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While geriatric patients have a high likelihood of requiring anesthesia, they carry an
increased risk for adverse cognitive outcomes from its use. Previous work suggests this
could be mitigated by better intraoperative monitoring using indexes defined by several
processed electroencephalogram (EEG) measures. Unfortunately, inconsistencies
between patients and anesthetic agents in current analysis techniques have limited
the adoption of EEG as standard of care. In attempts to identify new analyses that
discriminate clinically-relevant anesthesia timepoints, we tested 1/f frequency scaling
as well as measures of complexity from nonlinear dynamics. Specifically, we tested
whether analyses that characterize time-delayed embeddings, correlation dimension
(CD), phase-space geometric analysis, and multiscale entropy (MSE) capture loss-of-
consciousness changes in EEG activity. We performed these analyses on EEG activity
collected from a traditionally hard-to-monitor patient population: geriatric patients on
beta-adrenergic blockade who were anesthetized using a combination of fentanyl and
propofol. We compared these analyses to traditional frequency-derived measures to
test how well they discriminated EEG states before and after loss of response to verbal
stimuli. We found spectral changes similar to those reported previously during loss of
response. We also found significant changes in 1/f frequency scaling. Additionally, we
found that our phase-space geometric characterization of time-delayed embeddings
showed significant differences before and after loss of response, as did measures of
MSE. Our results suggest that our new spectral and complexity measures are capable of
capturing subtle differences in EEG activity with anesthesia administration—differences
which future work may reveal to improve geriatric patient monitoring.

Keywords: anesthesia, geriatric, electrophysiology (EEG), propofol, fentanyl, nonlinear dynamics, multiscale
entropy, 1/f
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INTRODUCTION

About 50% of geriatric patients aged 65 and older will require
anesthesia for a surgical procedure at some time in their
remaining years (Kim et al., 2015). It has been suggested that
geriatric patients have an increased risk of dementia, delirium,
and neurocognitive dysfunction after exposure to anesthetic
agents (Avidan and Evers, 2011; Chen et al., 2013; Strøm et al.,
2014; Purdon et al., 2015a; Yang and Fuh, 2015). Given this
potential risk, several investigators have suggested that geriatric
patients may benefit from maintenance at lighter anesthetic levels
(Lindholm et al., 2009; Kalkman et al., 2011; Strøm et al., 2014;
Petsiti et al., 2015), which may reduce the risks of developing
dementia (Chen et al., 2014). However, a downside of light
anesthesia is the possibility that a patient may not be unconscious
during the procedure. It is estimated that 1–2 out of every
1000 patients undergoing general anesthesia for surgery are
insufficiently anesthetized, and yet are immobilized and unable
to respond (Bischoff and Rundshagen, 2011). There would be
tremendous advantage in the ability to titrate an anesthetic dose
accurately to balance an improved medical outcome against the
risk of intraoperative awareness.

Electroencephalogram (EEG) signals, especially from
the frontal cortex, exhibit stereotypical responses to some
anesthetics. For example, loss of consciousness (LOC) correlates
with a transition from low amplitude, high frequency EEG
waveforms to high amplitude, low frequency patterns, resembling
the transition to sleep. In anesthesia, low frequency delta (∼1–
4 Hz) rhythms are replaced gradually by burst suppression
patterns as patients transition to deeper surgical planes of
anesthesia (Pilge et al., 2014). Since the 1990s, several monitoring
devices have been developed to capitalize on these EEG frequency
domain transitions (Fahy and Chau, 2018). Unfortunately, the
resultant measures are inconsistent as EEG changes depend on
the anesthesia and the patient (Akeju et al., 2015; Purdon et al.,
2015a,b).

In particular, geriatric patients pose a unique challenge
for electrophysiological monitoring because brain activity (as
measured with EEG) attenuates with advancing age (Akeju
et al., 2015; Purdon et al., 2015b; Lee et al., 2017). This
makes it difficult to quantify the frequency changes between
awake and anesthetized states accurately in individual patients.
None of the EEG intraoperative monitoring methods account
for the differences that exist in the geriatric population. In
addition, geriatric surgical patients are often medicated with beta-
adrenergic blockers (beta-blockers). Beta-blockers may hide the
cardiovascular signs of inadequate anesthesia (tachycardia and
hypertension) (Ghosh et al., 2008), and geriatric patients treated
with beta-blockers may require less anesthesia (Zaugg et al.,
2003; Ghosh et al., 2008). Importantly, beta-blockers themselves
can cause changes in the EEG activity, and thus are likely to
cause problems with anesthetic depth monitoring (Johansen,
2001; Zaugg et al., 2003; Ghosh et al., 2008). The result is that
EEG monitoring has not been adopted as standard of care.
The development of efficacious, anesthetic- and patient-invariant
EEG processing techniques could mitigate this and provide a
better way to monitor patients and improve outcomes. Thus, in

the current study, we analyzed EEG data collected from geriatric
patients who received beta-blockers for at least 24 h prior to
surgery, and who were subsequently anesthetized with fentanyl
and propofol.

