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Mapping non-invasively the complex microstructural architecture of the living human

brain, diffusion magnetic resonance imaging (dMRI) is one of the core imaging modalities

in current population studies. For the application in longitudinal population imaging, the

dMRI protocol should deliver reliable data withmaximumpotential for future analysis.With

the recent introduction of novel MRI hardware, advanced dMRI acquisition strategies can

be applied within reasonable scan time. In this work we conducted a pilot study based on

the requirements for high resolution dMRI in a long-term and high throughput population

study. The key question was: can diffusion spectrum imaging accelerated by compressed

sensing theory (CS-DSI) be used as an advanced imaging protocol for microstructure

dMRI in a long-term population imaging study? As a minimum requirement we expected

a high level of agreement of several diffusion metrics derived from both CS-DSI and

a 3-shell high angular resolution diffusion imaging (HARDI) acquisition, an established

imaging strategy used in other population studies. A wide spectrum of state-of-the-art

diffusion processing and analysis techniques was applied to the pilot study data including

quantitative diffusion and microstructural parameter mapping, fiber orientation estimation

and white matter fiber tracking. When considering diffusion weighted images up to

the same maximum diffusion weighting for both protocols, group analysis across 20

subjects indicates that CS-DSI performs comparable to 3-shell HARDI in the estimation

of diffusion andmicrostructural parameters. Further, both protocols provide similar results

in the estimation of fiber orientations and for local fiber tracking. CS-DSI provides high

radial resolution while maintaining high angular resolution and it is well-suited for analysis

strategies that require high b-value acquisitions, such as CHARMED modeling and

biomarkers from the diffusion propagator.

Keywords: diffusion MRI, diffusion spectrum imaging, compressed sensing, multi-shell HARDI, microstructure,

population imaging

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00650
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00650&domain=pdf&date_stamp=2018-09-24
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tony.stoecker@dzne.de
https://doi.org/10.3389/fnins.2018.00650
https://www.frontiersin.org/articles/10.3389/fnins.2018.00650/full
http://loop.frontiersin.org/people/611645/overview
http://loop.frontiersin.org/people/171986/overview
http://loop.frontiersin.org/people/544613/overview
http://loop.frontiersin.org/people/484622/overview
http://loop.frontiersin.org/people/13490/overview
http://loop.frontiersin.org/people/582789/overview
http://loop.frontiersin.org/people/400501/overview


Tobisch et al. CS-DSI in Population Imaging

1. INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) provides,
completely non-invasively, unique insights into the complex
microstructural architecture of the living human brain.
Sensitized for the random motion of water molecules, dMRI
offers a distinct imaging contrast to investigate the diffusion
process at a microscopic scale (Le Bihan et al., 1986). A whole
range of mathematical representations (e.g., Basser et al., 1994;
Jensen et al., 2005; Wedeen et al., 2005; Ozarslan et al., 2009 and
biophysical models, e.g., Behrens et al., 2003; Assaf and Basser,
2005; Zhang et al., 2012), exists to characterize the diffusion
signal as well as the underlying microstructure and to infer
macroscopic brain connections from voxel-wise fiber orientation
estimates. This makes dMRI a powerful imaging modality to
study in vivo pathological changes of diffusion in brain tissue and
the influence of disease on the structural connectivity of brain
white matter (WM).

The increasing life expectancy in modern society and its
consequences for the public health sector give rise to a growing
number of population studies that have been set up in the
last decades [e.g., Rotterdam study, (Breteler et al., 1994; De
Groot et al., 2000), Alzheimer’s Disease Neuroimaging Initiative
(ADNI), (Weiner et al., 2015), Human Connectome Project
(HCP), (Glasser et al., 2016), UK Biobank study, (Miller et al.,
2016), Rhineland Study, (Stöcker, 2016)] to acquire rich data
from their participants with the aim to provide new insights
into disease development and progression and to discover
biomarkers for disease prediction at an early state and potentially
its prevention, but also for health promotion in general. As
a potential biomarker for brain diseases dMRI is, thus, a
natural fit for being one of the core imaging protocols in
population imaging. Long-term population studies require the
dMRI protocol to deliver reliable data with maximum potential
for future analysis. Therefore, an extensive pilot phase is the
starting point of such studies to define the acquisition strategies
based on suggestions from state-of-the-art research. For dMRI,
decisions with respect to the diffusion protocol must be made on
e.g., spatial resolution, q-space sampling, acceleration strategies,
phase encoding directions and many more. DMRI analysis
techniques further influence the choice of the imaging protocol
by imposing special requirements on the dMRI acquisitions for
accurate data processing.

