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α-synuclein (α-syn) pathology and loss of noradrenergic neurons in the locus coeruleus
(LC) are among the most ubiquitous features of Parkinson’s disease (PD). While
noradrenergic dysfunction is associated with non-motor symptoms of PD, preclinical
research suggests that the loss of LC norepinephrine (NE), and subsequently its immune
modulatory and neuroprotective actions, may exacerbate or even accelerate disease
progression. In this review, we discuss the mechanisms by which α-syn pathology and
loss of central NE may directly impact brain health by interrupting neurotrophic factor
signaling, exacerbating neuroinflammation, and altering regulation of innate and adaptive
immune cells.
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INTRODUCTION

Locus coeruleus (LC) degeneration and α-synuclein (α-syn) aggregation are among the most
ubiquitous features of Parkinson’s disease (PD) (Chui et al., 1986; German et al., 1992;
Zarow et al., 2003). Brain regions affected in PD, including the LC, contain large protein-rich
intracellular inclusions known as Lewy bodies (LB) or Lewy neurites (LN) accompanied by chronic
inflammation and neuron loss (den Hartog and Bethlem, 1960; Spillantini et al., 1997; Tansey
and Goldberg, 2010). While LBs and LNs contain numerous proteins, α-syn is the predominant
component (Spillantini et al., 1997), and α-syn is the major pathological protein underlying PD
pathogenesis. α-syn is a 140-amino acid protein encoded by the SNCA gene, which is expressed
in many tissue types and which accounts for approximately 1% of cytosolic proteins in neurons
(Shibayama-Imazu et al., 1993; Iwai et al., 1995; Stefanis, 2012). It is highly expressed in the
presynaptic terminals where it acts as a molecular chaperone in SNARE formation and vesicular
trafficking (Burre et al., 2010). Genetic evidence comes from individuals carrying SNCA mutations,
which confer increased risk of PD, or autosomal dominant forms of PD (Klein and Schlossmacher,
2006). Finally, animal models overexpressing α-syn develop age-dependent α-syn aggregates and
PD-like behavioral abnormalities (Masliah et al., 2000; Giasson et al., 2002). The initiating event in
α-syn aggregation is unknown, but Lewy pathology (LP) and cell loss are common within discrete
neuronal populations in PD.

Extensive dysfunction of catecholaminergic neurons is a well-established feature of PD, and a
major hallmark is LP and loss of dopaminergic (DA) neurons in the substantia nigra pars compacta
(SNpc) which induces motor impairments including tremor, muscle rigidity, bradykinesia, and
postural instability (Hirsch et al., 1988; Fearnley and Lees, 1991; Parkinson, 2002). A diagnosis of
PD is currently dependent on the presence of motor symptoms and striatal dopamine deficiency;
however, PD is a multifactorial disease with non-motor symptoms that are associated with
alterations in cholinergic, serotonergic, and noradrenergic systems occurring years or even decades
prior to the onset of motor dysfunction (Gonera et al., 1997; Abbott et al., 2005; Ross et al., 2008).
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LP and degeneration of several pontine and medullary nuclei
(including the dorsal raphe, dorsal motor nucleus of the vagus,
pedunculopontine nucleus, and LC) are ubiquitous features of
PD (Halliday et al., 1990). The LC is the major source of
norepinephrine (NE) to the CNS, and it is among the first brain
regions to be affected in PD (Iversen et al., 1983; Mann and Yates,
1983; Braak et al., 2001). NE is the ligand for the adrenergic
receptors (ARs) comprised of seven G-protein coupled receptors
that are Gq-, Gi/o-, or Gs-coupled, allowing NE to have diverse
functional effects dependent on receptor expression and cell
type (Strosberg, 1993). LC neurons are constitutively active and
innervate virtually every brain region via extensive and complex
axonal arborization that facilitates the release of both synaptic
NE and extra-synaptic NE at axonal varicosities (Freedman et al.,
1975; Grzanna and Molliver, 1980; Jones and Yang, 1985; Agnati
et al., 1995) where LC-NE can be neuroprotective by both direct
and indirect mechanisms. Here, we will review evidence that
LC dysfunction may exacerbate PD pathophysiology and may
represent a tipping point in disease progression.