Fentanyl and propofol are used in combination routinely
to obtain balanced anesthesia for induction during surgical
procedures. Fentanyl is a potent opioid that decreases the
intensity of response to intubation and provides general pain
relief during surgical procedures. Administration of fentanyl
correlates with a shift in the EEG pattern from high frequency,
low amplitude to low frequency, high amplitude (Scott et al.,
1985). Propofol has been shown to increase frontal EEG activity
in the alpha (8–14 Hz) and slow (0.1–1 Hz) bands after LOC
(Gugino et al., 2001; Feshchenko et al., 2004; Purdon et al., 2013;
Akeju et al., 2014). This change in activity occurs in both young
and elderly patients (Purdon et al., 2015a); however, the reduction
in amplitude with age causes more subtle differences in spectral
characteristics with anesthesia onset, which may not be detected
by modern EEG monitoring devices (Purdon et al., 2015b).

A potentially more sensitive spectral measure of anesthetic
depth might be 1/f. Electrophysiological signals demonstrate 1/f -
like frequency scaling (He, 2011): the power declines relative to
increases in frequency composition. Importantly, this measure
has demonstrated sensitivity to the electrophysiological brain
state changes associated with sleep (Bédard et al., 2006). Further,
1/f scaling in EEG changes with age (Voytek et al., 2015). To
our knowledge, 1/f frequency scaling has not been tested on EEG
protocols that include anesthesia.

In addition to spectral measurements, previous studies
have demonstrated that complexity measures from nonlinear
dynamics correlate with anesthetic depth (Watt and Hameroff,
1988; Widman et al., 2000; van den Broek et al., 2006; Walling
and Hicks, 2006; MacIver and Bland, 2014; Eagleman et al., 2018).
Structural changes in time-delayed embeddings (attractors) of
EEG signals have been reported in both rodents (MacIver and
Bland, 2014) and humans (Watt and Hameroff, 1988; Widman
et al., 2000; Walling and Hicks, 2006; Eagleman et al., 2018).
The awake attractors appear in 3D as spheroids, and then flatten
to ellipsoids with LOC (Watt and Hameroff, 1988; Walling and
Hicks, 2006; MacIver and Bland, 2014; Eagleman et al., 2018).
Previous work has quantified these attractor changes using the
correlation dimension (CD) (Grassberger and Procaccia, 1983;
Widman et al., 2000; Walling and Hicks, 2006) and a phase-
space geometric fit called the ellipse radius ratio (ERR), which
fits the attractor with an ellipsoid solid of revolution, and then
reports the ratio of the lengths of the minimum and maximum
symmetry axes (Eagleman et al., 2018). Another complexity
measure, multiscale entropy (MSE), has also been reported to
correlate well with existing anesthetic depth measures (Li et al.,
2010; Liu et al., 2015). In the current study, we tested whether
these complexity measures could distinguish between subtle
changes in EEG activity occurring before and after LOC.

We performed a retrospective analysis of data collected
from geriatric patients (aged 65 and older) who were on beta-
adrenergic blockers at least 24 h prior to surgery. Patients were
anesthetized with fentanyl and propofol. We identified and
analyzed 20 s clips of frontal EEG from before and after loss
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of response to verbal commands (LOR, considered here as loss
of consciousness). We compared frequency-derived measures, as
well as complexity measures, of the EEG signal in the before-and-
after clips to identify measures that discriminated between the
two states.

MATERIALS AND METHODS

Study Protocol
All procedures took place under an approved protocol from the
Stanford School of Medicine Administrative Panel on Human
Subjects in Medical Research (ClinicalTrials.gov, NCT00938782).
The database consisted of 67 surgical patients all older than
65 years of age. Patients underwent anesthesia for non-cardiac
procedures classified as status 1–3 by the American Society
of Anesthesiologists. All patients in the original study were
receiving beta-adrenergic treatment for a minimum of 24 h
preoperatively and received their medication prior to surgery.
We reviewed the database retrospectively and analyzed data
under a separate Stanford-approved IRB. Out of the 67 patients,
28 patients were used for analysis (details of selection below).
These 28 patients had an average age of 76 (± 6) years and
included 18 males and 10 females. They had an average body
mass index (BMI) of 27.3 (± 4.7). The healthy BMI range for
patients aged 65 and older has been suggested as 23 to 30
(Porter Starr and Bales, 2015). Our analysis included 8 patients
with a BMI greater than 30 and 5 patients with a BMI less
than 23.

The surgical procedures and anesthetic administration have
been described in detail previously (Drover et al., 2011).
Briefly, patients were induced with fentanyl (1–3 mcg/kg),
propofol (1–2 mg/kg), and muscle relaxant (if required) using
either rocuronium (0–1 mg/kg) or vecuronium (0.1 mg/kg).
After intubation, sevoflurane in oxygen with 50–60% nitrous
oxide was initiated and used to maintain anesthesia. Medical
staff recorded significant clinical events including induction,
anesthetic administration and dosage, LOR to verbal commands,
and time.

The average time of fentanyl use prior to LOR was
2.1 ± 1.6 min. With propofol, the average before LOR was
1.0 ± 0.6 min. A total of 6 patients received muscle relaxant
before LOR. One patient received vecuronium 0.7 min before
LOR, and 5 patients received rocuronium an average of 5.2 min
before LOR. A total of 14 patients received muscle relaxant
within a 4 min window following LOR. Three patients received
vecuronium and 11 received rocuronium, both an average of
0.8 min following LOR. In addition, 18 patients were started on
sevoflurane in oxygen with 50–60% nitrous oxide an average of
1.7 min following LOR.

