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Parkinson’s disease (PD) is the second most common neurodegenerative disorder
worldwide. Its main neuropathological hallmarks are the degeneration of dopaminergic
neurons in the substantia nigra and alpha-synuclein containing protein inclusions, called
Lewy Bodies. The diagnosis of idiopathic PD is still based on the assessment of clinical
criteria, leading to an insufficient diagnostic accuracy. Additionally, there is no biomarker
available allowing the prediction of the disease course or monitoring the response to
therapeutic approaches. So far, protein biomarker candidates such as alpha-synuclein
have failed to improve diagnosis of PD. Circulating microRNAs (miRNAs) in body fluids
are promising biomarker candidates for PD, as they are easily accessible by non-
or minimally-invasive procedures and changes in their expression are associated with
pathophysiological processes relevant for PD. Advances in miRNA analysis methods
resulted in numerous recent publications on miRNAs as putative biomarkers. Here,
we discuss the applicability of different body fluids as sources for miRNA biomarkers,
highlight technical aspects of miRNA analysis and give an overview on published studies
investigating circulating miRNAs as biomarker candidates for diagnosis of PD and other
Parkinsonian syndromes.
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INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative disorder and affects about 0.3% of
the population in industrialized countries (Dexter and Jenner, 2013). Due to the lack of a reliable
objective biomarker, the diagnosis of idiopathic PD is still based on the assessment of clinical
criteria (Postuma et al., 2015), leading to an insufficient diagnostic accuracy especially in the
early stages of the disease (Rizzo et al., 2016). Furthermore, no biochemical marker currently
is able to predict the disease course, the individual response to therapy or contributes to a
clear differentiation between idiopathic PD and clinical mimics, such as atypical Parkinsonian
syndromes. The neuropathology of PD is characterized by a progressive loss of dopaminergic
neurons in the substantia nigra and their striatal projections, as well as intra-neuronal α-synuclein-
containing protein inclusions, called Lewy Bodies. To establish a clinically useful biomarker for
PD, the use of body fluids that are available by non- or minimally-invasive procedures (e.g.,
cerebrospinal fluid (CSF), blood, saliva or urine) would be preferable. One of the most extensively
tested candidates as a liquid biomarker related to PD pathology is α-synuclein. However, several
studies showed that α-synuclein levels in blood or CSF lack discrimination power and specificity
(Malek et al., 2014; Goldman et al., 2018). Next to proteins and metabolites, circulating microRNAs
(miRNAs) were previously shown to be useful biomarkers in other pathologies, e.g., cancer
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(Jamali et al., 2018) or cardiovascular disease (de Gonzalo-Calvo
et al., 2018). miRNAs are small non-coding RNAs involved in
the regulation of gene expression. Changes in the expression
of miRNAs are associated with PD-relevant pathophysiological
processes, thus they are auspicious body fluid-derived biomarkers
for diagnosis and progression of PD. In this review, we
discuss the suitability of different body fluids as a source for
miRNA biomarkers, highlight technical aspects of RNA isolation,
detection and analyses and give an overview of recent advances
in miRNA-biomarker research relevant for PD.

SOURCES, TECHNICAL
CONSIDERATIONS AND BIOMARKER
POTENTIAL OF miRNAs

miRNAs are endogenous post-transcriptional regulators of
gene expression that are crucial for biological processes. The
expression of different miRNAs is strongly dependent on
physiological and pathological stimuli and reflects the functional
state of a cell, making the miRNA signature an interesting
biomarker candidate. Because the affected CNS tissue itself is
not routinely accessible it is important to consider that any
body fluid that is used as biomarker source only partially
recapitulates CNS pathology. Possible sources for miRNAs
include non-neuronal cells or easily accessible body fluids. One
of the best studied non-neuronal cell types in neurodegenerative
disease biomarker research are peripheral blood mononuclear
cells (PBMCs), which contain lymphocytes and monocytes.
Several studies investigated the comparability of genetic and
epigenetic signatures in the CNS and blood, at which epigenomic
changes like DNA methylation showed a higher correlation
than transcriptomic changes [reviewed in (Tylee et al., 2013)].
Furthermore it was shown that analysis of PBMC miRNA
expression allows to discriminate controls from diseased patients
in different neurological disorders (Keller et al., 2009; Gandhi
et al., 2013; Fan et al., 2014, 2015; Lai et al., 2016; Ren et al., 2016).
Consequently, miRNA expression in PBMCs was suggested as a
diagnostic biomarker for PD.

