign of the

weights in Ki so that sign(Ki) = sign(MiT). The signs of the
feedback weights in the local error loops thus match the signs
of the feedforward weights (both are fixed and have independent
magnitudes). This is the ’sign-concordant feedback weights’ case
in Table 2. Generating two random number streams with sign-
concordant weights (i.e., corresponding numbers in the two
streams have the same sign) can be achieved on hardware by
running two LFSRs in parallel and using the sign of one LFSR
to set the sign of the numbers generated by the other LFSR.
Corresponding numbers in the two random streams would thus
have the same sign but independent (and random) magnitudes.
There was minimal impact on performance compared to
symmetric feedforward and feedback local classifier weights.
When we relax the symmetry requirement further and choose
Ki to be random and completely independent ofMi, the network
failed to learn and error rates stayed at near-chance level. We also
experimented with training based on feedback alignment where
errors from the top layer are backpropagated using random fixed
weights. The network’s performance using feedback alignment

is comparable to performance using local errors as shown in
Table 2.

It is important to note that in feedback alignment, the
feedforward weights eventually “align” with the random weights
used to backpropagate errors (Lillicrap et al., 2016) enabling
the network to learn. When learning using random fixed local
classifiers, and if we choose random error feedback weights,
the classifier weights are fixed and thus can not align with the
random weights used in the one-step backpropagation. Reliable
error information, however, can still reach the layer being trained
if the signs of the random backpropagation weights, Ki, match
the signs of the fixed local classifier weights Mi. This is in-
line with previous investigations into the importance of weight
symmetry in backpropagation that argue for the importance of
sign-concordance between forward and backward weights (Liao
et al., 2016).

5.2. CIFAR10
We trained a convolutional network with three convolutional
layers followed by two fully connected layers on the CIFAR10
dataset. We used a similar network as Srivastava et al. (2014). The
convolutional layers used a 5× 5 kernel, a stride of 1, and had 96,
128, and 256 feature maps going from the bottom upwards. Max-
pooling with a pooling window of 3× 3 and stride 2 was applied
after each convolutional layer. The two fully connected layers on
top had 2, 048 neurons each. All layers were batch-normalized
and in experiments where dropout was used, dropout was applied
after the input layer, after each max-pooling layer, and after each
fully connected layer.

The 32×32×3 CIFAR10 color images were pre-processed by
subtracting the per-pixel mean and dividing by the per-pixel
standard deviation. The training set of 50,000 images was used
for training/validation and we report errors on the 10,000 images
test set. Unlike the MNIST dataset, standard backpropagation
significantly outperforms training using local errors as shown in
Table 3. Performance of local error learning deteriorates slightly
when using sign-concordant local feedback weights instead of
symmetric local feedback weights. The local classifiers are not
part of the network feedforward path. Their role is to provide
error signals during training and provide a pathway to obtain
classification decisions from intermediate layers. Bymaking these
classifiers learnable, training can now adjust both the network
weights and classifier weights to minimize the local classifier
errors. The increased number of trainable parameters thus leads
to better performance as shown in Table 3. We carried out
experiments in which the first one or two convolutional layers
were fixed, i.e., their weights were fixed at at their random
initialization points. As shown in Table 3, performance suffers
indicating that local learning at early layers is important in
order to allow them to learn useful features that can then be
used by higher layers. Note that even though we fixed these
initial layers, their local classifier error is above chance since
the batch normalization parameters for these layers are still
learnable allowing the performance of the local classifiers to
go above chance. Training the local classifier leads to slightly
improved performance. Unlike the MNIST network, for this
deeper network, training using feedback alignment leads to
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FIGURE 3 | Training and test set accuracy on the MNIST dataset using a 3-layer fully-connected network. Results are shown for 5 training methods. When training

using local errors, the accuracies of the local classifiers in all layers are shown. LEL, Local Error Learning; SYM, Symmetric feedback weights; SCFB, Sign-concordant

feedback weights; TLC, Trainable local classifier; DO, Dropout; FA, Feedback alignment; BP, Backpropagation. Colored bars indicate test set accuracy. The black bars

above the colored bars indicate the accuracy on the training set which is always larger than test-set accuracy. The height of the black bars thus indicate the

generalization gap, or the difference between training set accuracy and test set accuracy. The horizontal red line indicates the test accuracy when the network was

trained using standard backpropagation.