EEG Recording and Preprocessing
Electroencephalogram recordings were acquired using a SedLine
Legacy EEG monitor (Masimo, Irvine, CA, United States). The
manufacturer’s standard adhesive electrode was attached to the
patient prior to starting the anesthetic, as per the manufacturer’s
instructions. EEGs were recorded at approximately F7 grounded

to Fpz and referenced to ∼1 cm above Fpz (Figure 1A). Data
was digitized at 250 Hz. Records of the surgical events including
time stamps of start of induction, LOR to verbal stimuli, and
administration and dosages were de-identified and then used for
analysis. The EEG recordings were de-trended, and notch filtered
using a second-order Butterworth Infinite Impulse Response
(IIR) filter to remove 60 and 120 Hz noise prior to analysis.
Additionally, a second-order Butterworth IIR filter was used to
remove a 78.125 Hz impedance measurement pulse generated by
the EEG monitor system.

We identified each subject’s 20 s pre-LOR and post-LOR EEG
clip via a two-step algorithm which was a mix of exclusion and
inclusion criteria (Figure 1A). First, three of the authors (SLE,
DRD, and MBM) visually inspected the EEG traces, spectrums,
processed spectrograms to identify EEG periods containing burst
suppression or artifacts (exclusion criteria). Second, given the
fundamentally imprecise metric of LOR, from these remaining
clips we used the clips most temporally-distant from the LOR
timepoint (within a 2 min window) to obtain the clips most
representative of pre-LOR and post-LOR (inclusion criteria).
From the original 67 patients, 28 were selected who had LOR
timestamps and artifact and noise free EEG clips for at least 20
continuous seconds before and after LOR.

Spectral Analyses
To visualize the spectral changes that occurred in our clips
before and after LOR, we performed multitaper spectral analysis
on the 20 s clips during pre and post LOR period using the
MATLAB Chronux toolbox (Figure 1B; Mitra and Bokil, 2008).1

Specifically, we used a time-bandwidth product of 5 with 9
tapers, limited the frequency ranges calculated to 0 to 50 Hz,
and computed the theoretical error range at the 95% confidence
interval. Power values were expressed in decibels.

To give an example of the temporal profile of the spectral
changes that occurred during the windows surrounding the LOR
transitions, we computed a normalized spectrogram (Figure 1C).
We calculated the Fourier transform using Hann windows with
half window overlaps. We then cutoff the frequencies above
50 Hz, converted the magnitude to decibels (dB), and scaled the
spectrogram output by its maximum magnitude.

We calculated the spectral edge frequency (i.e., the frequency
bounding 95% of the power from above) and total power using
multitaper spectral analysis (Mitra and Bokil, 2008) without
limiting the frequency range to below 50 Hz. We calculated the
percentage of total power for individual frequency bands per
condition. The percentage of total power was used because of
prior reports of significant changes in total power with exposure
to anesthetics. The ranges we used for the frequency bands were
as follows: delta: 0.1 to 4 Hz; theta: 4 to 8 Hz; alpha: 8 to 14 Hz;
beta: 14 to 30 Hz; and gamma: above 30 Hz (Gugino et al., 2001;
Purdon et al., 2013). To test whether we observed similar changes
in before and after clips compared to other studies, we calculated
the slow frequency component (0.1–1 Hz) separately.

To determine whether 1/f characteristics change before and
after LOR, we fit each patient’s spectral power to c/fα , where α and

1http://chronux.org/
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FIGURE 1 | Characterizing loss of response (LOR) using electroencephalogram (EEG) analysis. (A) EEGs were recorded from F7 during induction with propofol and
fentanyl anesthesia in geriatric patients receiving beta-adrenergic blockade. We selected continuous artifact-free 20 s clips from before (red) and after (blue) patients
lost response to verbal commands. (B) We analyzed these clips using multitaper spectral analysis. In this patient (PT09) an increase in lower frequencies and a
decrease in higher frequencies from before to after LOR can be observed. (C) To view the dynamics of the spectral changes through time we plotted a normalized
spectrogram starting 2 min before LOR to 2 min after LOR. We can see the increase in lower frequencies and decrease in higher frequencies coordinates well with
the LOR timestamp. (D) We tested several complexity measures of time-delayed embeddings (attractors). An awake attractor (red) looks less ellipsoidal than the
anesthetized attractor (blue). (E) One method we used to quantify change in attractors before and after LOR is by fitting the attractor with an ellipsoid solid of
revolution. We then calculate the ratio of the minimum and maximum radii.
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c were free parameters representing the quickness of frequency
decay and an arbitrary constant, respectively. We determined α

and c for each patient by minimizing the L2 norm of the residuals
between predicted and actual values.