The recent progress in high-sensitive RNA detection and
analyses technologies led to the discovery of extracellular RNA
species in body fluids, among them messenger RNA (mRNA),
ribosomal RNA (rRNA), long non-coding RNA (lncRNA), exonic
circular RNA (circRNA) and small non-coding RNA species
like miRNA reviewed in Patton et al. (2015). The majority
of extracellular RNA species are detected in vesicles such as
exosomes, nano- and microvesicles or apoptotic bodies; however,
they can also be found outside of vesicular structures bound
to lipoproteins (Vickers et al., 2011) or Argonaute2 (Arroyo
et al., 2011). Several studies reported the isolation of extracellular
miRNA from different body fluids such as saliva, serum, urine,
and CSF (Burgos et al., 2014; Akers et al., 2017; Dangla-Valls
et al., 2017; Yeri et al., 2017). Because CSF circulates in a closed
system and is in direct exchange with the brain parenchyma, it
is a promising biomarker source for neurodegenerative diseases
that might provide more specific insights into the cellular disease-
mechanisms as compared to blood. miRNA profiles in CSF

were shown to discriminate healthy controls from patients with
different neurological diseases (Dangla-Valls et al., 2017; Marques
et al., 2017; Reed et al., 2018).

Next to the choice of the biomarker source, another
important aspect is the technique for RNA isolation and
analysis. Using extracellular miRNAs means to either isolate
them directly from the source material like CSF or isolate
vesicles prior to RNA isolation to achieve an enrichment.
Different methods are available to isolate vesicles from body
fluids, among them differential ultracentrifugation, density
gradient-based ultracentrifugation or precipitation-based
methods. A comparison of the resulting vesicular RNA profiles
showed marked differences depending on the vesicular isolation
technique (Van Deun et al., 2014), which is likely due to different
RNA profiles in respective vesicle subpopulations (Crescitelli
et al., 2013). Additionally, the RNA isolation method plays
an important role. Most methods rely on either guanidinium
thiocyanate-phenol-chloroform extraction or a lysis step
followed by column precipitation and result in high quality RNA.
However, they also lead to differences in terms of RNA quantity
and size profiles, due to, e.g., lysis capacities of buffers (Eldh
et al., 2012; Burgos et al., 2013; McAlexander et al., 2013).

The precise determination of miRNA expression levels in
a specimen is essential for the development of miRNA-based
biomarkers. Several miRNA detection methods have been
developed, from solid-based methods like Northern blots and
microarrays, to solution-based methods like PCR and next
generation sequencing (NGS), and all of them come with
different limitations reviewed in de Planell-Saguer and Rodicio
(2011). Ideally, the method of choice is highly sensitive and
allows quantitative and qualitative unbiased analysis of miRNAs,
even with minimal amounts of input material. To date, the most
promising method used is small RNA sequencing, because it
allows the unbiased analysis of all known and unknown miRNAs
in a specimen without target pre-selection. Shortcomings for
biomarker research are the RNA input requirements for
sequencing protocols as well as the still relatively high costs of
NGS. Some studies demonstrate that downscaling is possible
without losing sensitivity and specificity (Burgos et al., 2013,
2014; Rao et al., 2013; dos Santos et al., 2018). As NGS is
still a relatively new technique and the solutions for small
RNA sequencing are continuously improved, it is likely that
this technique will be more widely available in the future.
The development of diagnostic biomarkers for PD based on
circulating miRNAs thus requires the consideration of multiple
aspects like source liquid, isolation technique and quantification
methods and these points should also be taken into account when
comparing already published studies in this field (Figure 1A).