FIGURE 4 | Training and test set accuracy on the CIFAR10 dataset using a 5-layer network. Results are shown for 5 training methods. When training using local

errors, the accuracies of the local classifiers in all layers are shown. LEL, Local Error Learning; SYM, Symmetric feedback weights; SCFB, Sign-concordant feedback

weights; TLC, Trainable local classifier; FA, Feedback alignment; BP, Backpropagation. Colored bars indicate test set accuracy. The black bars above the colored bars

indicate the accuracy on the training set which is always larger than test-set accuracy. The height of the black bars thus indicate the generalization gap, or the

difference between training set accuracy and test set accuracy. The horizontal red line indicates the test accuracy when the network was trained using standard

backpropagation.
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significantly worse performance compared to learning using local
errors. Figure 4 summarizes the main findings from Table 3.

To see how learning using local errors scales, we experimented
with a 10-layer deep convolutional network. The network has
the layer stack: C64-C64-MP-C128-C128-MP-C256-C256-
MP-C512-C512-MP-C512-C512-MP, where Cx indicates a
convolutional layer with x feature maps and 3x3 kernels, and
MP indicates a max-pooling layer. We show the learning
performance for the first 5 convolutional layers in Table 4 and
for the last 5 convolutional layers in Table 5. Learning using
local errors still lags behind standard backpropagation but it still
significantly outperforms learning using feedback alignment.
Making the local classifiers trainable significantly improves
performance in this network. Using Gaussian initialization
for the fixed random classifier weights has minimal effect on
performance. Figure 5 summarizes the main findings from
Tables 4, 5.

In Figure 5, training accuracy can reach 100% as early as
the 2nd layer when using a trainable local classifier. However,
test error continues to improve until the 6th layer. Perfect
training accuracy thus can not be used as a criterion to stop at

a particular layer since adding more layers could still improve
test-set accuracy. A valid stopping criterion, however, would be
to use a validation set to measure the generalization ability of the
network and stop usingmore layers if these layers do not improve
accuracy on the validation set. Using a validation set would thus
allow us to see that layers above the 6th convolutional layer do
not lead to improvements in accuracy, and that we can obtain the
most accurate output directly from layer 6.

6. CONCLUSIONS AND DISCUSSION

Feedback alignment learning techniques (Baldi et al., 2016;
Lillicrap et al., 2016; Nøkland, 2016; Neftci et al., 2017; Samadi
et al., 2017) have recently illustrated that weight symmetry
between the forward propagation phase and the backward
error propagation phase is not strictly necessary for successful
learning. This solves one of the core biological plausibility issues
of backpropagation which is the need for a weight copying
mechanism to realize symmetric feedforward and feedback
weights. However, feedback alignment methods, together with

TABLE 3 | CIFAR10 final train and test accuracy after 100 training epochs on a 5-layer network.

conv1 conv2 conv3 FC1 FC2

LEL(SYM) Train 49.8 ± 0.8% 98.8 ± 0.2% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0%

Test 47.3 ± 1.0% 71.0 ± 0.3% 78.7 ± 0.3% 79.0 ± 0.3% 78.9 ± 0.2%

LEL(SYM)-Fix 1 Train 22.0 ± 0.8% 91.2 ± 1.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0%

Test 22.5 ± 0.7% 66.5 ± 0.5% 75.2 ± 0.2% 75.5 ± 0.1% 75.4 ± 0.1%

LEL(SYM)-Fix 2 Train 22.7 ± 1.0% 27.0 ± 1.3% 99.2 ± 0.1% 100.0 ± 0.0% 100.0 ± 0.0%