Multiscale Entropy
As complex signals often have meaningful relationships at
multiple timescales, we used MSE to characterize the relationship
and complexity of the EEG time series. MSE utilizes an algorithm
that calculates a traditional entropy metric at several timescales
(Costa et al., 2002). In this case, we used sample entropy as our
multiscale metric (Pincus, 1991) as it has been shown to extract
meaningful complexity differences in a variety of physiological
signals (Costa et al., 2003; Bian et al., 2009; Liu et al., 2013). We
calculated MSE using custom MATLAB (The MathWorks, Inc.)
scripts.

Characterization of Dynamical Attractors
Correlation Dimension
We constructed three-dimensional time-delayed embeddings
(attractors) of the EEG signal before and after LOR using
an 8 ms delay (Figure 1D) as previously described (Watt
and Hameroff, 1988; Walling and Hicks, 2006; MacIver and
Bland, 2014; Eagleman et al., 2018). We chose this delay as
we observed shape changes in attractors when plotted at this
timescale. We tested whether the CD captured this shape change
with LOR. CD is used to determine the non-integer (fractal)
dimensionality of irregular objects (e.g., a point cloud in our
case) as described previously (Grassberger and Procaccia, 1983;
Widman et al., 2000; Walling and Hicks, 2006). We also tested
whether significant differences in CD could be observed when
we increased the dimensionality of the embeddings from 3D
to 5D.

We tested whether the embedding delay of the attractor
impacted the estimate of the CD value. To estimate the optimal
delay for creating the attractors we calculated the first zero-
crossing of the autocorrelations of the pre-LOR and post-LOR
signals. This is the first time lag that the EEG signal differs
maximally with itself. We used this value to set our maximum
range of embedding delays and tested multiple delays between the
shortest time window (shifting the EEG by 1 point) to the largest
(set by the autocorrelation zero crossing). We tested delays of 4,
8, 12, 52, 100, 500, 1000, 1500, 2000, and 2500 ms. We tested these
delays for both 3D and 5D time-delayed embeddings. We tested
whether a trend existed between embedding delay and CD using
the Spearman correlation.

Ellipse Radius Ratio
We constructed three-dimensional time-delayed embeddings, as
described above (Figure 1D). We quantified this shape change by
fitting the three-dimensional attractor to an ellipsoidal solid of
revolution (Figure 1E; Khachiyan, 1980; Eagleman et al., 2018).
The lengths of the symmetry axes of the ellipsoid were calculated
and the ratio of the minimum and maximum axes (which we term
the ellipsoid radius ratio, ERR) was used to quantify the shape
change. A radius ratio of 1 implies a sphere, while smaller ratios
imply more strongly ellipsoidal shapes.

Similar to the CD, we tested also whether the ERR was
changed by the embedding delay time. We created time delayed
embeddings using the same delays as were used to calculate the
CD. We tested whether a trend existed between embedding delay
and ERR using the Spearman correlation statistic.

Correlations Between EEG Measures
and Effect Size of EEG Measures
To test whether our EEG measures correlated with patient age or
body-mass index (BMI), we calculated the Spearman correlation
statistic between the change in ERR (LORpost–LORpre) at the
shortest delay (4 ms) with corresponding patient ages and BMIs.
We did the same for the MSE results.

To test whether our EEG measures correlated with each other
or with spectral changes, we calculated the Spearman correlation
statistic between the changes in these measures before and after
LOR. Specifically, we tested the correlation between changes in
ERR and MSE as well as between ERR or MSE and percentage
of power change (LORpost–LORpre) in the individual frequency
bands that we measured (delta, theta, alpha, beta, and gamma).
For the change in ERR, we chose the values calculated at the
shortest delay (4 ms) as these showed the most significant changes
before and after LOR.

We calculated a paired-data Cohen’s D on our EEG measures
before and after LOR for the novel spectral (1/f ) and complexity
(MSE and ERR phase space analysis) measures that showed
significant differences before and after LOR. We also calculated
Cohen’s D for the percentage of power in each of the frequency
bands (delta, theta, alpha, beta, and gamma) for comparison.

Statistics
We corrected significance values for multiple univariate statistical
comparisons within a particular analysis type, by using the
Holm-Bonferroni method—a sequentially-rejective procedure
(Holm, 1979). Specifically, we corrected p values for pre vs
post metrics within each of the following analyses: (1) the
power percentage across all 5 frequency bands (delta, theta,
alpha, beta, gamma), (2) the CD across all 10 embedding
delays, (3) the ERR across all 10 embedding delays, and (4)
the correlation of MSE, ERR, and frequency band power.
We report our results as medians (25, 75 percentiles), and
significance values (p) are calculated from Wilcoxon Signed Rank
Tests.

RESULTS

Spectral Analyses
We performed multitaper spectral analysis to quantify the
changes that occur before and after LOR (Figure 2A). To
compare our measures to previous reports, we computed a
common spectral measure that correlates with anesthetic depth:
the spectral edge frequency. We also tested whether total power
differed from before and after LOR. We did not observe a
significant change in spectral edge frequency before and after
LOR (Figure 2B, pre-LOR 14.1 Hz [9.6, 19.4], post-LOR 13.0 Hz
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FIGURE 2 | Spectral characteristics before and after loss of response (LOR). (A) Example of multitaper spectrum from four patients pre- (red) and post- (blue) LOR.
Note the increases in alpha and decrease in gamma activity following LOR. The shaded region represents the 95% confidence interval. We computed several
standard spectral measures pre- and post-LOR. (B) Spectral edge frequency has been shown to correlate with anesthetic depth; however, we did not observe a
significant difference. (C) We observed a significant increase in alpha activity after LOR (p = 0.015 corrected). (D) We observed a significant decrease in gamma
activity after LOR (p = 0.03 corrected).