Since the 1990s population studies have been investigating
brain changes due to disease by means of neuroimaging aiming
for large sample sizes and using standard MR scanners with
the purpose of acquiring imaging data comparable to that of
other clinical studies (Ikram et al., 2015; Weiner et al., 2015;
Miller et al., 2016). Due to common MR hardware and scan time
limitations, diffusion tensor imaging (Basser et al., 1994) (DTI)
or 2-shell HARDI is performed in these studies for the collection
of dMRI acquisitions. With the aim to provide very high quality
diffusion data, the two consortia of the Human Connectome
(Behrens and Sporns, 2012; Jbabdi et al., 2015) Project use highly
customized MR scanners to improve diffusion imaging by very
strong magnetic field gradients with a maximum amplitude of
100 mT/m (Van Essen et al., 2012; Sotiropoulos et al., 2013)

or even 300 mT/m (Setsompop et al., 2013). In this context,
advanced dMRI protocols such as multi-shell high angular
resolution diffusion imaging (Tuch et al., 2002) (HARDI), high
b-value q-Ball imaging (Tuch, 2004; Wu and Alexander, 2007)
and diffusion spectrum imaging (Wedeen et al., 2005) (DSI) are
employed to collect high resolution dMRI acquisitions in about
1 h of acquisition time (McNab et al., 2013; Sotiropoulos et al.,
2013; Fan et al., 2016). The bespoke systems developed in this
context have paved the way for a new generation of clinical
MRI systems with higher maximum gradient strength up to 80
mT/m (Glasser et al., 2016).With these scanners’ introduction the
advantages of the aforementioned studies can now be combined,
meeting both the aim for high quality diffusion data as well as
the scan time limitation in high throughput population studies.
Thus, MRI scanners with a powerful gradient system allow for
high resolution diffusion imaging by means of advanced dMRI
protocols within a reasonable scan time. Following the well-
established HCP dMRI protocol (Sotiropoulos et al., 2013), a
3-shell HARDI protocol is a natural candidate for being the
dMRI protocol of choice in this setting. However, advances
in the development of novel acquisition strategies for fast
collection of dMRI scans that provide high resolution of intra-
voxel microstructure indicate that diffusion spectrum imaging
(Wedeen et al., 2005) (DSI) accelerated by the application of
the compressed sensing (Menzel et al., 2011; Bilgic et al., 2012;
Setsompop et al., 2013; Paquette et al., 2015; Tobisch et al., 2015)
(CS) theory also has high potential to fit the task of time efficient
versatile diffusion imaging.

In this work we conducted a pilot study specifically designed
based on the requirements for a long-term population study, the
Rhineland Study, to investigate the performance of CS-DSI for
the acquisition of high resolution dMRI data at 3T. The CS-
DSI protocol was time-matched with a state-of-the-art 3-shell
HARDI protocol that runs 12 minutes in total. As part of the
1-h MR protocol in the Rhineland Study (Stöcker, 2016), the
dMRI scheme should deliver data with maximum potential for
future analysis to enable both microstructure imaging and fiber
tracking and thereby tractometry (Bells et al., 2011; De Santis
et al., 2014b), as well as connectomics analysis. Thus, a wide
spectrum of state-of-the-art diffusion processing and analysis
techniques was applied to the pilot study acquisitions. The results
of this work validate the applicability of DSI accelerated with
compressed sensing for population imaging and highlight the
potentials of this imaging protocol in the context of a long-term
population study.

2. MATERIALS AND METHODS

2.1. DMRI Acquisition
2.1.1. Diffusion MR Imaging Protocols
Based on previous works (Sotiropoulos et al., 2013; Paquette et al.,
2015; Tobisch et al., 2015), we adapted and optimized a CS-DSI
and a 3-shell HARDI protocol for dMRI at 3T. Figure 1 depicts
the three-dimensional q-space sampling and the corresponding
b-value distribution of both advanced protocols in comparison
to dedicated sampling schemes for DTI and CHARMED (Assaf
and Basser, 2005). 3-shell HARDI samples the q-space with high
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FIGURE 1 | DMRI sampling distributions and diffusion weighting of the advanced imaging protocols CS-DSI and 3-shell HARDI and of DTI and CHARMED schemes.