CIRCULATING miRNAs AS
BIOMARKERS IN PARKINSON’S
DISEASE

So far, a limited number of studies have been published on
miRNA expression in biological fluids from PD patients and
only a small fraction of the human miRNAome has been
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FIGURE 1 | Circulating miRNAs as biomarkers for PD and other Parkinsonian syndromes. (A) Methodological aspects to consider in circulating biomarker research.
(B) Proportion of the human miRNAome demonstrated to be significantly regulated in biomarker studies for PD and other Parkinsonian syndromes.

detected in this context (Figure 1B). Blood and its derivatives
were the most extensively studied source fluid. Only one study
analyzed miRNA levels in whole blood by PCR arrays and
revealed a set of differentially expressed miRNAs that permitted
the discrimination of PD patients and controls (miR-1-3p,

miR-22-5p, and miR-29a-3p), as well as differentiating between
Levodopa/Carbidopa-treated and untreated PD groups (miR-
16-2-3p, miR-26a-2-3p, and miR30a-5p) (Margis et al., 2011).
Unfortunately, comparable studies validating these results were
not published.
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miRNA levels in plasma of PD patients were analyzed in
four studies using either microarray or quantitative real-time
PCR (qRT-PCR) for analysis. Interestingly, each of these studies
reported different results without any overlap (Supplementary
Table 1). The earliest study identified a set of PD-predictive
miRNAs by microarrays (miR-1826, miR-626, and miR-505-3p)
(Khoo et al., 2012). The candidates were further validated by qRT-
PCR and showed high predictive power, sensitivity and specificity
in a replication cohort. Later, miR-331-5p was shown as the only
significantly increased miRNA in plasma of PD patients using
qRT-PCR in a cohort with similar numbers (Cardo et al., 2013).
Li et al. assessed the levels of 3 miRNAs, which were previously
reported to associate with neurogenesis and PD-related processes
(Cheng et al., 2009; Gehrke et al., 2010; Kong et al., 2015).
They found two significantly regulated miRNAs, miR-137-3p,
and miR-124-3p, in PD patients (Li et al., 2017). In a similar
study the expression of 5 pre-selected miRNAs was analyzed,
identifying increased expression of miR-30a-5p and miR-30b-5p
in PD (Schwienbacher et al., 2017). Five studies used serum to
find potential miRNA biomarkers in PD. In 2014, serum levels
of several miRNAs in a discovery cohort were investigated (10
idiopathic/10 LRRK2-mutated/ 10 controls) by qRT-PCR. The
findings were validated in two isolated replication studies (in
total 85 idiopathic PD patients, 11 LRRK2-mutation carriers
and 85 controls), where the expression levels of four miRNAs
(miR-29a-3p, miR-29c-3p, miR-19a-3p, and miR-19b-3p) were
significantly reduced in idiopathic PD patients and LRRK2-
mutation carriers (Botta-Orfila et al., 2014). A study including
a significantly larger number of subjects in both discovery
and validation cohorts distinguished a set of 5 serum-miRNAs
that are able to differentiate PD patients from controls: after
Solexa-sequencing and PCR validation miR-195-5p, miR-185-5p,
miR-15b-5p, miR-221-3p, and miR-181a-5p were differentially
expressed in PD (Ding et al., 2016). Vallelunga and colleagues
assessed miRNA levels in the serum of PD patients, multiple
systems atrophy (MSA) and control subjects, revealing miRNAs
specifically downregulated in PD (miR-30c-5p and miR-148b-
3p) (Vallelunga et al., 2014). Similarly, another study found
down-regulation of miR-141-3p, miR-214-3p, miR-146b-5p, and
miR-193a-3p in PD. Individual receiver-operating-characteristic
(ROC) curves for the miRNAs presented high area under the
curve (AUC) values for both training and validation cohorts
(AUCs > 0.782) (Dong et al., 2016). Evaluation of miRNAs in
serum of 138 PD patients and 112 controls by qRT-PCR identified
4 candidate miRNAs in PD (miR-29c-3p, miR-146a-5p, miR-
214-3p, and miR-221-3p). Among those, miR-221 was found
decreased and showed a positive correlation to UPDRS scores
and an AUC value of 0.787 for PD-prediction (Ma et al., 2016).
Again, all mentioned studies show a very limited overlap in
detected target miRNAs and only miR-29c-3p, miR-214-3p, and
miR-221-3p were reported in more than one study. Compared to
the studies in plasma, the cohorts here were much larger, which
might explain their better reproducibility.