Test 23.1 ± 0.9% 27.4 ± 1.3% 68.2 ± 0.2% 68.5 ± 0.1% 68.3 ± 0.2%

LEL(SYM) + DO Train 46.3 ± 0.7% 75.2 ± 0.9% 87.2 ± 0.7% 88.8 ± 0.6% 89.1 ± 0.6%

Test 44.8 ± 0.9% 67.8 ± 0.8% 76.4 ± 0.5% 78.1 ± 0.5% 78.1 ± 0.4%

LEL(SYM)/GI Train 50.0 ± 0.4% 98.7 ± 0.3% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0%

Test 47.5 ± 0.3% 71.1 ± 0.3% 78.6 ± 0.2% 78.8 ± 0.3% 78.6 ± 0.3%

LEL(SYM)+DO/GI Train 46.6 ± 1.1% 75.6 ± 0.7% 87.4 ± 0.5% 89.0 ± 0.4% 89.2 ± 0.4%

Test 44.8 ± 1.3% 68.3 ± 0.5% 76.6 ± 0.5% 78.5 ± 0.2% 78.3 ± 0.4%

LEL(SCFB)+DO Train 39.8 ± 1.0% 72.4 ± 0.9% 85.4 ± 0.8% 87.7 ± 0.6% 88.1 ± 0.7%

Test 38.5 ± 1.2% 65.4 ± 0.5% 75.6 ± 0.6% 78.1 ± 0.5% 78.3 ± 0.6%

LEL(SCFB) Train 43.5 ± 0.9% 96.5 ± 0.3% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0%

Test 41.4 ± 0.9% 66.9 ± 0.3% 77.1 ± 0.1% 78.0 ± 0.3% 77.9 ± 0.3%

LEL(TLC)+DO Train 70.9 ± 2.1% 86.5 ± 2.5% 97.2 ± 1.2% 98.2 ± 0.7% 97.6 ± 1.0%

Test 62.4 ± 0.7% 73.8 ± 0.8% 78.0 ± 1.2% 79.2 ± 1.1% 79.1 ± 1.2%

LEL(TLC) Train 80.8 ± 9.8% 99.8 ± 0.3% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0%

Test 63.3 ± 1.6% 75.2 ± 2.8% 80.0 ± 2.0% 80.5 ± 1.9% 80.5 ± 1.9%

FA Train – – – – 99.6 ± 0.2%

Test – – – – 62.0 ± 1.6%

BP Train – – – – 100.0 ± 0.0%

Test – – – 84.4 ± 0.1%

BP + DO Train – – – – 99.6 ± 0.06%

Test – – – – 84.0 ± 0.4%

When learning using local errors, the local classifier errors in all layers are reported. Mean and standard deviation from 4 runs. LEL, Local error learning; SYM, Symmetric feedback

weights; SCFB, Sign-concordant feedback weights; TLC, Trainable local classifier; DO, Dropout; FA, Feedback alignment; BP, Backpropagation; GI, Gaussian initialization of local

classifier weights. For local error learning, local classifier weights were initialized from a uniform distribution, except for cases where GI is indicated. “Fix n” means the parameters of the

first n convolutional layers in the network were random and non-trainable.
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TABLE 4 | CIFAR10 final train and test accuracy after 100 training epochs on the first 5 layers of 10-layer network.