(Top row) The color coding of the q-space samples highlights the range of b-values specific to each protocol. The number of depicted q-space samples per protocol

corresponds to the sum of acquired DWIs and their antipodal counterparts. (Bottom row) The number of DWIs acquired per protocol is depicted as a function of the

b-value. In contrast to the single (DTI) and the multi-shell (3-shell HARDI) scheme, CS-DSI, DSI and CHARMED contain high b-value acquisitions.

angular resolution and provides adequate radial resolution by
incorporating three different diffusion-weightings at b-values of
1,000, 2,000, and 3,000 s/mm2. In addition to 14 interleaved
b = 0 scans, these three q-space shells respectively contain
30, 40, and 50 samples that are optimally distributed for an
advantageous uniform angular q-space coverage (De Santis et al.,
2014a; Sprenger et al., 2016) following the design proposed by
Caruyer et al. (2013). In total, 120 diffusion weighted images
(DWIs) are acquired using 3-shell HARDI. Our choice of a
HARDI scheme with three shells at b-values of 1,000, 2,000, and
3,000 s/mm2 is based on recent literature on comparable variants
of multi-shell schemes. Several works report the suitability of
those schemes for population imaging (Sotiropoulos et al., 2013)
and their advantages for optimal diffusion parameter extraction
bymeans of microstructure models (Alexander and Barker, 2005;
Poot et al., 2010; Kamath et al., 2012; Zhang et al., 2012; Sprenger
et al., 2016) and for the estimation of orientational information
(Kamath et al., 2012; Sotiropoulos et al., 2013; Tournier et al.,
2013). In our work, we, therefore, consider 3-shell HARDI as
a gold standard protocol for multi-shell imaging in population
studies to which we aim to compare CS-DSI. In contrast to
the multi-shell protocol, DSI requires a uniform Cartesian grid
sampling scheme, typically of size 11 × 11 × 11 truncated to
a sphere, which leads to a total number of 258 unique samples
in q-space covering the latter at both high angular and high
radial resolution. One drawback of traditional DSI is the long
acquisition time. However, recent advances in combining DSI
with CS theory allow for accelerated imaging by reducing the MR
acquisition to fewer q-space samples sufficient for subsequent
recovery of the full data by means of non-linear reconstruction.
Exploiting the antipodal symmetry of the diffusion signal and
applying an acceleration factor of 2.3, the CS-DSI protocol, thus,

acquires 112 DWIs with diffusion weightings in the range of
b = 270–6,800 s/mm2 plus 8 interleaved b = 0 scans. The b-
vectors and b-values applied for CS-DSI and 3-shell HARDI data
acquisition are provided as Supplementary Material. We select
the maximum b-value of the CS-DSI scheme in accordance with
recent literature on conventional and CS-accelerated DSI (Bilgic
et al., 2012; Gigandet et al., 2013; Paquette et al., 2015; Yeh
and Verstynen, 2016) and recommendations for microstructure
imaging requiring high b-values such as CHARMED modeling
(De Santis et al., 2014a). The CS-DSI acquisition scheme was
generated based on the design proposed by Paquette et al. (2015).
All samples follow a uniform angular distribution and cover q-
space randomly in the radial direction (Jones et al., 1999; Paquette
et al., 2015) subject to Cartesian discretization within the 11 ×

11 × 11 truncated sphere. Based on simulation experiments, no
significant difference in CS reconstruction was observed across
100 randomly generated instances of this sampling scheme for
2.3-fold CS acceleration (Tobisch et al., 2015). By means of CS
reconstruction of the undersampled DSI acquisitions, all 515
samples on the q-space grid are recovered forming the basis
for the following DSI data analysis. As state-of-the-art reference
protocols, we further consider a dedicated CHARMED protocol
containing 72 q-space samples in the range of b = 850–6,800
s/mm2 (De Santis et al., 2014a) as well as a DTI scheme with 30
DWIs at b-value 1,000 s/mm2. The latter is represented by the
inner shell of the 3-shell HARDI sampling scheme similarly to
other works that utilize a suitable subset of the acquired multi-
shell data for fitting the tensor model (Sotiropoulos et al., 2013;
Miller et al., 2016).