LC-NE DYSREGULATION COULD
PROMOTE THE PROGRESSION OF PD
PATHOLOGY

It is unclear why certain neuronal populations like the LC
are vulnerable to α-syn pathology, but sensitivity to oxidative
stress, pacemaker activity, and extensive contact with blood
vessels that may expose LC neurons to circulating toxins have
been implicated (Jenner, 2003; Cho, 2014; Pamphlett, 2014).
The degree of noradrenergic innervation to a brain region is
negatively correlated with DA loss (Tong et al., 2006), indicating
that the loss of central NE and its neuroprotective actions may
directly influence the rate of PD progression. In PD, loss of
LC neurons begins prior to nigral pathology and appears to be
of greater magnitude (German et al., 1992; Zarow et al., 2003;
Szot et al., 2006; Brunnstrom et al., 2011). Per the Braak staging
hypothesis of PD pathology, LP first appears in brainstem nuclei
(stage 1), and, as PD progresses, continues along a caudo-rostral
axis with LC pathology appearing at stage 2 and SNpc pathology
at stage 3, before ultimately extending into cortical regions (Braak
et al., 2003). PD brain tissue has marked LC denervation in many
brain regions and loss of LC cell bodies that extends throughout
its rostral-caudal axis (Javoy-Agid et al., 1984; German et al.,
1992; Pavese et al., 2011). Imaging and postmortem histological
studies of PD patients reveal a progressive loss of central NE
throughout the brain (Pifl et al., 2012) along with accumulation
of α-syn and loss of LC neurons (Halliday et al., 1990; Chen
et al., 2014; Keren et al., 2015; Isaias et al., 2016). LC neuron
vulnerability to α-syn pathology can be replicated experimentally.
A recent model targeted viral vector-mediated overexpression
of a familial PD mutant α-syn variant to the murine LC
region (Henrich et al., 2018). While transgene expression was
not restricted to neuronal cells, the resulting progressive α-
syn aggregation, gliosis, and LC degeneration are reminiscent
of LC pathology found in PD. Enzymes responsible for NE
synthesis and NE metabolite levels are reduced in the CSF of PD

patients, also supporting these central changes in NE metabolism
(Hurst et al., 1985; Goldstein et al., 2012). Evidence of early
LC dysfunction can be found in patients who do not meet the
diagnostic criteria for PD. In such individuals, decreased neuron
density in the LC, but not VTA or dorsal raphe, corresponds
to the severity of global parkinsonism (Buchman et al., 2012),
suggesting that this state may represent prodromal/preclinical
PD. Patients who had LP at autopsy but lacked any of the
clinical signs of PD also had reduced LC neuron density as
compared to DA neurons in the SNpc, further highlighting the
possible early role of LC neuron loss in PD (Dickson et al.,
2008).

There is also evidence that α-syn may directly affect NE
homeostasis by two separate mechanisms. First, norepinephrine
transporter (NET)-expressing cells transfected for α-syn
expression reveal that high levels of α-syn negatively regulate
NET expression on the cell surface, while relatively lower levels
increase NET expression (Wersinger et al., 2006). Second,
when α-syn is overexpressed in an NE-producing cell line or
transgenic rodent model, it can translocate to the nucleus and
directly interfere with transcription of dopamine ß-hydroxylase
(DBH), the enzyme involved in the final step of NE synthesis,
reducing NE production (Kim et al., 2011, 2014). It is possible
that interfering in NE neurotransmission could, in turn, impact
α-syn expression as ß-adrenergic receptor (ß-AR) agonists
reduce SNCA mRNA and α-syn protein expression in induced
pluripotent stem cells derived from individuals carrying the
SNCA triplication mutation (Mittal et al., 2017). Together,
these data indicate that α-syn can influence NE metabolism,
and that this, in turn, could impact α-syn expression, although
additional work is required to determine if this is clinically
relevant.

PD NON-MOTOR SYMPTOMS

The LC is the major source of NE to the CNS (Mouton et al.,
1994), and dysregulated noradrenergic innervation is associated
with many of the non-motor symptoms of PD including anxiety
(Casacchia et al., 1975; Stein et al., 1990; Nuti et al., 2004),
depression (Shulman et al., 2002; Ravina et al., 2007), rapid eye
movement (REM) sleep behavioral disorder (RBD) (Sixel-Doring
et al., 2011; Kalaitzakis et al., 2013), and dementia (Chui et al.,
1986).

Up to 60% of PD patients report experiencing some form of
anxiety (Chaudhuri and Schapira, 2009; Lin et al., 2015; Houser
and Tansey, 2017). Dopamine, serotonin, and NE have been
implicated in PD anxiety, suggesting that its neurobiological
origins are complex (Eskow Jaunarajs et al., 2011; Thobois
et al., 2017; Joling et al., 2018). LC neurons are highly active
during stress exposure (Bingham et al., 2011; Curtis et al., 2012)
and innervate all corticolimbic regions involved in the anxiety
response (Aston-Jones et al., 1991, 1999). In PD patients, anxiety
severity is inversely correlated with dopamine/NE transporter
binding in the LC (Remy et al., 2005), and experimentally,
selectively inhibiting LC neurons during stress exposure blocks
the subsequent anxiety-like behavior (McCall et al., 2015).
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Around 35% of PD patients suffer from depression (Reijnders
et al., 2008; Houser and Tansey, 2017). Dysfunction of LC-
NE is known to be associated with depression (Moriguchi
et al., 2017) and is a common pharmacological target in the
treatment of depression (Ressler and Nemeroff, 2001; Remy et al.,
2005). Indeed, early investigation of NET expression in the LC
reported decreased NET in major depressive disorder (Klimek
et al., 1997), although results from subsequent studies have been
inconsistent (Moriguchi et al., 2017). While it is unclear if NET is
downregulated due to lack of available NE or in order to increase
synaptic NE levels, it is clear that NE dysfunction can contribute
to depressive symptoms.