conv1 conv2 conv3 conv4 conv5

LEL(SYM) Train 37.5± 0.3% 61.2± 0.9% 84.7± 0.1% 95.3± 0.1% 98.8± 0.1%

Test 36.5± 0.4% 52.5± 0.3% 63.6± 0.2% 68.7± 0.2% 72.7± 0.3%

LEL(SYM)-Fix 1 Train 19.9± 1.1% 54.6± 1.9% 85.8± 1.2% 97.2± 0.4% 99.5± 0.1%

Test 20.0± 0.9% 48.4± 1.1% 62.2± 0.2% 67.9± 0.6% 71.9± 0.4%

LEL(SYM)-Fix 2 Train 19.8± 1.0% 20.3± 0.9% 72.9± 1.9% 96.7± 0.5% 99.7± 0.1%

Test 19.9± 1.0% 20.7± 1.4% 56.7± 0.6% 63.5± 0.7% 67.2± 0.6%

LEL(SYM) + DO Train 37.0± 0.4% 49.2± 2.5% 63.0± 1.2% 65.8± 1.1% 66.6± 1.8%

Test 36.4± 0.5% 47.1± 2.3% 57.3± 1.2% 61.9± 0.9% 60.7± 1.6%

LEL(SYM)/GI Train 36.9± 0.4% 60.4± 0.8% 84.4± 0.3% 95.3± 0.2% 98.8± 0.1%

Test 36.1± 0.6% 52.4± 0.7% 63.8± 0.6% 69.1± 0.3% 73.2± 0.5%

LEL(SYM)+DO/GI Train 37.5± 0.2% 49.3± 1.2% 61.7± 2.9% 64.3± 2.3% 65.7± 4.8%

Test 36.6± 0.5% 47.4± 0.9% 56.5± 2.1% 60.9± 1.9% 60.1± 4.2%

LEL(SCFB)+DO Train 32.6± 0.8% 44.1± 0.5% 57.1± 3.9% 59.9± 4.1% 60.0± 7.0%

Test 31.9± 1.2% 42.5± 0.7% 52.8± 3.3% 56.9± 3.7% 55.5± 6.1%

LEL(SCFB) Train 32.0± 0.8% 52.2± 0.5% 76.4± 0.3% 88.2± 0.6% 95.9± 0.3%

Test 31.6± 0.5% 46.0± 0.6% 59.5± 0.6% 64.7± 0.2% 71.2± 0.5%

LEL(TLC)+DO Train 99.9± 0.1% 79.0± 3.0% 94.7± 3.0% 89.0± 2.4% 96.3± 1.9%

Test 58.8± 1.8% 66.0± 1.1% 71.0± 1.9% 75.7± 1.5% 77.9± 1.6%

LEL(TLC) Train 94.3± 8.5% 100.0± 0.0% 100.0± 0.0% 100.0± 0.0% 100.0± 0.0%

Test 56.6± 3.5% 66.3± 1.7% 74.3± 1.1% 78.1± 1.1% 81.1± 0.7%

When learning using local errors, the local classifier errors in all layers are reported. Mean and standard deviation from 4 runs. LEL, Local error learning; SYM, Symmetric feedback

weights; SCFB, Sign-concordant feedback weights; TLC, Trainable local classifier; DO, Dropout; FA, Feedback alignment; BP, Backpropagation; GI, Gaussian initialization of local

classifier weights. For local error learning, local classifier weights were initialized from a uniform distribution, except for cases where GI is indicated. “Fix n” means the parameters of the

first n convolutional layers in the network were random and non-trainable.

multi-layer spike-based learning methods, still make use of non-
local errors requiring the network to maintain its state until
activity has propagated all the way to the output and a global
error signal is generated. Several recent approaches have applied
the backpropagation algorithm to learning precise spike times
in spiking neural networks (Mostafa, 2017; Zenke and Ganguli,
2017). Yet, errors are still non-local and need to be generated
at the top of the layer stack and propagated backwards before
any weight updates can take place. The local learning scheme
we propose addresses this limitation by generating errors locally
in each layer, which gets around the unrealistic requirement of
buffering the network activity until a global error is available.
Local errors have often been used to augment the top layer
errors (Szegedy et al., 2014; Lee et al., 2015). However, until now,
relatively little work has been done on supervised learning using
exclusively local errors, and none that we know of investigated
local error generation using fixed random classifiers.

Our results show that learning using local errors generated
using random classifiers, while falling short of the performance
of standard backpropagation, significantly outperforms learning
using feedback alignment techniques (Baldi et al., 2016; Lillicrap
et al., 2016). This holds true even when relaxing the weight
symmetry requirement in the local feedback loop and using
random fixed feedback weights that are sign-aligned with the
random fixed classifier weights in the local learning loop.
Maintaining sign-alignment is problematic in the feedback
alignment technique as the sign of the feedback weights have
to dynamically track the sign of the feedforward weights