The selection of a suitable q-space sampling scheme only
covers one aspect in the process of designing a diffusion protocol.
The following section will summarize the key decisions made
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during a first sequence development stage with respect to the
dMRI acquisition in the context of scan time-limited population
imaging. All dMRI scans are collected on a 3T Siemens
MAGNETOM Prisma MRI scanner (Siemens Healthcare,
Erlangen, Germany) equipped with a powerful gradient system
with maximum amplitudes of 80 mT/m and slew rates of 200
mT/m/ms as well as a 64-channel head-neck coil. We perform
accelerated diffusion imaging by means of a simultaneous-
multi-slice (SMS) dMRI sequence employing threefold slice-
acceleration (Setsompop et al., 2012; Xu et al., 2013; Cauley
et al., 2014). No in-plane acceleration is applied (GRAPPA
R = 1) in combination with multiband excitation. Facilitated
by the performant gradient system, a relatively large readout
bandwidth of 1,785 Hz/pixel is selected to counteract increased
geometric distortions along the phase encode direction at 1.5
mm resolution. All imaging protocols apply monopolar diffusion
weighting and a partial Fourier factor of 6/8 to minimize TE. All
sequence parameters are matched across protocols with identical
spatial resolution, except for the gradient pulse separation (1),
the gradient pulse duration (δ), the echo time (TE) and the
repetition time (TR). Allowing for small differences, the latter
parameters are optimized separately for each protocol to match
the time requirement of the population study while still providing
comparable diffusion contrast among the imaging protocols of
interest. Slightly higher values for TE and TR due to higher b-
value acquisitions result in a reduced number of CS-DSI scans
and a slightly reduced signal-to-noise ratio (SNR) in comparison
to the 3-shell HARDI protocol. For all dMRI acquisitions, TR
and TE are kept constant across q-space samples to avoid effects
through noise levels varying with the diffusion weighting and
T2 relaxation, which would prevent data processing with state-
of-the-art diffusion analysis tools. Running straight-forward data
analysis outweighs the increase in SNR achievable by optimizing
TE and TR separately for different b-values. Due to powerful MRI
hardware and advanced diffusion sequences acquiring dMRI
scans at a higher resolution than 2.0 mm isotropic is feasible and
likewise preferred for diffusion imaging in renowned population
studies (Sotiropoulos et al., 2013).

2.1.2. Diffusion Pilot Study
Diffusion MRI scans were acquired from 20 healthy subjects (age
range 20–77, mean age 47.5, 5 males, 15 females) at 1.5 mm
isotropic resolution using the two advanced imaging protocols:
CS-DSI (TE/TR = 101.4 ms/5,300 ms, 1 = 49.5 ms, δ = 19.7
ms) and 3-shell HARDI (TE/TR = 90 ms/4,800 ms, 1 = 43.9
ms, δ = 14 ms). In addition, reference scans were acquired with a
dedicated 1.5mm isotropic CHARMED protocol (TE/TR= 101.4
ms/5,300 ms, 1 = 49.5ms, δ = 19.7ms) in 4 of the subjects.
Approval to undertake the study was obtained from the ethics
committee of the University of Bonn, Medical Faculty. The study
was carried out in accordance with the recommendations of the
International Council for Harmonization (ICH) Good Clinical
Practice (GCP) standards (ICH-GCP). We obtained written
informed consent from all participants in accordance with the
Declaration of Helsinki. The scan time per subject was 11 min for
the 3-shell and the CS-DSI protocol, supporting the applicability
in population imaging. One minute of additional b = 0 scans,

including an autocalibration scan, with reversed phase encoding
(PE) polarity were collected per protocol. Further, rescans are
collected on the same day, but only for one specific imaging
protocol per subject. In total, 5 rescans were acquired for each
imaging protocol of interest. In addition to dMRI, a rapid, 1mm
isotropic T1-weighted MP-RAGE scan (Brenner et al., 2014) was
acquired per subject within 3 minutes at the end of the first
scanning session (TI = 1,100 ms, TE/TR = 2.83 ms/2,530ms).
For dMRI analysis, the acquisitions of all 20 subjects are divided
into two distinct subsets: the scans of 16 subjects for the
investigation of CS-DSI and 3-shell HARDI (Group A) and the
scans of the remaining 4 subjects for the comparison of these
protocol to the CHARMED reference protocol (Group B).

