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Implantable neural prostheses are in widespread use for treating a variety of brain
disorders. Until recently, most implantable brain devices have been unidirectional, either
delivering neurostimulation without brain sensing, or sensing brain activity to drive
external effectors without a stimulation component. Further, many neural interfaces
that incorporate a sensing function have relied on hardwired connections, such that
subjects are tethered to external computers and cannot move freely. A new generation of
neural prostheses has become available, that are both bidirectional (stimulate as well as
record brain activity) and totally implantable (no externalized connections). These devices
provide an opportunity for discovering the circuit basis for neuropsychiatric disorders,
and to prototype personalized neuromodulation therapies that selectively interrupt neural
activity underlying specific signs and symptoms.
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INTRODUCTION

Implantable bidirectional neural prostheses are devices that combine neurostimulation with neural
sensing. These may be implanted in the central or peripheral nervous system. Here, we focus on
bidirectional interfaces that are implanted in the central nervous system (CNS). Most implantable
CNS prostheses in current clinical use are unidirectional, restricted to either stimulation or
sensing only. An example of a stimulation-only application is deep brain stimulation (DBS) for
Parkinson’s disease (PD) and other movement disorders (Almeida et al., 2017). In this clinical
therapy, multipolar leads implanted in the basal ganglia or thalamus are connected to an implanted
pulse generator (IPG) that delivers current, and can be controlled externally by radiotelemetry. An
example of a sensing-only CNS prosthesis is the “BrainGate” multielectrode cortical implant (Tsu
et al., 2015). Implanted in motor cortex in patients with paralysis, BrainGate uses multichannel
single unit activity to achieve neural control of external mechanical effectors.

Another important distinction in implantable neural prostheses is between those requiring
hardwired connections to communicate with external computers, vs. those that are totally
implantable with wireless data transmission. Some devices with a sensing function, such as
BrainGate for paralysis, are based on sensing unit activity from a multichannel microelectrode
array. Unit activity may be important to achieve the highest number of degrees of freedom for
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optimal mechanical control. However, the high bandwidth
needed for sensing action potentials has necessitated data
transmission through hardwired externalized connections. This
configuration reduces patient mobility, may be challenging for
home use, and elevates infection risk, limiting device lifespan.
Totally implantable interfaces, in contrast, are more practical for
long term ambulatory use.

Several bidirectional, totally implantable neural interfaces
designed for CNS use are now available. These include the
Responsive Neurostimulation system (RNS) manufactured
by Neuropace, Inc. (Morrell, 2011), and Activa PC+S,
manufactured by Medtronic, Inc. (Rouse et al, 2011). Their
technical capabilities and disease applications are summarized in
Table 1. RNS has one indication approved by the United States
Food and Drug Adminstration (medically intractable partial
epilepsy), while Activa PC+S is investigational only in the
United States. An additional device, the Synapse DBS system
(Nexeon, Inc.) is available in Europe, but use of its sensing
function has not yet been reported. Both RNS and Activa PC+S
have the capability to embed feedback control algorithms in
the pulse generator, and to stream neural data wirelessly to
external computers (Table 1). These capabilities open up many
new applications for this type of brain-computer interface, and
may transform some of the most common existing applications.
While initial therapeutic advances for totally implantable
bidirectional interfaces have been in movement disorders and
epilepsy, device platforms and conceptual frameworks developed
for these conditions may also translate to alleviation of disorders
of memory, mood, and executive function. Here, we briefly
review technical and conceptual foundations for emerging
applications of CNS bidirectional neural interfaces in motor and
non-motor systems.

USE OF FIELD POTENTIAL RECORDINGS
IN NEURAL INTERFACES

Both RNS and Activa PC+S are designed for sensing local
field potentials (LFPs) recorded from “macroelectrodes;” such
as depth electrodes and DBS leads, or electrocorticography
(ECoG) potentials recorded from subdural strip leads, rather
than single unit activity from microelectrodes. Transmission of
field potential data has more modest bandwidth requirements
and signal complexity than unit activity, allowing these devices to
be totally implanted with wireless connectivity. Field potentials
are composed of the summed, synchronized neural activity
generated by the population of neurons in close proximity to
the recording lead. LFPs and ECoG potentials maybe used to
decode critical elements of brain network activity, and are well
suited to many BCI applications. In systems neuroscience, it is
increasingly recognized that complex brain functions are often
encoded in the pattern of synchronization within and between
populations of neurons, and that this synchronization is usually
oscillatory in nature (Voytek and Knight, 2015; Yuste, 2015).
LFP and ECoG potentials are ideal for assessment of oscillatory
synchronization. Low frequency (<100 Hz) oscillatory rhythms
reflect subthreshold fluctuations in transmembrane potential that
are synchronized across a large population of neurons. These
fluctuations statistically influence the firing of action potentials.
In ECoG recordings, high frequency broadband activity (50—
200 Hz), often called “high gamma,” tracks local cortical function
(Crone et al, 1998) and provides a surrogate measure of
population spiking activity (Manning et al., 2009). Thus, ECoG
offers an alternative means to assess population spiking activity
that is much more practical than chronic multichannel unit
recording.