miRNA expression in PBMCs of PD patients was addressed in
4 studies. In 2011 microarray analysis of 19 PD and 13 control
cases identified 18 miRNAs as down-regulated in PD, including
several of the regulated miRNAs in serum/plasma mentioned

above (Martins et al., 2011). Furthermore, it was shown that
deep brain stimulation (DBS) influences miRNA expression in
PD patients. 16 differentially expressed miRNAs were found in
leukocytes of PD patients in comparison to controls pre-DBS.
Post-DBS 11 miRNAs were significantly regulated in relation
to the pre-DBS state. Interestingly, 5 miRNAs were common
between both comparisons but inversely regulated post-DBS,
suggesting that this therapeutic intervention has an influence
on miRNA expression in PBMCs (Soreq et al., 2013). Another
study revealed up-regulation of miR-29c-3p, miR-424-5p, and
miR-30e-5p in PBMCs of PD cases, partially in line with the
aforementioned findings (Pasinetti, 2012). At last, qRT-PCR
analysis of 5 pre-selected miRNAs revealed increased expression
of miR-103a-3p, miR-30b-5p, and miR-29a-3p in PBMCs of
PD patients (Serafin et al., 2015). All mentioned studies were
performed with relatively small cohorts (7–46 PD patients) and
show no overlapping results. Interestingly, the studies by Martins
et al. and Serafin et al. both report differential expression of
miR-30b-5p in PD, however, with inversed directions.

One of the few studies investigating miRNA levels in CSF
identified differentially expressed miRNAs in post-mortem serum
and CSF samples of PD patients and controls using NGS. Besides
reporting that the miRNA signature in CSF seems to be slightly
more stable, they found 17 differentially expressed miRNAs in
CSF (Burgos et al., 2014). The authors observed a decrease in
miR-132-5p PD, which is an extensively studied miRNA linked
to PD (Gillardon et al., 2008; Junn and Mouradian, 2012; Yang
et al., 2012). In the serum of PD patients 5 miRNAs were
found deregulated, which partially overlapped with other studies
(Margis et al., 2011; Schwienbacher et al., 2017).

Quantitative RT-PCR analysis of 44 PD and 42 controls
identified miR-200a-3p, miR-542-3p, and miR-144-5p
upregulated in CSF of PD patients. After ROC and ordinal
regression analyses, these candidates showed a high correlation
with disease stages (Mo et al., 2016). In a similar study analyzing
CSF of PD and MSA cases, levels of miR-205 and miR-24 were
found decreased in PD (Marques et al., 2017).

Exosomal miRNAs isolated from CSF also show differential
expression according to disease states. 27 significantly regulated
miRNAs were identified in CSF exosomes by qRT-PCR (Gui et al.,
2015). Thereof, 6 miRNAs were further validated based on their
involvement in related signaling pathways: miR-1, miR-19b-3p
showed decreased expression in PD, while miR-153, miR-409-
3p, miR-10a-5p, and let-7g-3p were found upregulated. A recent
study reported that 5 miRNAs were able to differentiate between
early stage PD and healthy controls: miR-151a-3p and let-7f-5p
were up-regulated in PD CSF, whereas miR-27a-3p, miR-125a-5p,
and miR-423-5p were significantly decreased (dos Santos et al.,
2018). The different studies performed with total CSF or CSF-
exosomes show no overlapping results, even though the cohorts
were of a comparable size. One possible explanation are the
different methods used for analysis and the fact that RNA was
isolated from total CSF or CSF-exosomes. Furthermore, Burgos
and colleagues used CSF that was taken post-mortem. Taken
together, several miRNAs have been reported as differentially
expressed in multiple body fluids of PD patients (Supplementary
Table 1). Only a few of them were significantly regulated in more
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than one study, e.g., miR-29c-3p, miR-19b-3p, and miR-29a-3p,
partially with contradictory results that might be explained by
differences in the technical execution (Figure 2). Reasons for
the limited overlap between studies can be found on different
levels of the analyses. On one hand, the studies mentioned
above use different source material for their analysis, mainly
serum, plasma, PBMCs, or CSF, leading to different results.
Direct comparisons of blood- and CSF-derived miRNAs revealed
different miRNA expression patterns as well as blood- or CSF-
exclusive miRNAs that were not detected in the respective other
body fluid (Sørensen et al., 2014, 2016). This implements that
not-blood-derived source materials like CSF have to be controlled
extensively for blood contamination (Müller et al., 2014). In
addition, cohort size differed between the studies and not all
included an independent validation cohort. Another factor that
might lead to different results is the method of RNA isolation.
Depending on the isolation method (e.g., total RNA vs. small
RNA; guanidinium thiocyanate-phenol-chloroform extraction
vs. lysis followed by column precipitation; choice of RNA carrier)
used, different size profiles and RNA quantities can be expected.
This was demonstrated in studies analyzing the influence of
the RNA isolation method on miRNA expression (Wang et al.,
2008; Eldh et al., 2012; Burgos et al., 2013; McAlexander
et al., 2013). Finally, the method to detect and subsequently
analyze miRNA expression levels strongly influences the outcome
of the studies. As NGS results in the complete quantitative
and qualitative miRNAome of a sample, it provides more
information than microarrays and qRT-PCR where targets are
pre-selected. The studies included in this review show differences
in several aforementioned aspects and thus their comparability is
limited. However, Figure 2 shows that some miRNA targets are
reproducible, in some cases even in different biomarker sources
(miR-19b-3p and miR-1a-3p). Interestingly, contradictory results
are only reported for two miRNAs within the same biomarker
source (miR-29c-3p, miR-30b-5p in PBMCs) (Martins et al., 2011;
Pasinetti, 2012; Serafin et al., 2015).