2.2. DMRI Preprocessing
2.2.1. Motion and Distortion Correction
All images are corrected for subject motion and distortions prior
to the estimation of diffusion and microstructural parameters.
FSL’s topup is used to estimate susceptibility-induced geometric
distortions (Andersson et al., 2003) whereas FSL’s eddy is applied
to simultaneously correct for those distortions as well as eddy-
current-induced artifacts and subject motion (Andersson and
Sotiropoulos, 2015). However, eddy is not designed for DSI data
as it requires the dMRI samples to be acquired on shells in
q-space. For a fair comparison of both protocols of interest,
independently of differences between processing algorithms, we
aim to use the same motion and distortion correction. Thus,
we apply a post hoc adjustment of the nominal DSI b-values
according to the requirements of eddy such that the DSI q-
space samples acquired on a Cartesian grid shift by maximal 50
s/mm2 to b-values corresponding to samples on 20 shells in q-
space. This enables the Gaussian process modeling in eddy. Note
that the adjustments only affect the nominal b-values not the
actual b-values nor the CS-DSI acquisitions. After motion and
distortion correction, the original, unshifted b-values are used
for all subsequent processing steps. To validate this approach, we
additionally acquired dMRI data from one healthy subject using
the 3-shell HARDI and the CS-DSI imaging protocol. We have
extended the 3-shell HARDI scheme by 6 uniformly distributed
DWIs at b = 700 s/mm2 to allow for an adequate comparison
to corresponding CS-DSI DWIs with b < 1,000 s/mm2. Instead
of just collecting a few b = 0 images with reversed phase
encoding polarity as in the pilot study, the complete protocols
are run twice, once with anterior-to-posterior (AP) and once
with posterior-to-anterior (PA) PE direction. In this way, eddy
becomes applicable for DSI data without the nominal b-value
shifts. To assess the performance of eddy, the mean squared error
(MSE) between corresponding images of the AP and PA data sets
is calculated before and after eddy correction and for CS-DSI,
additionally with and without the shift of nominal b-values. In
the pilot study, DWIs are only acquired with AP PE direction and
thus motion and distortion correction is performed with the help
of a few b = 0 scans with reversed phase encoding polarity. To
simulate a scenario similar to the pilot study, the quality of those
corrected AP PE DWIs is evaluated by calculating the MSE with
respect to the PA PE DWIs that were corrected using both AP
and PA PE data.
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2.2.2. Compressed Sensing in dMRI
Compressed sensing (CS) reconstruction was applied to recover
the diffusion propagator p from the undersampled DSI
acquisitions y by means of the discrete Fourier transform F

combined with a sparsity term (Paquette et al., 2015; Tobisch
et al., 2015):

argmin
p∈Rn

∥

∥R�Fp− y
∥

∥

l2
+ λ

∥

∥p
∥

∥

l1
(1)

The CS matrix R�F incorporates the undersampling matrix R�.
λ is the empirically determined regularization parameter set to
5 × 10−6. The l2-norm and l1-norm are applied to the data
consistency and the sparsity term, respectively. In this setting,
the diffusion propagator itself defines a natural sparsity domain
well-suited for CS reconstruction (Merlet and Deriche, 2010).
For the complete DSI data recovery, an iterative shrinkage and
thresholding algorithm (Gong et al., 2013) solves the convex
optimization problem. Here, we do not validate or describe
in more detail the CS theory as this exceeds the scope of the
paper. For the interested reader, we refer to the corresponding
literature on applications of CS in dMRI, specifically CS-DSI
(Menzel et al., 2011; Bilgic et al., 2012; Setsompop et al.,
2013; Tobisch et al., 2015; Paquette et al., 2016). We choose
the degree of CS acceleration to be relatively small to ensure
good CS reconstruction quality and thus, selected a modest
acceleration factor of 2.3. CS reconstruction generates 257 unique
DWIs from the 112 measurements fully describing the diffusion
propagator in DSI. For brevity, we will refer to this set of
257 reconstructed DWIs as the CS-DSI data from now on.
We also considered sparse reconstruction for the multi-shell
scheme. Several recent works on CS for spherical sampling
strategies exist (Michailovich et al., 2011; Rathi et al., 2014;
Fick et al., 2016). Having run an extensive evaluation study
of CS methods for sparse reconstruction, Ning et al. (2015)
report that signal reconstruction with the MAPL MRI model
proposed by Fick et al. (2016) allows signal extrapolation at
higher b-values and performs similar to the CS approach by
Rathi et al. (2014). We considered the former CS method
which is implemented as part of the Dipy library (Garyfallidis
et al., 2014). The 3-shell HARDI, CS-DSI, and CHARMED
data of Group B were used to reconstruct the respective
signals for the diffusion directions of the CHARMED reference
protocol with b-values up b = 6,800 s/mm2. To compare
the reconstruction quality, we computed the normalized mean
square error (NMSE) as defined in Ning et al. (2015) with
respect to the CHARMED reference signal of both 3-shell HARDI
and CS-DSI. For the analysis of CS-DSI and 3-shell HARDI
acquisitions in the context of population imaging, we decided
against sparse reconstruction for the multi-shell scheme, the
reasons for which will be discussed later on. Thus, in this
work, all dMRI analysis is performed on 3-shell HARDI and
CS-DSI acquisitions with CS reconstruction only done for the
latter.