TABLE 1 | Comparison of two wireless bidirectional devices designed for brain implantation.

Device feature
Swann et al., 2017)

Activa PC+S (Medtronic) (Rouse et al., 2011;

Responsive neurostimulator (Neuropace) (Sun et al.,
2008; Sun and Morrell, 2014)

Clinical indications approved by the United States
FDA

Investigational only

lead connectivity

Up to two quadripolar leads

Epilepsy: adults with partial onset seizures that have not
been controlled with two or more antiepileptic
medications

Up to two quadripolar leads

Pulse generator location Chest Skull
Rechargeable? No No
Designed for continuous stimulation? Yes No
Maximum number of channels that can be sensed Four (Two time series, two spectral power in Eight
simultaneously (time series) predefined bands)

Maximum sampling rate 800Hz 250Hz

Data collection modes at home

Type of detection algorithm that can be embedded

Available stimulation parameters

Time series data or spectral power in predefined
bands may be stored on device, triggered by
event detection, scheduled time of day, or patient
programmer

Classifier based on spectral power in predefined
frequency band

Voltage or current controlled, biphasic square
waves, frequency 2-250Hz, amplitude 0-10.5V or
25.5mA, pulse widths 60-450 ps

Time series data can be stored on device, triggered by
event detection, responsive stimulation, scheduled time
of day, or magnet (patient programmer)

Classifier based on predefined time domain and
frequency domain tools: area,

line-length, and half-wave

Current controlled, biphasic square waves, frequency 1
to 3383 Hz, amplitude 1-12 mA,

pulse widths 40 to 1,000 ps
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The importance of oscillatory activity in brain function
is underscored by the “communication through coherence”
hypothesis (Fries, 2005), positing that functionally connected
brain regions communicate by oscillating together in a preferred
phase relationship. When regions are phase coherent at
an optimal phase lag, action potentials in efferent fibers
from one structure will have a greater tendency to produce
spiking in its target structure, based on arrival at the
correct phase of transmembrane potential oscillations. One
implication of this conceptual framework is that analysis of phase
coherence between structures in a network may be critical for
understanding that network’s function. Thus, effective sensing in
neuroprosthetics may require multisite recording from multiple
leads in a network of related structures, rather than single site
recording.

Alterations in oscillatory synchronization are increasingly
recognized as fundamental to a variety of brain disorders (Voytek
and Knight, 2015). In movement disorders, for example, specific
motor signs are correlated with exaggerated network oscillations
at characteristic frequencies: 13-30Hz (beta) rhythms for
hypokinetic states such as bradykinesia in PD (Oswal et al., 2013),
60-90 Hz (gamma) for hyperkinetic states (Swann et al., 2016),
4-8Hz (theta) for dystonic postures (Neumann et al., 2017a),
and 10Hz (twice tremor frequency) for parkinsonian tremor
(Timmermann et al., 2003). Derangements of synchronization
are also recognized in disorders of mood and cognition (Voytek
and Knight, 2015). For example, alpha oscillations in limbic
structures correlate with the severity of depression in patients
undergoing DBS of the subgenual cingulate gyrus or bed
nucleus of the stria terminalis (Neumann et al., 2014). Beta
band connectivity between subthalamic nucleus and lateral
prefrontal cortex influences decision making, and alterations in
this network may underly impaired executive function in PD
(Zavala et al., 2017).

DEVELOPMENT OF ADAPTIVE
STIMULATION ALGORITHMS

The identification of oscillatory rhythms underlying specific
signs and symptoms of brain disorders raises the possibility
of designing tailored neurostimulation therapies that deliver
a “desynchronizing” stimulus when neural correlates of the
targeted problems are detected by field potential sensing. This
therapeutic approach is often referred to as adaptive, feedback
controlled, closed loop, or “smart” neurostimulation (Meidahl
et al, 2017). Chronic adaptive neurostimulation therapies
tailored to specific signs and symptoms can be implemented
using the newly available bidirectional interfaces, since they
have both the capability for wireless transmission of data to
external computers (necessary for personalized signal discovery),
and the capability for embedded closed loop control. RNS was
the first such system implanted in humans, and remains the
only one to have an FDA approved indication in the USA
(Table 1). Developed for epilepsy (Morrell, 2011), RNS has also
been tested for feedback controlled thalamic stimulation for the
suppression of tics in Tourette’s syndrome (Molina et al., 2017).