[11.1, 17.6], p = 0.64). We did not observe a significant difference
in total power before and after LOR (pre-LOR 35.2 dB [33.0,
36.2], post-LOR 34.6 dB [32.8, 36.3], p = 0.21).

To determine the changes in frequency bands, we calculated
the changes in delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–
14 Hz), beta (14–30 Hz), and gamma (above 30 Hz) ranges.
Significant differences were found for alpha (Figure 2C) and
gamma (Figure 2D), and all spectral results are summarized in
Table 1. Similar to previous reports, we observed a significant
increase in alpha from before to after LOR. In addition, we
observed a significant decrease in gamma power from before
to after LOR. In a separate analysis, we separated out the slow
(0.1–1 Hz) frequency component from the EEG signal to see
if the percentage of slow activity changed before to after LOR.
We did not observe a significant difference in this frequency
band (pre-LOR 48.6% [37.6, 62.9], post-LOR 54.3% [34.0, 64.4],
p = 0.57).

To determine whether 1/f characteristics change before and
after LOR, we fit each patient’s spectral power to c/fα (Figure 3A).
Overall, 71% of the patients showed an increase in the value
of α from pre-LOR to post-LOR (Figure 3B). This difference
in α before and after LOR differed significantly from the null
hypothesis of no change (median change = 0.17, p < 10−3,
Figure 3C).

Characterization of Dynamical Attractors
We began by testing whether significant differences could
be observed in CD between 3D attractors plotted at an
8 ms embedding delay. We observed a similar flattening
of the attractor and more ellipsoidal shapes after LOR
(Figure 4A). We quantified the pre- to post-LOR changes
in 3D attractors using CD. We did not observe a significant
difference using this measure (Figure 4B). We also calculated
the CD for 5 dimensional attractors. Here again we did
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TABLE 1 | Summary of spectral changes from before and after loss of response
(LOR).

Frequency Percentage Percentage Significance

band of power of power value,

PRE LOR POST LOR corrected

Delta (0.1–4 Hz) 76.3% [66.5, 83.7] 74.1% [60.1, 82.8] 0.22

Theta (4–8 Hz) 4.8% [3.2, 7.1] 6.4% [4.3, 9.4] 0.34

Alpha (8–14 Hz) 5.3% [3.2, 7.7] 8.7% [5.1, 15.0] 0.015∗

Beta
(14–30 Hz)

3.8% [2.2, 5.3] 3.9% [2.8, 8.9] 0.26

Gamma
(>30 Hz)

0.6% [0.4, 2.6] 0.4% [0.3, 0.6] 0.03∗

Percentage of power in individual frequency bands are reported as medians [25,
75 percentiles]. Significance values reported are from Wilcoxon signed rank tests,
corrected for multiple comparisons. The ∗ indicates the percentage of power
change was significant at p < 0.05 corrected.

not observe a significant difference pre- and post-LOR
(Figure 4C).

We then tested our ERR with the 8 ms attractors before and
after LOR. We found a significant difference between pre- and
post-LOR (Figure 4D, p = 0.04 corrected).

To test the impact of the embedding delay on the attractor
calculations we chose multiple embeddings delays between the
smallest possible delay (4 ms, shifting the EEG by 1 point) and
the largest (set by the first zero-crossing of the autocorrelation).
We calculated the first zero-crossing for both the pre- and post-
LOR period to see if there was a difference. We did not find
a significant difference between the pre- and post-LOR values
(pre-LOR 1800 ms [1392, 2856], post-LOR 2176 ms [1664, 2480],
p = 0.35 corrected). Given these results, we decided to calculate
CD using the following embedding delays: 4, 8, 12, 52, 100, 500,
1000, 1500, 2000, and 2500 ms. The impact of embedding delay
on attractor shape is shown in Figure 5A. We did not observe a
significant difference at any delay for 3D or 5D CD calculations,
nor did we observe a significant correlation between CD and
embedding delay (Figure 5B).

We performed the same test of different embedding
delays with our ERR analysis. The ERR showed a significant
positive relationship with the difference in post-LOR–pre-LOR
conditions (Figure 5C, p = 0.04, Spearman correlation). This
relationship likely was driven by a reduction in the ERR between
the pre- and post-LOR states at short embedding delays: only
embedding delays of only 4 and 8 ms showed a significant
difference (p4 = 0.017 corrected, p8 = 0.04 corrected).