2.3. DMRI Analysis
2.3.1. Diffusion and Microstructural Parameter

Estimation
Using the Maastricht Diffusion Toolbox (Harms et al., 2017) and
in-house implementations, several mathematical and biophysical
diffusion models were fitted to the data to estimate the following
diffusion and microstructure parameters: fractional anisotropy
(FA) and mean, axial and radial diffusivity (MD, AD, RD) from
the tensor model (Basser et al., 1994), mean, axial and radial
kurtosis (MK, AK, RK) as well as FA, MD, AD, and RD from
the kurtosis model (Jensen et al., 2005), the weight (volume
fraction) of the intra-cellular compartment (wIC) and orientation
dispersion (ODI) from the NODDI model (Zhang et al., 2012),
and intra-axonal restricted volume fraction (FR) from the
CHARMED model (Assaf and Basser, 2005). Each diffusion
model comes with specific requirements or recommendations for
the maximum or optimal b-values of the dMRI data. Considering
these specifications, we fit the tensor, kurtosis and NODDI
model to DWIs acquired with b-values of approx. 1,000 s/mm2,
up to 3,000 s/mm2 and on two shells of approx. 1,000 and
3,000 s/mm2, respectively. The CHARMED model specifically
requires acquisitions of b-values greater than 3,000 s/mm2.
Table 1 lists the selection and the resulting total number of
unique DWIs based on the b-value requirements of specific
diffusion models and highlights the differences in the model
fitting process between 3-shell HARDI and CS-DSI acquisitions.
For CS-DSI, additional maps of mean squared displacement
(MSD), return-to-origin-probability (RTOP) (Wu et al., 2008)
and non-Gaussianity (NG) (Özarslan et al., 2013) are derived
from the diffusion propagator by means of the MAPL MRI
model.

As the basis for statistical group analysis, the standard tract-
based spatial statistics (TBSS) routine was applied to project all
estimated diffusion parameters to a mean FA skeleton (Smith
et al., 2006). The TBSS framework is well established and likewise
preferred in other works (Zhu et al., 2015; Giezendanner et al.,
2016) also in combination with atlas-based identification of
WM tracts (Santis et al., 2012). We acknowledge, however, the
reported limitations of TBSS (Edden and Jones, 2011; Bach et al.,
2014). Thus, for population-based analysis, alternative analysis

TABLE 1 | Selection and resulting total number of unique DWIs for the CS-DSI

and the 3-shell HARDI protocol based on the b-value requirements of the tensor,

kurtosis, NODDI and CHARMED model.

3-shell HARDI CS-DSI

DT b [s/mm2] 1,000 270–1,300

DWIs 30 28

Kurtosis b [s/mm2] 1,000–3,000 270–3,000

DWIs 120 85

NODDI b [s/mm2] 1,000, 3,000 270–1,300, 3,000–3,800

DWIs 30, 50 28, 52

CHARMED b [s/mm2] n/a 270–6,800

DWIs n/a 257
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techniques should be investigated. Regions of interest (ROIs)
were automatically defined by mapping the labels of well-known
white matter tracts in the brain provided in standard space by
the JHU ICBM DTI 81 atlas (Mori et al., 2008) available in FSL
to the TBSS mean FA skeleton. We selected nine ROIs of well-
knownWM tracts for statistical analysis: the splenium, body and
genu of the corpus callosum (SCC, BCC, GCC), the anterior limb
of internal capsule (ALIC), the sagittal stratum (SS), the superior
corona radiata (SCR), the corticospinal tracts (CST), the superior
longitudinal fasciculus (SLF) and the superior fronto-occipital
fasciculus (SFO). Left (L) and right (R) regions are considered for
all tracts, except the CC. For each diffusion parameter, the group
mean and standard error (SEM) were subsequently calculated
from the mean across all voxels within the tract ROIs. To provide
further statistical information, we performed voxel-wise analysis
of paired two-group differences using FSL’s randomize (5,000
permutations, TFCE, variance smoothing) (Winkler et al., 2014).
Additional statistical analysis was performed to investigate effects
across WM structures. For each diffusion parameter, we used a
linear fixed effects model with random intercept for each model
in order to account for the clustering of the measurements within
each subject. As fixed effects we included acquisition scheme
and WM ROI. This statistical analysis was performed using R
Statistical Software (version 3.4.1) and the lme4 package.

To quantify the test-retest (TRT) reliability of a diffusion
imaging protocol, we assessed the differences between diffusion
parameters estimated from the scans and rescans of a subgroup
of subjects from the pilot study. Per subject, diffusion parameter
maps of both scan and rescan were, first, linearly registered to a
mid-space to account for the influence of resampling effects on
the data that could mask TRT variability in the case of registering
one scan to the other. Second, the difference between the
registered parameter maps as well as their mean was calculated
and warped into MNI space. Finally, the parameter specific mean
and differences for each subject were projected onto the WM
skeleton and subsequent ROI based analysis was performed as
for the group analysis described before. To asses the reliability
and repeatability of the 3-shell HARDI and the CS-DSI diffusion
protocol, the intraclass correlation coefficient (ICC) and the
within-subject coefficient of variation (wsCV) were calculated,
respectively (Bartko, 1966; Bland and Altman, 1996).