during training (Liao et al., 2016) which introduces a dynamic
dependency between the two sets of weights. In our case, since
both sets of weights are fixed, this dependency need only be
enforced initially. Dale’s law suggests that all outgoing synapses
from a biological neuron are either excitatory or inhibitory. This
is problematic for current artificial neural networks that use
bipolar weights. Dale’s law could be reconciled with the bipolar
weights typically used in current artificial neural networks by
splitting each artificial neuron into two neurons: an excitatory
neuron and an inhibitory neuron. Each outgoing connection
weight, w, coming out of the artificial neuron is also decomposed
into the difference of two positive weights, w+ and w− such
that w = w+ − w−. The excitatory neuron projects through
weight w+ to both the excitatory and inhibitory sub-neurons
of its target artificial neuron. Similarly the inhibitory neuron
projects through the negative weight −w−. The excitatory and
inhibitory neurons in each pair in the network thus always
receive the same input and thus always have the same activity
which corresponds to the activity of the artificial neuron. The
projections of each are either exclusively excitatory or exclusively
inhibitory.

Training using local errors attempts to solve many small
optimization problems (optimizing the weights of each
intermediate layer in order to reduce the error of its local
classifier). Thus, in general, it would not converge to the same
minima as those reached by standard backpropagation. This
is evidenced by the reduced test-set accuracy of local error
learning compared to standard backpropagation in our CIFAR10
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FIGURE 5 | Training and test set accuracy on the CIFAR10 dataset using a 10-layer convolutional network. Results are shown for 5 training methods. When training

using local errors, the accuracies of the local classifiers in all layers are shown. LEL, Local error learning; SYM, Symmetric feedback weights; SCFB, Sign-concordant

feedback weights; TLC, Trainable local classifier; FA, Feedback alignment; BP, Backpropagation. Colored bars indicate test set accuracy. The black bars above the

colored bars indicate the accuracy on the training set which is always larger than test-set accuracy. The height of the black bars thus indicate the generalization gap,

or the difference between training set accuracy and test set accuracy. The horizontal red line indicates the test accuracy when the network was trained using standard

backpropagation.

FIGURE 6 | Memory access volume (read and write) when training using local errors and when training using standard backpropagation. We report the memory

access volume for the three networks used in this paper when training one mini-batch with 100 examples. The number of parameters, |Pi |, for the MNIST network,

the 5-layer convnet, and the 10-layer convnet are 2784000, 13716512, and 9402048, respectively. The number of mini-batch activations, |Ai |, are 3000 ∗ 100,
40960 ∗ 100, and 156160 ∗ 100, respectively, where 100 is the mini-batch size. We used Table 1 to obtain the read/write volumes.
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TABLE 5 | CIFAR10 final train and test accuracy after 100 training epochs on the last 5 layers of 10-layer network.