Multiscale Entropy
A MSE analysis between the pre-LOR and post-LOR conditions
revealed a scale-dependent change in sample entropy
(Figure 6A). Complexity decreased at short scale factors,
showing a statistically significant trend toward increasing at
medium scale factors (rspearman = 0.45, p < 10−3 percentile
permutation test). The difference in sample entropy between
post and pre conditions then showed a decreasing relationship
with a further increase in scale factor (rspearman = -0.31, p< 10−3

percentile permutation test). The initial decrease in complexity

FIGURE 3 | 1/f spectral changes occur with loss of response. We fit each
patient’s spectral power to c/fα , where α and c were free parameters
representing the quickness of frequency decay and an arbitrary constant,
respectively. Panel (A) shows these plots for three patients, before and after
LOC. (B) Values of α for each subject, pre-LOR and post-LOR. (C) Overall, we
observed that 71% of the patients show an increase in α after LOR.

at a scale factor of 1, which was not significantly different by
median (p = 0.48), likely resulted from sharp decreases in MSE
among several of the participants (Figure 6B).

Correlations Between EEG Measures
and Effect Size of EEG Measures
Spearman correlation revealed no significant relationship in our
ERR or MSE changes before and after LOR and with patient
age or BMI (Table 2). Spearman correlation between our ERR
(calculated at the shortest delay, 4 ms) and MSE changes before
and after LOR revealed that they are correlated with each
other (Table 3, r = 0.54, p = 0.0034 corrected). Additionally,
a significant correlation between ERR change and change in
percentage of gamma activity before and after LOR was observed
(r = 0.67, p = 0.00012 corrected). Significant correlations are also
observed between changes in MSE and changes in delta (r = -0.60,
p = 0.00084 corrected), alpha (r = 0.57, p = 0.0019 corrected),
beta (r = 0.74, p = 10−5 corrected) and gamma power (r = 0.64,
p = 0.00034 corrected). A summary of all of the measured values
before and after LOR can be found in Table 3.
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FIGURE 4 | Quantifying dynamical attractors before and after loss of response (LOR). (A) We created time-delayed embeddings (attractors) from 20 s continuous
clips. A shape change from thicker, less-ellipsoidal attractors before LOR (red) to flatter, more ellipsoidal attractors after LOR (blue) was observed and is shown here
for 6 patients. We quantified the difference in attractors using both correlation dimension and our ellipse radius ratio (ERR). (B) We did not observe a significant
difference in correlation dimension in 3 dimensions, nor did we observe a significant difference in correlation dimension in 5 dimensions (C). (D) We did observe a
significant difference in our ERR measure from before to after LOR (p = 0.04 corrected). The ∗ indicates significant difference between pre-LOR and post-LOR
measures at p < 0.05 corrected.

Cohen’s D values revealed medium effect sizes for both
complexity measures: sample entropy and ERR (Table 4,
DMSE = −0.55, DERR = −0.69). Cohen’s D values were also
sizeable for percentage of power differences before and after LOR
in alpha and gamma frequency bands (Table 4, D1/f = 0.68,
DAlpha = 0.61, DGamma = −0.55). The rest of the frequency bands
had small effect sizes (Table 4).

DISCUSSION

We found spectral results similar to those reported for propofol
anesthesia (Gugino et al., 2001; John et al., 2001; Purdon et al.,
2013, 2015a). Specifically, we saw increases in the percentage

of alpha activity and decreases in the percentage of gamma
activity with LOR. Conversely, we did not observe a significant
difference in the percentage of slow (0.1–1 Hz) frequency from
before to after LOR, nor did we observe a significant difference in
spectral edge frequency before and after LOR. This is likely due
to the overall reduced amplitudes of EEG signals in our elderly
patients (Purdon et al., 2015b), which reduces the magnitude of
the spectral changes. In addition, patients were sedated heavily
before they lost consciousness, so EEG changes were subtle.
Since we were doing a retrospective data analysis, we were
not able to control the initiation of maintenance anesthesia, so
some of our patients were on sevoflurane in oxygen with 50–
60% nitrous during the post-LOR timepoints. This may have
obscured a change in spectral edge frequency as nitrous oxide
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FIGURE 5 | Attractor shape changes are embedding delay dependent. (A) Attractors from PT02 shown at 4, 52, 1000, and 2500 ms. The shape change in the
attractor is not observed at higher embedding delays. We tested whether our attractor characterization analyses correlated with embedding delay. We computed
correlation dimension and ellipse radius ratio (ERR) at 10 different delays from 4 to 2500 ms. (B) No significant changes in correlation dimension were observed from
before to after LOR for any embedding delay nor was correlation dimension correlated with the embedding delay. Here we show results from the 3D correlation
dimension calculation. (C) We observed a significant correlation between the ERR and embedding delay (rspearman = 0.17, p = 0.04) and a significant difference in the
ERR between pre- and post-LOR for 4 ms and 8 ms delays (p4 = 0.017 corrected, p8 = 0.04 corrected). The ∗ indicates a significant difference between the
measured values before and after loss of response at that embedding delay at p < 0.05 corrected.

FIGURE 6 | Multiscale entropy reveals scale-dependent complexity change after loss of response. (A) Sample Entropy (SampEn) shows a decrease in complexity at
short scale factors which monotonically increases until medium scale (rspearman = 0.45, p < 10−3) and then decreases toward 0 (rspearman = −0.31, p < 10−3). Here,
the solid black line represents the mean. (B) At the shortest scale, the difference in SampEn between post-LOR and pre-LOR conditions is not significantly different
from chance as measured by the median, but is when measured by mean (p = 0.04, percentile permutation test).

maintains higher frequencies (Rampil et al., 1998). Sevoflurane,
on the other hand, causes similar changes in EEG activity
compared to propofol (Akeju et al., 2014; Purdon et al., 2015a).
Overall, these nuances between common clinical anesthetics
highlight the importance of developing new tools to better

distinguish anesthetic states using EEG (Eagleman and Drover,
2018).