LC neuron activity fluctuates diurnally with increased activity
immediately prior to waking and during waking hours (Hobson
et al., 1975). Sleep disturbances are one of the most common
complaints from PD patients (Smith et al., 1997) and can include
insomnia (Gjerstad et al., 2007), excessive daytime sleepiness
(Rye et al., 2000), and RBD (Comella et al., 1998; Gagnon
et al., 2002). A recent study reported that disturbed sleep is
positively correlated with anxiety and depression in PD (Rana
et al., 2018). In fact, RBD is the most predictive non-motor
symptom of synucleinopathies with up to 92% of idiopathic RBD
patients receiving a synucleinopathy diagnosis within 14 years
(Iranzo et al., 2006; Postuma et al., 2009; Schenck et al.,
2013). There is evidence that LC neurons in individuals that
have PD with disturbed sleep contain more LP than in those
without (Kalaitzakis et al., 2013), and mice lacking DBH (and
subsequently, NE) have significantly disturbed sleep behavior
(Hunsley and Palmiter, 2003). Together, these data suggest that
loss of central NE may directly contribute to the development of
sleep disturbances in PD.

An estimated 83% of PD patients will experience some sort
of cognitive dysfunction, including dementia (Hely et al., 2008).
Dementia is characterized by cognitive impairment, including
memory loss, attentional deficits, and loss of executive function
(Elizan et al., 1986; Aarsland et al., 2003). While dementia is
generally associated with cholinergic deficits and late-stage PD,
early executive disturbances may arise from deregulation of LC-
NE. PD patients with dementia have more extensive loss of
LC-NE in cortical regions than those without (Chan-Palay and
Asan, 1989). In fact, degeneration of LC neurons and loss of
cortical NE is a central component of dementia of Alzheimer’s
type (Mann and Yates, 1983; Zarow et al., 2003). In animal
models, hippocampal LC-NE is essential for proper memory
acquisition and retrieval (Devauges and Sara, 1991; Mello-Carpes
et al., 2016), and loss of LC neurons can impact memory and
enhance cognitive deficits (Ohno et al., 1997; Chalermpalanupap
et al., 2018).

BEYOND THE NON-MOTOR SYMPTOMS

The temporal relationship between LC and SNpc pathology
suggests that loss of LC-NE may leave SNpc neurons more
vulnerable to α-syn toxicity and potentiate the rate of PD
progression. Experimentally, loss of LC-NE exacerbates 6-
OHDA- and MPTP-mediated nigral degeneration in rodent

and primate models (Mavridis et al., 1991; Srinivasan and
Schmidt, 2003; Rommelfanger et al., 2007; Yao et al., 2015), while
increasing synaptic NE by genetic deletion or pharmacological
blockade of the NE transporter (NET) confers resistance
(Kilbourn et al., 1998; Rommelfanger et al., 2004). Indeed,
individuals with a functional polymorphism in the promoter
regions of the DBH gene have reduced risk of developing PD
(Healy et al., 2004). In sum, these data demonstrate that loss of
NE may exacerbate nigral pathology.