Most studies mentioned here performed ROC curve analysis
to estimate the diagnostic accuracy of the proposed miRNAs.
The diagnostic accuracy for single miRNAs ranged between 63%
(Ma et al., 2016) and 97% (Gui et al., 2015) and was improved
when multiple miRNAs were combined to a panel (77% (Botta-
Orfila et al., 2014) to 99% (Gui et al., 2015)). Compared to
the average diagnostic accuracy based on clinical criteria, which
varies between 73.8% (examination by non-experts) and 83.9%
(examination by movement disorder experts after follow-up)
(Rizzo et al., 2016), some of the proposed miRNA biomarkers
have a higher diagnostic value and discriminated PD cases
better from controls than the clinical assessment alone. This,
however, suggests that adding a miRNA biomarker (panel)
during diagnosis might improve the diagnostic accuracy for
idiopathic PD. An attempt to functionally annotate targets of
the top 3 miRNAs (miR-29c-3p, miR-19b-3p, and miR-29a-
3p) reveals a plethora of pathways that are proposed to be
regulated. Among those, we find multiple intracellular signaling
cascades, but also disease-related pathways. Contrary to what
one would potentially assume, an emerging unifying theme is
yet missing. This may reflect the heterogeneity of the disease

as well as the difference in source fluids and miRNA detection
methods. Further studies with larger patient numbers and a
higher methodical standardization might sharpen the picture
here.

CIRCULATING miRNAs AS
BIOMARKERS IN OTHER
PARKINSONIAN SYNDROMES

Although clinically, the differential diagnosis of PD versus other
Parkinsonian syndromes is more challenging than the diagnosis
of PD alone, only a few studies are available concerning the
diagnostic value of miRNAs in this field. The best evidence so far
is available for MSA.

Analyses of miRNAs in plasma of 34 MSA patients, 31 PD
patients and 30 controls by microarrays revealed 12 miRNAs
differentially regulated in MSA, of which five were validated
by qRT-PCR (miR-24, miR-148b, miR-223, miR-324-3p, and
miR-339-5p) (Vallelunga et al., 2014). Comparing MSA and
PD, of 5 differentially regulated miRNAs in the microarrays,
only 3 showed significantly increased expression after qRT-PCR
validation (miR-24, miR-34b, and miR-148b). Target analysis
showed an involvement of those miRNAs in cell cycle regulation,
apoptosis, and post-translational modifications. Kume and
colleagues investigated serum of 10 MSA patients and 6 controls.
Microarray analysis showed the up-regulation of 50 miRNAs in
MSA patients, whereas 17 miRNAs were significantly decreased
(Kume et al., 2017). Again, miR-223, and miR-24 were found to
be up-regulated, but qRT-PCR validation of the most regulated
miRNAs (miR-223 and miR-16) showed negative results. Another
group defined a set of plasma miRNAs using 32 PD and 32
controls and a validation cohort (42 PD and 30 controls) (Khoo
et al., 2012). Here, miR-626, and miR-505 showed some value
in the classification of 4 MSA and 5 Progressive Supranuclear
Palsy (PSP) patients, which were part of an additional validation
cohort.