One interesting spectral analysis not previously applied to
anesthesia EEG is the calculation of the 1/f frequency scaling.
We chose this measure as it distinguishes different brain states
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TABLE 2 | Summary of correlations between observed changes before and after
loss of response (LOR) and patient demographics.

Parameter 1 Parameter 2 Spearman’s
Rho

Significance
value,

uncorrected

ERR Age 0.10 0.60

ERR BMI 0.09 0.66

MSE Age −0.28 0.15

MSE BMI 0.22 0.25

The Spearman correlation between changes in the ellipse radius ratio (ERR,
calculated from the shortest delay 4 ms) and multi-scale entropy (MSE) values
before and after LOR (post – pre) with age and body-mass index (BMI) of patients
used in the analysis is reported here. No correlations were significant.

TABLE 3 | Summary of correlations between measured changes before and after
loss of response (LOR).

Parameter 1 Parameter 2 Spearman’s
Rho

Significance
value,

uncorrected

ERR MSE 0.54 0.0034∗

ERR Delta −0.24 0.22

ERR Theta 0.12 0.53

ERR Alpha 0.17 0.38

ERR Beta 0.29 0.13

ERR Gamma 0.67 0.00012∗

MSE Delta −0.60 0.00084∗

MSE Theta 0.51 0.0061

MSE Alpha 0.57 0.0019∗

MSE Beta 0.74 1.09e–05∗

MSE Gamma 0.64 0.00034∗

The Spearman correlation between changes in the ellipse radius ratio (ERR) and
multi-scale entropy (MSE) values before and after LOR (post-pre) is reported
here. Additionally, Spearman correlation between these values and the changes
in percentage of power in individual frequency bands (delta, theta, alpha, beta, and
gamma) before and after LOR (post–pre) are reported as well. The ∗ indicates the
correlation between the two parameters was significant at p < 0.05 corrected.

TABLE 4 | Summary of Cohen’s D for measured values before and after loss of
response (LOR).

EEG measure Cohen’s D

1/fα fit 0.68

SampEn −0.55

ERR −0.69

Delta −0.20

Theta 0.15

Alpha 0.61

Beta 0.34

Gamma −0.55

We calculated Cohen’s D (sign convention: post-pre) to quantify the effect sizes of
our EEG measures. We included all measures that showed significant differences
before and after LOR, and the standard frequency bands for comparison. ERR
value shown here is for the 4 ms delay.

(Bédard et al., 2006) and ages (Voytek et al., 2015). To our
knowledge, we have demonstrated the first observation of a
change in 1/f frequency scaling in EEGs in an anesthesia protocol.
1/f frequency scaling was sensitive to before and after LOR.

Previous studies reported differences in CD with anesthetic
depth (Widman et al., 2000; Walling and Hicks, 2006), but
our study differs in several important aspects. In these earlier
studies, patients were anesthetized with sevoflurane to deep
levels of anesthesia, but in our study, patients were anesthetized
with propofol and fentanyl; further, we limited our analysis to
20 s before and after LOR. Additionally, we used a unique
patient population consisting only of geriatric patients with beta-
adrenergic blockade. We determined that our CD results were
not based on embedding delay or differences between 3 and 5
dimensions.

There are several possibilities as to why we did not find
significant differences in CD before and after LOR. For
instance, the attractor might be better resolved with higher
sampling frequency. Additionally, brain activity might be better
represented in an even higher dimensionality embedding.
Changes in CD also may not be observable due to age-
related changes in complexity (Pierce et al., 2000; Müller and
Lindenberger, 2012; Sleimen-Malkoun et al., 2014). The other
possibility is that CD might not be sufficiently sensitive to detect
the changes that occur during before and after LOR.

We did observe a change in attractor shape similar to what has
been previously described (Watt and Hameroff, 1988; Walling
and Hicks, 2006; MacIver and Bland, 2014; Eagleman et al., 2018).
Additionally, our phase-space analysis based on the geometry of
attractors showed significant differences before and after LOR
at very short delays (shifting the EEG signal by 1 or 2 points),
as previously reported (Eagleman et al., 2018). However, our
results demonstrate variability in our population. To determine
the source of this variation, better control and measurement of
the anesthetics administered in a prospective study is needed. We
noticed the magnitude of our results were reduced in the current
study compared to our recently published results (Eagleman et al.,
2018). This may be due to the current patient population being
more sensitive to anesthetics and thus more sedated at our pre-
LOR timepoint. We also tested the impact of the embedding delay
on our analysis to explore whether changes in EEG signals before
and after LOR existed at longer timescales. We found that shorter
delays better distinguished before and after LOR and results
were no longer significant when the signal was delayed by three
points. Visual inspection of the attractor shapes supports this
result. Further work is needed to elucidate whether calculations
performed in real-time can classify anesthetic depth adequately.