NEUROPROTECTIVE EFFECTS

NE can directly act as a neurotrophic factor but can also
indirectly stimulate neurotrophic factor expression. Primary
mesencephalic cultures treated chronically with NE have a
significantly reduced rate of cell death, increased neuritic
processes, and reduced production of reactive oxygen species
when compared to untreated cultures, and this phenotype
resembles cultures treated with traditional antioxidants (Troadec
et al., 2001, 2002). Increasing synaptic NE was shown to
be protective against neuron loss and inflammation in a
model of hypoxic-ischemia (Toshimitsu et al., 2018). While NE
ligation of ARs directly facilitates neuroprotection by several
mechanisms, the neuroprotective effects are not always blocked
by AR antagonists, suggesting NE-mediated protection may also
occur indirectly. One candidate mechanism of interest is the
neuropeptide brain-derived neurotrophic factor (BDNF), which
is synthesized and released by astrocytes and neurons, including
those in the LC (Castren et al., 1995). BDNF signaling is primarily
mediated by binding to the high affinity tropomyosin-related
kinase B receptor (TrkB), which can protect SNpc neurons in
experimental models, and BDNF mRNA is reduced in the SNpc
in PD (Hyman et al., 1991; Spina et al., 1992; Howells et al.,
2000). NE can also enhance BDNF transcription and BDNF/TrkB
kinetics (Chen et al., 2007). Activation of the β1-adrenergic
receptor stimulates BDNF transcription in astrocytes (Koppel
et al., 2018). When BDNF binds to TrkB, signal transduction is
mediated by TrkB dimerizing and autophosphorylating (Haniu
et al., 1997). NE can induce autophosphorylation of TrkB and is
protective against cell death in primary culture (Liu et al., 2015).
In addition to loss of NE, α-syn may also directly disrupt the
neuroprotective effects of BDNF. A recent study demonstrated
that α-syn has the potential to bind the kinase domain on TrkB
receptors, preventing the neurotrophic signaling of BDNF/TrkB,
and that this exacerbates degeneration of DA neurons (Kang
et al., 2017).

CENTRAL INFLAMMATION

Neuroinflammation is a vital mechanism in restoring brain
integrity following neuronal insult but is also a core component
of PD pathology. In a healthy brain, the inflammatory response
resolves relatively quickly, with normal brain function restored
(Roth et al., 2014; Laumet et al., 2018). In neurodegenerative
diseases, such as PD, sustained neuroinflammation can become
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cytotoxic, aggravating neuronal degeneration. It is unclear
what triggers the initial inflammation in PD, but extracellular
monomeric or aggregated α-syn can be phagocytosed by
microglia and induce their activation (Zhang et al., 2005; Hoenen
et al., 2016), and neuronal overexpression of α-syn aggravates
and prolongs neuroinflammation (Miller et al., 2007; Gao et al.,
2011; Sanchez-Guajardo et al., 2013). In PD patients, immune
mediators such as IL-1ß, TGFß, IFNγ, and IL-6 are increased in
the cerebral spinal fluid (CSF) and nigrostriatal regions (Mogi
et al., 1994; Blum-Degen et al., 1995; Mount et al., 2007),
and SNpc DA neurons appear particularly sensitive to pro-
inflammatory cytokines (McGuire et al., 2001; Mount et al.,
2007; Tansey and Goldberg, 2010). In fact, neuroinflammation
is detectable prior to signs of neuronal degeneration, suggesting
a potential early role for inflammation in PD pathogenesis
(Theodore et al., 2008; Watson et al., 2012).

Research indicates that dysregulation of noradrenergic
signaling may also play a role in driving inflammation.
Like overexpression of neuronal α-syn, lesioning LC neurons
using a noradrenergic-specific toxin also induces inflammation
(Theodore et al., 2008; Watson et al., 2012; Yao et al., 2015;
Song et al., 2018). NE can have activating or inhibitory effects
on immune cells depending on adrenergic receptor expression,
which varies depending on the cellular environment (Khan et al.,
1985; Tanaka et al., 2002). Therefore, LC degeneration and
subsequent deficient brain NE may contribute to PD pathology
by loss of normal immune cell modulation. Microglia, the brain-
resident macrophages, are the sentinels of brain parenchyma,
monitoring tissue integrity and responding to infection or injury
(Nimmerjahn et al., 2005). When ramified (resting) microglia are
activated, they adopt an amoeboid morphology, proliferate, and
become phagocytic, releasing pro-inflammatory cytokines which
can recruit central and peripheral immune cells to the site of
insult (Hayes et al., 1987). There is extensive evidence of sustained
microglial over-activation in degenerating brain regions in PD
(Kim and Joh, 2006; Tansey and Goldberg, 2010), and inhibiting
microglia activation with minocycline prevents DA neuronal loss
in mice treated with a DA neuron-specific toxin (Wu et al., 2002).

Microglia express many neurotransmitter receptors, including
ARs (Pocock and Kettenmann, 2007). While more studies are
required to understand how AR activation affects microglial
phenotypes, depletion of NE, as is found in PD, exacerbates
microglial inflammatory responses (Heneka et al., 2002; Bharani
et al., 2017). AR-mediated modulation of microglia is well
documented, although reports of the functional outcome are
inconsistent. In murine brain slices, resting microglia appear
to preferentially express the excitatory ß2-AR, but shift toward
the inhibitory α2-AR receptor expression following activation
with the canonical microglial activator lipopolysaccharide (LPS)
(Gyoneva and Traynelis, 2013). However, microglial treatment
with an ß2-AR agonist is reported to have anti- or pro-
inflammatory effects. For example, cultured primary microglia
treated with a ß2-AR agonist suppressed microglial proliferation
(Fujita et al., 1998), while a subsequent study reported
that priming microglia with a ß2-AR agonist prior to LPS
treatment significantly increased pro-inflammatory IL-1ß and
IL-6 expression (Johnson et al., 2013). The functional outcome of

microglial AR activation appears dependent on the physiological
context, and further examination is needed to determine how this
may influence PD pathology.