conv6 conv7 conv8 conv9 conv10

LEL(SYM) Train 99.9 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0%

Test 75.9 ± 0.2% 75.9 ± 0.3% 76.3 ± 0.3% 75.7 ± 0.3% 75.7 ± 0.4%

LEL(SYM)-Fix 1 Train 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0%

Test 75.3 ± 0.1% 75.2 ± 0.2% 75.6 ± 0.2% 75.0 ± 0.2% 74.9 ± 0.2%

LEL(SYM)-Fix 2 Train 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0%

Test 71.0 ± 1.0% 70.8 ± 0.8% 71.2 ± 0.8% 70.6 ± 0.8% 70.5 ± 0.7%

LEL(SYM) + DO Train 66.2 ± 2.4% 69.9 ± 2.4% 70.5 ± 2.2% 67.8 ± 2.2% 67.9 ± 2.3%

Test 61.5 ± 2.1% 63.2 ± 2.1% 64.2 ± 1.9% 62.7 ± 1.9% 62.8 ± 2.0%

LEL(SYM)/GI Train 99.9 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0%

Test 76.0 ± 0.3% 76.1 ± 0.5% 76.2 ± 0.5% 75.7 ± 0.6% 75.6 ± 0.6%

LEL(SYM)+DO/GI Train 66.4 ± 4.7% 70.0 ± 4.7% 69.6 ± 5.0% 66.9 ± 5.2% 66.9 ± 5.2%

Test 61.4 ± 4.2% 63.1 ± 3.7% 63.1 ± 3.9% 61.6 ± 4.2% 61.6 ± 4.3%

LEL(SCFB)+DO Train 60.1 ± 6.7% 63.2 ± 5.6% 63.8 ± 5.8% 61.7 ± 5.9% 61.8 ± 6.0%

Test 56.2 ± 6.0% 57.8 ± 4.8% 58.5 ± 4.9% 57.4 ± 5.3% 57.6 ± 5.4%

LEL(SCFB) Train 99.2 ± 0.1% 99.8 ± 0.0% 99.9 ± 0.0% 99.9 ± 0.0% 99.9 ± 0.0%

Test 74.1 ± 0.4% 75.1 ± 0.1% 75.3 ± 0.2% 74.9 ± 0.2% 74.7 ± 0.1%

LEL(TLC)+DO Train 93.2 ± 1.9% 97.0 ± 1.4% 96.0 ± 1.5% 94.5 ± 1.9% 94.5 ± 1.9%

Test 79.4 ± 1.5% 80.5 ± 1.4% 80.9 ± 1.3% 80.8 ± 1.4% 80.8 ± 1.3%

LEL(TLC) Train 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0%

Test 82.7 ± 0.5% 82.9 ± 0.4% 83.1 ± 0.5% 82.9 ± 0.5% 82.9 ± 0.5%

FA Train – – – – 76.7 ± 4.0%

Test – – – – 51.3 ± 1.5%

BP Train – – – – 100.0 ± 0.0%

Test – – – – 86.7 ± 0.3%

BP + DO Train – – – – 98.4 ± 0.4%

Test – – – – 87.3 ± 0.5%

When learning using local errors, the local classifier errors in all layers are reported. Mean and standard deviation from 4 runs. LEL, Local error learning; SYM, Symmetric feedback

weights; SCFB, Sign-concordant feedback weights; TLC, Trainable local classifier; DO, Dropout; FA, Feedback alignment; BP, Backpropagation; GI, Gaussian initialization of local

classifier weights. For local error learning, local classifier weights were initialized from a uniform distribution, except for cases where GI is indicated. “Fix n” means the parameters of the

first n convolutional layers in the network were random and non-trainable.

experiments, which indicates both approaches converge to
significantly different optima.

We provide some informal intuition for why we believe
learning using local errors gives reasonable performance in
practice: the locally generated errors provide a signal to the
intermediate layers that encourages them to learn features that
are linearly separable across the classification categories. Only by
learning linearly separable features can the hidden layer reduce
the error of the local linear random classifier. The intermediate
layer will typically be unable to learn features that can be used to
perfectly disentangle the input into different categories by a linear
classifier (as evidenced by the non-zero layer error). However, it
is encouraged by the error signal to make the features learned
as linearly separable across the training categories as possible.
The subsequent layer then builds on these partially disentangled
features to attempt to learn even better linearly separable features.
Eventually, higher up in the network, a layer is able to learn a
disentangled representation that is separable enough to allow the
local linear random classifier to achieve adequate performance.

Number of training set errors, even for CIFAR10 converge
to zero implying that the local learning algorithm is able to
successfully converge to a minimum where training loss is close

to zero. Even in the presence of dropout, backpropagation
consistently reaches a training error minimum that generalizes
better than the minimum reached by local error learning. This
is evidenced by the better test set accuracy of networks learned
using backpropagation compared to networks learned using
local errors, even though both learning mechanisms effectively
push number of training errors to zero. We find that while
learning using local errors often reaches zero training set error,
it lags behind standard backpropagation in test set accuracy.
That could be due to the fact that learning using local errors
does not simultaneously train multiple level of representations
as standard backpropagation. Thus, even though local error
learning is training a deep network, it can not truly capitalize on
the benefits of depth in improving generalization performance in
the same way as backpropagation.