In addition, we tested whether another complexity measure,
MSE, could distinguish before- and after-LOR timepoints. We
noticed that MSE values appear to converge within a smaller
range in the post-LOR period. The distribution suggests that
there is one group of patients that show a large decrease in
this EEG measure with LOR, while another group does not.
The differences between the groups were outside the scope
of the current study; however, we plan to examine these
differences in the future in a well-controlled prospective study.
Additionally, previous reports that showed high correlation of
MSE with existing anesthetic depth measures (BIS index and
expert anesthesiologist assessment) used EEG data from the
entirety of the surgery (induction through recovery), which
exposed patients to deeper anesthetic levels than in our study
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(Liu et al., 2015). Thus, further testing of this analysis on more
clinically relevant timepoints is needed.

Since several EEG measures were applied here to an anesthetic
dataset including some that have not been explored much
previously (ERR), we calculated the Spearman correlation
between the changes in EEG measures before and after LOR.
We did this for the shortest delay of ERR, MSE, and the
percentage of all the individual frequency bands we included. We
found a significant correlation with the ERR and MSE values.
This is interesting because it suggests that the ERR change,
and thus attractor shape change, may be related to changes in
the complexity of the signal (revealed by reduction in MSE
with anesthesia onset). Additionally, a significant correlation
between ERR and MSE with the percentage of gamma change was
observed. These relationships are expected as both reductions
in gamma activity and reductions in entropy with anesthetic
administration have been previously reported (John et al., 2001;
Li et al., 2010). The change in MSE is also correlated with changes
in the percentages of delta, alpha, and beta power. This again is
expected given the ability of MSE to capture all of the spectral
changes observed with anesthesia onset (Li et al., 2010).

We tested the effect size of the EEG measures using Cohen’s D.
None of these measures had large effect sizes (> 1) indicating the
challenge with detecting subtle EEG changes in geriatric patients.
ERR and 1/f frequency scaling had the largest effect sizes, which
were medium in magnitude. This indicates that supplementing
complexity measures may improve geriatric patient monitoring.
However, further testing of these analyses on more clinically
relevant time points and on full EEG traces is needed to test this
idea.

As with any study involving EEG, muscle contamination is
a potentially important source of artifact. Three of the authors
visually inspected all of the EEG clips as well as the processed EEG
spectrum and spectrograms to ensure they were free of artifacts.
Activity from facial and neck muscles can appear 20 Hz and
above, and thus into the frequency ranges we used for analyses
(Shackman et al., 2009; Claus et al., 2012; Muthukumaraswamy,
2013); however, as we have reasoned previously (Eagleman
et al., 2018), it is important not to throw out higher frequency
activity, as it plays an important role in brain-state dynamics
(Muthukumaraswamy, 2013), especially in judging anesthetic
depth (Sleigh et al., 2001). The measures that we have used have
been tested in similar experimental paradigms on intracranial
recordings free from EMG contamination (Bédard et al., 2006;
MacIver and Bland, 2014; Voytek et al., 2015).

Since these results are only from retrospective analyses our
work is limited in several ways. We were not able to control the
timing of drug delivery (such as delivery of muscle relaxants);
several anesthesiologists with potentially diverse clinical practices
were involved, and consciousness measures were restricted to
the first loss of response to verbal commands. However, all
participating anesthesiologists were instructed to administer
anesthesia and a small number of adjuvant agents as per strict
protocol guidelines (Drover et al., 2011). Additionally, the
protocol of anesthetic and adjuvant agent administration in this
retrospective dataset is aligned with current clinical practice.
Thus, our results are relevant to current practices of balanced

anesthesia administration. Additionally, we tested whether any
of our measured results were correlated with patient age or
BMI and found no significant correlations. Future prospective
work will include several measures to better titrate our analysis
to anesthetic action. Collection of blood samples or exhaled
vapor can help us correlate results with anesthetic delivery more
accurately. Whenever possible, future work should control the
delivery of muscle relaxants and the initiation of maintenance
anesthetics to separate out the effects of individual anesthetic and
adjuvant agents on our measures. Additionally, our results need
to be tested on more clinically relevant timepoints, and alongside
spectral measures on full EEG traces instead of clips, to better
prepare our analyses for clinical application.

Nonetheless, we have observed significant differences before
and after LOR using several techniques in a traditionally hard-
to-monitor patient group. Future work will discern if these
results are useful supplemental tools to better guide physicians
in monitoring anesthetic depth in sensitive patient populations.
Development of better EEG analysis techniques will hopefully
encourage the wide adoption of EEG monitoring and improve
the standard of care.

CONCLUSION

We found that frontal spectral changes before and after
LOR in geriatric patients were limited to the alpha and
gamma ranges. Further, we showed that 1/f frequency scaling
differed before and after LOR. We tested the ability of several
measures from nonlinear dynamics, including CD, MSE, and
a geometric characterization of time-delayed embeddings, to
distinguish LOR timepoints. Among these, MSE and the
geometric characterization showed significant differences and
had comparable or greater effect sizes to standard frequency
measures. In the future, these results may enable the development
of better methods of quantifying anesthetic depth in geriatric
patients as they are able to significantly discriminate between the
subtle EEG changes that occur before and after loss of response.
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