PERIPHERAL INFLAMMATION

There is abundant evidence that the inflammatory manifestations
of PD are not confined to the CNS. Indicators of inflammation
have been found in the colon tissue, stool, and blood as well
as in the CSF. Colonic expression of the genes encoding pro-
inflammatory cytokines TNF, IFNy, IL-6, and IL-1β is increased
in PD, accompanied by evidence of gliosis (Devos et al., 2013).
Recently, we reported that IL-1α, IL-1β, CXCL8, and CRP are
significantly elevated in stool from PD patients compared to
controls (Houser et al., 2018), and that serum levels of TNF,
IFNy, and neutrophil gelatinase-associated lipocalin levels are
significantly and consistently different in PD over a 24-h period
(Eidson et al., 2017). Local α-syn expression has been found
to increase under inflammatory conditions in the periphery
(Stolzenberg et al., 2017), and α-syn pathology has been observed
in the enteric nervous system of PD patients, even from the
earliest stages of disease (Stokholm et al., 2016; Barrenschee
et al., 2017; Punsoni et al., 2017). These findings demonstrate
that similar pathological processes are active in the CNS and the
periphery in PD, and there is almost certainly significant crosstalk
between them.

Degradation of the blood-brain-barrier (BBB) has been well
documented in PD (Kortekaas et al., 2005; Pisani et al.,
2012; Gray and Woulfe, 2015), and it has been proposed that
this impaired barrier function exposes the CNS to circulating
factors that could promote α-syn aggregation (Gray and
Woulfe, 2015), immune cell infiltration, neuroinflammation,
and, ultimately, neurodegeneration (Rite et al., 2007). Whether
through direct effects of reduced signaling through endothelial
β-ARs or through increases in vascular permeability-promoting
inflammation, LC neurodegeneration compromises the integrity
of tight junctions (Kalinin et al., 2006) and increases permeability
of the BBB (Nag and Harik, 1987). BBB leakiness enables
greater interaction between central and peripheral immune
activities, allowing exchange of cytokines, chemokines, and other
circulating molecules and potentially even facilitating infiltration
of peripheral immune cells into the CNS where loss of central NE
modulation could result in aberrant immune cell activity.

As with brain-resident microglia, immune cells originating
in the periphery can also be modulated by NE. Peripheral
immune cells infiltrate the brain parenchyma in PD (Kannarkat
et al., 2013), and these will likely be directly impacted by
reduced levels of central NE. Peripheral NE levels may also play
important immunomodulatory roles in PD. The NE deficiency
found in the CNS in PD is not consistently recapitulated in
the periphery, with several studies reporting no difference in
NE levels in plasma from PD patients compared to healthy
controls (Eldrup et al., 1995; Goldstein et al., 2003). It is likely,
however, that at least a subset of PD patients is affected by
peripheral NE dysregulation as evinced by the prevalence of
neurogenic orthostatic hypotension (NOH) associated with this
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disease. NOH is a condition in which insufficient noradrenergic
activity results in failure to appropriately increase blood pressure
(BP) in response to a postural change such as sitting up
or standing. This results in insufficient cerebral blood supply
and can produce lightheadedness and dizziness, which increase
fall risk (Merola et al., 2016). NOH occurs frequently in
conditions involving synucleinopathy, and roughly 30% of PD
patients are affected. NOH in PD is attributed to noradrenergic
postganglionic sympathetic denervation associated with LP and
a subsequent failure to induce sufficient NE production when
transitioning to an upright position (reviewed by Loavenbruck
and Sandroni, 2015). PD patients with orthostatic hypotension
exhibit lower levels of NE in plasma compared to PD patients
without NOH that reach levels significantly lower than non-PD
controls (Senard et al., 1990; Niimi et al., 1999; Goldstein et al.,
2005). This creates the potential for PD-associated NE deficiency
to modulate peripheral immune responses as well as central.