2.3.2. Fiber Orientation and Macroscopic Brain

Connections
Fiber orientation distribution functions (fODFs) were obtained
by means of the recently proposed method by Ankele et al.
(2017) which incorporates the SHORE (Ozarslan et al., 2009)
model that continuously describes the diffusion signal. The novel
SHORE-based multi tissue constrained spherical deconvolution
(CSD) approach by Ankele et al. (2017), here denoted as
the SHORE/MT-CSD model, can be applied independently of
the dMRI sampling scheme. It allows the generation of brain
tissue volume fraction maps for white matter, gray matter
(GM) and cerebrospinal fluid (CSF) and the estimation of
fODFs for both CS-DSI and 3-shell HARDI. fODF estimation
as proposed by Ankele et al. (2017) requires T1 imaging data
for tissue segmentation similar to Jeurissen et al. (2014). In

contrast, state-of-the-art methods for optimal fiber orientation
estimation that depend on specific q-space sampling exist for
both CS-DSI and 3-shell HARDI: for CS-DSI, diffusion ODFs
(dODFs) can be directly calculated from the DSI diffusion
propagator (Wedeen et al., 2005; Paquette et al., 2016); the
high angular resolution of HARDI data is most advantageous
for estimating fiber orientation by means of CSD providing
the fiber ODF instead of the diffusion ODF (Tournier et al.,
2007). All ODFs were reconstructed using either the approach by
Ankele et al. (2017) or the Dipy library (Garyfallidis et al., 2014)
and visualized using MATLAB. For a voxel-wise qualitative as
well as quantitative comparison of the orientational information
provided by both advanced dMRI protocols, CS-DSI and 3-shell
HARDI acquisitions are registered to a mid-space prior to ODF
estimation. To avoid any influence of methodological differences
in the ODF estimation on the quantitative analysis, we consider
the fODFs estimated via (Ankele et al., 2017) for a quantitative
comparison of CS-DSI and 3-shell HARDI. Ankele et al. (2017)
recommend a SHORE order of 4 for fODF estimation. For an
optimal visualization, we additionally compute the fODFs with
SHORE order 8. Complementing the visual fODF comparison,
we performed voxel-wise analysis for fODFs with SHORE order
8 by means of the angular cross-correlation (Anderson, 2005).
Further analysis was conducted on fODFs with SHORE order 4.
We compare the CS-DSI and the 3-shell HARDI scheme with
respect to the angular difference between corresponding fODF
peak directions as well as the deviation between crossing angles
of the two most dominant fiber directions in voxels with at least
two fibers. To restrict the analysis mainly to pure WM voxels,
we followed the recommendations by Jeurissen et al. (2013). The
minimum crossing angle that occurs in at least 1% of the WM
voxels was determined for each scheme. We also compute the
percentages of voxels containing one, two or three dominant fiber
fascicles (1/2/3 fiber voxels) within the applied WM mask. For
this purpose, we define the number of detected fibers per voxel as
the minimum number of fibers that are detected by both schemes
with a corresponding partial WM volume fraction greater than
0.1. To extend the investigation of 3-shell HARDI and CS-
DSI from voxel-wise ODFs to macroscopic brain connections,
we used FSL’s bedpostx and probtrackx in combination with
the autoPtx plugin (Behrens et al., 2007; De Groot et al.,
2013). Those tools provide a standard pipeline for probabilistic
tractography to generate path probability maps for distinct WM
tracts in the brain. For both 3-shell HARDI and CS-DSI, tract-
specific probability maps were averaged across all subjects and
thresholded for visualization based on the recommendations in
De Groot et al. (2015).

3. RESULTS

3.1. DMRI Preprocessing
3.1.1. Motion and Distortion Correction
Figure 2A demonstrates that for both CS-DSI and 3-shell
HARDI, susceptibility-induced distortions are corrected
successfully using FSL’s topup. Eddy-current-induced artifacts
as well as subject motion were corrected using FSL’s eddy. The
applicability of this approach for DSI acquisitions as introduced
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FIGURE 2 | (A) Example b = 0 images with opposite PE directions and following topup correction for CS-DSI and 3-shell HARDI. (B) MSE calculated for the

simulated pilot study scenario (“AP”) and between corresponding images acquired with both AP and PA PE directions before and after eddy correction as well as with

(“shells”) and without a nominal b-value shift for CS-DSI acquisitions.