Our CIFAR10, results indicate that locally generated errors
allow a convolutional layer to learn good features that are then
used by the subsequent layer to learn even more informative
features as evidenced by the increased accuracy of the local
classifiers in higher layers. In the end, however, our approach
solves many small optimization problems where each problem
involves only the weights of one layer. We therefore lose one
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of the core advantages of standard backpropagation learning
using a global objective function: the high probability of finding
a good minimum in the parameter space that generalizes well
when the dimensionality of this parameter space is large, i.e.,
when it includes all the network parameters (Choromanska et al.,
2015; Im et al., 2016). It was thus expected that classification
performance will suffer compared to learning using standard
backpropagation and a global objective function.

Current state of the art recurrent networks used in
various machine learning applications (Hochreiter and
Schmidhuber, 1997; Chung et al., 2015) are typically trained
using backpropagation through time (BPTT). BPTT suffers from
similar issues as backpropagation with regards to biological
plausibility and hardware implementation efficiency, namely, the
need to buffer activations and neural states across multiple time
steps until errors become available. We have described a local
learning scheme with spatial locality of error. This scheme could
potentially be applied to recurrent networks to generate an error
signal at each time step, i.e., the scheme could be used to achieve
temporal locality of error. This would be possible if the required
recurrent network output at the final time step is known. This
final network output could then be used as a virtual target within
each time step (not just the final step) to generate a temporally
local error. This error does not propagate back through time
but is only used to update the weights based on the activity in
the current time step. This would greatly reduce the memory
requirements of BPTT since activations at intermediate time
steps need not be stored, as well as provide both a temporally
and spatially local source of error.

Single cell measurements in monkey area IT indicate broad
tuning to a range of categories (Sigala and Logothetis, 2002;
Kiani et al., 2007). This broad category tuning is realized in the
proposed training scheme through the random local classifier
weights that define how a neuron contributes to the score of
each classification category. During training, the actual tuning
properties of each neuron change to be in-line with the pre-
defined fixed tuning defined by the random classifier weights, as
this is the only way to minimize the local classifier error. Our
error generation mechanism has several biologically attractive
aspects:

1. It involves only two synaptic projections allowing errors to
be generated quickly and weight updates to be carried out
before input-induced changes in the states of the neurons
have decayed. This avoids the common and unrealistic
input buffering requirement encountered in standard
backpropagation and feedback alignment techniques.

2. Error generation involves random projections that do not
have to be learned. This makes the error generation loop
particularly simple and removes any potential problematic

interactions between learning the auxiliary classifier weights
and learning the main network weights.

3. Strict weight symmetry is not required in the error pathway,
only sign-alignment between two sets of fixed randomweights
is needed.

The use of fixed random local classifier weights allows us
to sidestep one of the main hardware-related issues of using
auxiliary local classifiers: the need to store the local classifier
weights. Especially in large convolutional layers, storing the local
classifier weights could be prohibitively expensive in terms of
memory resources. Since the local classifier weights need to be
accessed in a fixed order during each training iteration in order to
calculate the classifier outputs, they can be cheaply, quickly, and
reproducibly generated on the fly using a PRNG and a small seed.
We have shown that this approach allows us to obtain a learning
mechanism that drastically reduces memory traffic compared
to standard backpropagation as shown in Table 1. In Figure 6,
we show the memory read and write volume needed to train
each of the networks presented in this paper for one mini batch
with 100 examples. We did not consider the batch normalization
parameters since these are typically quite few compared to the
number of parameters in the fully connected layers and the
convolutional layers.

During inference, the random classifier weights in each layer
(which are compactly stored in a small seed) can be used to
generate a classification decision during the evaluation of each
layer. Thus, if needed, a series of classification decisions can
be obtained, one from each layer, at a small computational
cost and virtually no memory cost. The decisions from bottom
layers, even though less accurate than the decisions from higher
layers, can be used in situations where response time is critical.
This allows the network to be dynamically truncated where
higher layers are not evaluated and the final decision taken
from intermediate layers. This feature of the proposed networks
enables a dynamical trade-off between accuracy and energy
consumption/computational load where only as many layers as
allowed by the energy budget, or response time constraint, are
evaluated.
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