Nearly every lymphoid tissue in the body has postganglionic
sympathetic innervation, and peripheral innate and adaptive
immune cells express ARs, rendering them responsive to NE.
Excitatory β2-ARs are the most highly expressed ARs on
peripheral immune cells, and their activity likely dominates
the immune response to NE. β-AR signaling has potent anti-
inflammatory effects on innate immune cells (reviewed by Qiao
et al., 2018). In macrophages, which bear close functional
resemblance to microglia, it suppresses pro-inflammatory activity
and promotes tolerogenic and homeostatic phenotypes (Grailer
et al., 2014; Noh et al., 2017). It also limits the number and
the effector functions of natural killer (NK) cells (Whalen and
Bankhurst, 1990; Takamoto et al., 1991). Adrenergic signaling
has been shown to impair the functions of neutrophils and
eosinophils as well (Gosain et al., 2009; Brunskole Hummel
et al., 2013; Noguchi et al., 2015). Dendritic cells connect the
innate and adaptive immune responses by sampling antigens
in the local environment and then presenting them with
appropriate polarization signals to T cells. β2-AR activation
profoundly suppresses dendritic cell functionality, inhibiting
their maturation, migration, antigen presentation including cross
presentation, and proinflammatory cytokine production while
inducing expression of anti-inflammatory factors (Seiffert et al.,
2002; Herve et al., 2013; Chen et al., 2016; Qiao et al., 2018). It is
important to note that while these anti-inflammatory effects on
innate immune cells are well-documented, study designs differ
widely, and the effects they observe on these cells vary depending
on physiological context, time, AR agonist, and dose. Further
research will be necessary to better characterize the relationship
between NE and innate immune responses.

CD4+ T helper (Th) cells are indirectly affected by AR
agonists due to their suppressive effects on dendritic cells which
result in diminished differentiation of effector T cells, particularly
Th1s (Wu et al., 2016). Th1 cells also express β2-ARs (McAlees
et al., 2011), and their proliferation and activity are inhibited
upon ligation of this receptor (Ramer-Quinn et al., 1997; Riether
et al., 2011). Since Th2 cells do not express ARs (McAlees et al.,
2011), their functionality is not directly modulated by exposure to
NE, but NE-mediated suppression of Th1 cells would relieve their
negative regulatory pressure on Th2 cells, indirectly promoting

Th2-mediated immune activity, which is canonically involved
in anti-helminth and allergic immune responses but not classic
inflammation (Huang et al., 2015). β2-AR signaling also impairs
the activity of CD8+ memory and effector T cells (Chen et al.,
2016; Estrada et al., 2016; Bucsek et al., 2017).

The consequences of AR ligation on other T cell subsets are
less straightforward. The intricacies of the potential effects of NE
on CD4+ Th17 cells are just beginning to be elucidated. These
cells are important actors in normal mucosal immunity, but they
are also implicated in autoimmune pathology. Several studies
have reported that treatment of CD4+ cells with NE promotes
differentiation of Th17 cells and increases their activity (IL-17
production) while simultaneously inhibiting Th1 differentiation
and activity (IFNγ production) (Carvajal Gonczi et al., 2017;
Xu et al., 2018). On the other hand, studies of Th17 cells
from both mice and humans with Th17-mediated autoimmune
diseases found that treating CD4+ T cells with NE inhibited
the differentiation and activity of Th17 cells (IFNγ production
was also still reduced) (Boyko et al., 2016; Liu et al., 2018). This
indicates that the immunoregulatory effects of NE on Th17 cells
are dependent on the physiological context. It is also possible that
autoimmune conditions in which pathology is mediated in part
by IL-17-producing cells might constitute a unique context in
which this alternative regulatory action of NE is observed. For
instance, in such conditions, a highly inflammatory cell type that
exhibits characteristics of both Th1 and Th17 cells is typically
present (Murphy et al., 2010), and it may be that the actions of
NE on this particular cell type rather than on canonical Th17s
dominate its observed effects in these autoimmune diseases.

Findings on NE modulation of CD4+ T regulatory (Treg)
cells, an anti-inflammatory subset which counteracts effector
functions of other types of T cells, are even more ambiguous.
One study reports that treatment of Tregs with NE prior to
transfer in an autoimmune arthritis mouse model rendered them
pathological and worsened the disease (Harle et al., 2008). In
the same vein, another study found that NE exposure decreased
the regulatory activity of Tregs and even induced their apoptosis
(Wirth et al., 2014). On the other hand, a study in humans
reported that Treg frequencies were elevated under conditions
which increased circulating NE levels and that treatment of Tregs
with epinephrine, which is chemically similar to NE and binds
the same receptors, stimulated Treg proliferation. This effect was
blocked by treatment with a β-AR antagonist (Inoue et al., 2017).
A final study reported no detectable effects of treatment with NE
or epinephrine on human Tregs, though they did determine that
they could express three different types of ARs (Cosentino et al.,
2007). Obviously, more research is needed to determine the effect
of NE on Tregs.