Contrary to the aforementioned increase in miR-24 expression
in serum of MSA patients, analyses of 10 preselected miRNAs
in CSF of MSA, PD and control patients revealed a decreased
miR-24 expression in MSA and PD (Marques et al., 2017). The
regulation of miR-148b in MSA, which was described in blood
samples, could not be reproduced. Furthermore, miR-19a, miR-
19b, and miR-34c were also found to be decreased in MSA.
PARK2, LRRK2, and VPS35 are predicted targets for miR-19a
and miR-19b, while SNCA, PLA2G6, and SLC1A4 are targets
for miR-34c. Taken together, the studies investigating miRNA
biomarkers for MSA show a limited overlap of single deregulated
miRNAs (e.g., miR-223 and miR-24 in blood). However, there
appear to be marked differences between miRNA expression in
blood and CSF as miR-24 show an inverse regulation in these
source fluids. As in all studies the cohorts are very small and
different materials and methods were used, the comparability
is limited and more studies with standardized procedures
are needed to establish a miRNA biomarker with good
diagnostic accuracy. Interestingly, in patients with idiopathic
rapid eye movement sleep behavior disorder, a condition that
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FIGURE 2 | Differentially regulated miRNAs ranked according to strength of the study. Each bar represents one individual study, where the miRNA(s) indicated in the
middle column was identified differentially regulated. miRNA names are set bold when appearing in more than one study. Length of the bars correspond to the
number of subjects in the study cohort (patients + controls). Color of the bars represents significant down- (blue) or up-regulation (red) in miRNA expression in
respect to the PD group. Color intensity indicates strength of the study by considering the number of centers for sample recruitment and existence of a validation
cohort per study (full color: multicentric study with validation cohort; 75% color: monocentric study with validation cohort; 50% color: multicentric study without
validation cohort; 25% color: monocentric study without validation cohort). Bars are patterned according to the biological source used in each study (horizontally
striped: whole blood; solid: plasma or serum; dotted: PBMCs; vertically striped: CSF). ∗ = studies where results were acquired or confirmed using qRT-PCR.
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is considered as an early pre-motor stage of synucleinopathies,
downregulation of miR-19b in serum samples might predict the
conversion into PD or Dementia with Lewy Body (DLB) and
mimics the situation in the CSF of MSA patients (Fernández-
Santiago et al., 2015). A multicenter study primarily focusing
on Alzheimer’s disease also included CSF samples of DLB
patients. Analyzing 6 different miRNAs, miR-125b was found
decreased in DLB compared to the non-demented controls,
but only before correcting for covariates (Müller et al., 2016).
Idiopathic normal pressure hydrocephalus (iNPH) is a frequent
clinical PD mimic. A recent analysis analyzed the CSF of 81
iNPH patients together with samples from 28 patients with a
possible Parkinsonian syndrome (iNPH in combination with an
abnormal metaiodobenzylguanidine or 123I-Ioflupane dopamine
transporter scan (DaTSCAN)) (Jurjević et al., 2017). Here, miR-
4274 was down-regulated compared to patients without evidence
of dopaminergic denervation.

CONCLUDING REMARKS

The analysis of miRNA as biomarker for neurodegenerative
disorders is a rapidly evolving field, which entered the stage
not even a decade ago. Already, numerous studies have revealed
a number of circulating miRNAs as potential biomarkers for
PD and other Parkinsonian syndromes. Although the overlap
between the candidates is low in different studies, this might be
a result of differences in several methodological and technical
aspects, ranging from the biomarker source material to RNA
quality and isolation methods to detection technologies and
finally statistical evaluations applied to the acquired data.
However, the findings gathered here evidence that miRNAs can
be readily detected and found differentially expressed in multiple
body fluids and thus could represent promising diagnostic
biomarkers for PD and other Parkinsonian syndromes. In order

to further develop a diagnostic biomarker for clinical use,
stringent standardization of all methodological aspects as well as
study and validation cohorts from multiple centers with higher
patient numbers and preferentially post-mortal verification of
the diagnosis increasing the diagnostic accuracy have to be
ensured. Additionally, fast, reliable, easy-to-handle, and cost-
efficient miRNA detection methods are needed. Future studies
will also have to determine the value of miRNAs as prognostic
markers and answer the question whether miRNAs correlate
with disease progression in PD. This would yield highly valuable
information for clinical trials with disease-modifying therapies.
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