FIGURE 1 | lllustration of a totally implanted bidirectional neural interface
designed for chronic multisite recording in humans, as well as therapeutic
neurostimulation. Quadripolar electrode arrays are implanted in the
subthalamic nucleus and over motor cortex (enlarged view in inset), and
attached to Activa PC+S (Medtronic Inc.) implanted over the pectoralis
muscle. Data are non-invasively downloaded to an external tablet computer by
radiotelemetry. The device is used to characterize networks related to
abnormal movement in Parkinson’s disease (Swann et al., 2016) and to
prototype control algorithms for closed loop stimulation (Swann et al., 2018).
This art, by UCSF medical illustrator Ken Probst, is also published in Swann
et al. (Swann et al., 2017), with permission.

RNS has limited applicability to non-paroxysmal disorders (such
as Parkinson’s disease and mood disorders), since continuous
or near-continuous stimulation with this system would result in
rapid depletion of its non-rechargeable battery.

Activa PC+S (Medtronic) is the first totally implantable
bidirectional neural interface designed for continuous use. It
became available in the USA in 2013, but only for investigational
studies. Early uses of Activa PC+S have focused on signal
discovery in movement disorders, including identification of
neural correlates of the dyskinetic state (Figurel; Swann
et al, 2016), gait freezing (Syrkin-Nikolau et al., 2017), or
disease severity (Neumann et al., 2017b) in PD, and of tics in
Tourette’s syndrome (Shute et al., 2016). Such personalized neural
signatures have been used to prototype adaptive stimulation
algorithms in Parkinson’s disease (Swann et al, 2018) and
essential tremor (Herron et al., 2017). PC+S can be used as a
wireless, totally implantable motor cortex prosthesis for paralysis
(Vansteensel et al., 2016), allowing practical long term use
outside of hospital or laboratory environments, at the expense
of much reduced bandwidth compared to externalized systems
such as BrainGate (Tsu et al., 2015). Totally implantable neural
interfaces also provide the first opportunities for chronic invasive
human brain recording in naturalistic environments and in freely

Frontiers in Neuroscience | www.frontiersin.org

September 2018 | Volume 12 | Article 619


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Starr

Totally Implantable Bidirectional Neural Prostheses

moving subjects, and can thus contribute to fundamental studies
in systems neuroscience (Aghajan et al., 2017).

Activa PC+S is expected to be replaced in 2018 by a
second generation version, Summit RC+4S (Medtronic). RC+S
is rechargeable, allows more sophisticated embedded closed
loop algorithms than its predecessor, can stream data at a
distance to external receivers, and may offer improved signal
to noise characteristics, with more reliable detection of high
gamma (>100Hz) activity (Swann et al., 2017; Wozny et al,
2017). A recharging capability may also allow more intensive
data collection than is possible using Activa PC+S, a primary
cell device, since continuous sensing shortens its battery life
(Ryapolova-Webb et al., 2014).

APPLICATIONS TO NON-MOTOR
SYSTEMS

Other than for epilepsy, there has been limited therapeutic use
of bidirectional neural interfaces in non-motor systems. An
early application may be the treatment of non-motor features
of Parkinson’s disease, in patients already undergoing standard
DBS for their motor signs (Deeb et al., 2016). Chronic sensing
(Neumann et al., 2014) may also suggest physiological signatures
of obsessive-compulsive disorder and major depression (Deeb
et al, 2016). Of note, continuous open loop stimulation
paradigms showed early successes in mood disorders, but in
general have failed to show sufficient efficacy in randomized
multicenter trials (Widge et al., 2016). This motivates a new
approach in psychiatric neuromodulation, based on discovery of
personalized electrophysiologic signatures of specific symptoms,
followed by embedding of adaptive algorithms that provide a
desynchronizing stimulus only in response to detection of those
signals.

Another therapeutic paradigm in cognitive or psychiatric
applications could be based on training paradigms that
utilize neural data streamed from implantable devices. An
operant conditioning approach, in which subjects learn how
to voluntarily modulate their own brain rhythms assisted by
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