B cells also express β2-ARs, and there is evidence that NE
can negatively regulate the magnitude of antibody responses.
The effects are highly varied, however, as they are influenced
by the effects of NE on T cells, by the stimuli used to activate
B cells, and by the immunological and physiological context of
the experiment (extensively reviewed by Kin and Sanders, 2006).
A couple of more recent studies suggest that, under conditions of
autoimmune disease in which B cells contribute to inflammatory
activity and pathology, NE exerts a suppressive effect on these
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cells which is mediated by decreased IL-7 receptor signaling and
enhanced production of anti-inflammatory IL-10 (Pongratz et al.,
2012, 2014).

The effects described here do not represent the full extent
of peripheral NE-mediated neuroimmune interactions. Most
studies to date have focused on the results of β2-AR signaling,
but immune cells express other ARs as well which can mediate
different effects (Lorton and Bellinger, 2015), and, as in the brain,
the relative levels of these receptors change in different immune
environments. Activation of the same AR can even produce
distinct responses depending on the concentration of the ligand
and its temporal relationship to immunogenic stimuli (reviewed
by Lorton and Bellinger, 2015). This provides important plasticity
for neuroimmune regulatory mechanisms. Nonetheless, many
functional studies support the existing literature that indicates
a primarily anti-inflammatory impact of peripheral NE. Vagus
nerve stimulation is known to have clear immunosuppressive
effects (Inoue et al., 2017) and to reduce synuclein expression
in the brain (Farrand et al., 2017), and these effects are
mediated in large part by NE signaling through β-ARs (Vida
et al., 2011). A recent review (Bucsek et al., 2018) summarized
numerous studies showing that chemical ablation of sympathetic
neurons or β-AR blockade enhanced immune responses to
different bacterial, viral, and parasitic infections while AR agonist
treatment impaired anti-viral and anti-parasite responses. Several
of the studies found that these effects were specific to modulation
of peripheral adrenergic activity, but it was also demonstrated
that this could induce corresponding immune responses in the
CNS. Similarly, another study found that ablation of peripheral
and LC noradrenergic neurons prompted an exaggerated acute
inflammatory response to peripheral LPS that was observed both
in the brain and in the circulation (Bharani et al., 2017).

Taken together, the data on peripheral immune cells
and their function when challenged indicate that NE is
immunosuppressive, and as such, postganglionic sympathetic
denervation and NE deficiency in PD could stimulate pro-
inflammatory immune activity. This has implications for PD
pathogenesis and the progression of disease pathology. Peripheral
and systemic inflammation have been well documented in PD,
and it has been proposed that inflammatory mechanisms may
contribute to non-motor symptoms and also be responsible
for the development and spread of synucleinopathy and the
induction of neuroinflammation and neurodegeneration in this
disorder (Qin et al., 2016; Houser and Tansey, 2017). PD-
associated gastrointestinal abnormalities and dysfunction are
consistent with inflammatory conditions in the gut (Houser
and Tansey, 2017), and levels of proinflammatory cytokines in
the blood correlate positively with the severity of anxiety and
depression in PD patients (Wang et al., 2016). α-syn levels
increase in the context of immune activation, and some data
suggest that peripheral inflammation can induce elevated α-syn
expression in the brain (Kelly et al., 2014) and that peripheral α-
syn can migrate to the brain through the vagus nerve (Holmqvist
et al., 2014). α-syn has also been shown to exert chemoattractant
properties on peripheral myeloid cells, including recruiting them
into the brain in a rodent PD model (Stolzenberg et al., 2017;
Harms et al., 2018). Infiltration of peripheral CD4+ and CD8+

T cells into the brain has also been observed in PD (Brochard
et al., 2009), and it has been shown that these T cells (primarily
the CD4+ subset) in peripheral blood from PD patients recognize
and respond to peptides derived from α-syn (Sulzer et al., 2017).
In animal models of parkinsonian neuropathology, invading
monocytes and CD4+ T cells have been identified as key
mediators of neurodegeneration (Brochard et al., 2009; Harms
et al., 2018).

NE deficiency, centrally and/or in the periphery, could
potentiate all of these immune-mediated effects in PD. It would
impair anti-inflammatory regulatory functions, shifting immune
cells toward more pro-inflammatory phenotypes. Innate immune
cells affected in this way would be less able to clear α-syn
aggregates and neuronal debris effectively and in a toleragenic
manner and more likely to recruit additional effector cells,
stimulate their pro-inflammatory activities, and perhaps even
present α-syn and other neuronal antigens in a context which
could induce autoimmune responses (Sulzer et al., 2017).
Furthermore, the activity of at least some T cell subsets which
may be pathologically involved in PD could be potentiated
by a loss of inhibitory NE signaling. Especially in the context
of a compromised BBB, these pro-inflammatory immune cells
and their products would have greater access to the CNS
and could infiltrate and mediate damaging effects on neurons
there.

DISCUSSION

Extensive dysfunction of catecholaminergic neurons is a well-
established feature of PD, and while a major hallmark is LP and
loss of DA neurons in the SNpc, PD is a multifactorial disease
with alterations in cholinergic, serotinergic, and noradrenergic
systems occurring years earlier and generally associated with
PD’s non-motor symptoms (Halliday et al., 1990; Braak et al.,
2003). α-syn pathology and a progressive decline in LC-NE
have been well characterized; still it is unclear why these
neurons are among the most vulnerable in PD. Still less is
known about how the deficits in LC-NE and the loss of its
neuroprotective and neuroimmune modulatory effects could
influence the development of synucleinopathy and exacerbate
PD pathology (summarized in Figure 1). Preclinical research has
provided compelling evidence supporting the neuroprotective
functions of NE. Experimentally, depletion of NE renders SNpc
neurons vulnerable in toxin models of PD (Mavridis et al.,
1991; Srinivasan and Schmidt, 2003; Rommelfanger et al., 2007),
while NE enhancement is protective (Kilbourn et al., 1998;
Rommelfanger et al., 2004). Additionally, there is a reciprocal
modulatory relationship between α-syn and NE whereby α-
syn can modulate NE neurotransmission, both at the level of
synthesis (Kim et al., 2014), and by modulating NET expression
at the cell surface (Wersinger et al., 2006), and NE can attenuate
SNCA transcription and α-syn protein expression (Mittal et al.,
2017). As PD pathophysiology progresses, LP develops in the
SNpc and other brain regions, and LC-NE denervation may
exacerbate the rate and/or degree of degeneration during this
premotor phase of PD. Experimentally, NE drives BDNF/TrkB

Frontiers in Neuroscience | www.frontiersin.org 6 September 2018 | Volume 12 | Article 626

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00626 September 7, 2018 Time: 19:35 # 7

Butkovich et al. α-Synuclein and the Locus Coeruleus

FIGURE 1 | Potential effects of dysregulated NE in PD. Abbreviations: α-syn, α-synuclein; BBB, blood brain barrier; B cell, B lymphocytes; BDNF, brain derived
neurotrophic factor; LC, locus coeruleus; PD, Parkinson’s disease; NE, norepinephrine; Th1, T helper 1 lymphocytes; Th17, IL-17 producing T helper lymphocytes;
Th2, T helper 2 lymphocytes; CD8+, cytotoxic T lymphocytes; Treg, T regulatory lymphocytes; Trkb, tropomyosin-related kinase B receptor.

signal transduction (Liu et al., 2015), while α-syn can interrupt
it (Kang et al., 2017). The detrimental effects of declining NE in
PD may be compounded by the inhibition of BDNF-mediated
neuroprotection by α-syn. This could contribute to the low serum
BDNF levels that negatively correlate with motor impairment in
later PD (Scalzo et al., 2010).

Neuroinflammation is a cardinal feature of PD and
experimentally, both α-syn overexpression and lesion of
the LC neurons result in inflammation (Theodore et al., 2008;
Watson et al., 2012; Yao et al., 2015). While the experimental
outcomes are currently inconsistent, it is clear that NE can
modulate microglia activation status (Fujita et al., 1998;
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Gyoneva and Traynelis, 2013; Johnson et al., 2013). The decline
in brain NE, increase in synucleinopathy, and subsequent
modulation of microglia may contribute to the chronic
inflammation found in PD brain tissue. Such inflammation is
sufficient to induce parkinsonian neurodegeneration (Duffy et al.,
2018; Song et al., 2018).

While the brain was once believed to be “immune privileged,”
the entry of peripheral immune cells through the BBB is
now a well-established feature of PD. Numerous immune
cell populations are responsive to NE, and its deficiency in
the periphery would diminish what seems to be a largely
anti-inflammatory regulatory influence. This could promote
exaggerated pro-inflammatory immune responses systemically. If
the peripheral immune cells were recruited to the brain, reduced
local NE levels combined with synuclein pathology would serve
to augment and sustain inflammatory activity.

The physiological effects of neuroimmune interactions both
centrally and peripherally are myriad, and their subtleties are
just beginning to be appreciated and studied in detail. They may
have the potential, however, to offer new therapeutic approaches
for disorders such as PD for which effective treatments remain
elusive. Future research evaluating the incidence of PD among
individuals taking β-AR blockers (Mittal et al., 2017), for
instance, and the rate of disease progression in PD patients

treated with drugs that raise peripheral NE levels, such as
droxidopa, could reveal new information about the role of NE
in PD pathology.
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