above is validated by calculating the MSE between corresponding
images acquired with AP and PA PE directions before and
after eddy correction. Figure 2B depicts comparable MSE for
dMRI data with and without the small post hoc shift of nominal
b-values (“shells”). Further, for the calculated deviations in AP
and PA PE measurements as well as the simulated pilot study
scenario, which utilizes only AP PE DWIs (“AP”), both diffusion
protocols, overall, yield similar differences between the MSE
before and after eddy correction. However, Figure 2B shows that
in the lower b-value regime the reduction in MSE due to eddy
correction is higher for CS-DSI than for 3-shell HARDI, whereas
in the higher b-value regime the opposite trend is observed.
Specifically, considering the simulated pilot study scenario,
where only AP sampling of b > 0 is used: up to b = 2,000 s/mm2

the MSE curves of both CS-DSI and 3-shell HARDI largely
overlap, and for instance at b-values of approx. 1,000 s/mm2, the
MSE reduction is 25 and 12% for CS-DSI and 3-shell HARDI,
respectively. However, at b = 3,000 s/mm2 considerably higher
MSE values are observed for CS-DSI. Accordingly, the MSE
reduction is only 14% for CS-DSI compared to 28% for 3-shell
HARDI. The same holds for eddy correction based on AP and
PA PE measurements. At low b-values, the MSE reduction is 31%
for CS-DSI and 25% for 3-shell HARDI. For higher b-values the
MSE is reduced by 24 and 32%, respectively. The AP and PA PE
eddy-current correction approach leads to smallest MSE values
for 3-shell HARDI for all b-values up to 3,000 s/mm2.

3.1.2. Compressed Sensing in dMRI
Figure 3 depicts the NMSE with respect to the CHARMED
reference signal of both 3-shell HARDI and CS-DSI. In general,
the reconstruction error increases with increasing b-value. In the
b-value regime below 4,000 s/mm2, a low NMSE of about 5% is

FIGURE 3 | For 3-shell HARDI, CS-DSI, and CHARMED data of Group B the

respective signals for the diffusion directions of the CHARMED reference

protocol were reconstructed using the MAPL MRI model. The NMSE with

respect to the CHARMED reference signal was computed as a function of the

b-value for both 3-shell HARDI and CS-DSI. Superior reconstruction quality is

observed for CS-DSI in the b-value regime above 4,000 s/mm2.

observed for both 3-shell HARDI and CS-DSI. However, for 3-
shell HARDI, signal extrapolation at higher b-values leads to an
NMSE of up to 30% and is, thus, inferior compared to the signal
interpolation for CS-DSI.

3.2. DMRI Analysis
3.2.1. Diffusion and Microstructural Parameter

Estimation
Group averaged whole brain diffusion parameter maps obtained
by means of the tensor (FAD, MDD, ADD, RDD), kurtosis
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(MK, AK, RK), and NODDI (wIC, ODI) model are visualized
in Figure 4. We denote FA and diffusivities derived from the
tensor model by the subscript D, those from the kurtosis model
by the subscript K. Figure 4 further presents tissue volume
fraction maps for WM, GM, and CSF obtained for both CS-
DSI and 3-shell HARDI using the approach by Ankele et al.
(2017). To generate the parameter maps, MR scans from the
subset of 16 subjects (Group A) were used. SNR is slightly
lower for CS-DSI due to higher b-value acquisitions. However,
no significant difference between the group averaged parameter

maps is noticeable by visual comparison of CS-DSI and 3-shell
HARDI.

For parameters derived from the tensor (FAD, MDD, ADD),
kurtosis (FAK, MDK, ADK, MK, AK, RK), and NODDI (wIC)
model, the group mean and standard error calculated across all
voxels on the TBSS white matter skeleton within each of the
nine WM tract ROIs are shown in Figure 5. For each WM ROI,
Figure 5, further, indicates the statistical significance (p < 0.025)
of the differences between CS-DSI and 3-shell HARDI in the
estimated diffusion parameters obtained from FSL’s randomize.

FIGURE 4 | Group averaged whole brain diffusion parameter maps estimated from CS-DSI and 3-shell HARDI acquisitions by means of the tensor (FAD, MDD, ADD,

RDD), kurtosis (MK, AK, RK), and NODDI (wIC, ODI) model. Brain tissue volume fraction maps for WM, GM, and CSF were estimated using multi-tissue

deconvolution. Comparable parameter maps are obtained for both CS-DSI and 3-shell HARDI. Diffusivities are given in units of m2/s.
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FIGURE 5 | Parameter specific group mean and standard error for the tensor (FAD, MDD, ADD), kurtosis (FAK, MDK, ADK, MK, AK), and NODDI (wIC, ODI) model.

For each WM ROI, mean p-values were extracted from the respective skeleton and are, if significant (p < 0.025), indicated as: *p < 0.025 and **p < 0.005. Except for

FA derived from the tensor model, the analysis of significant differences in diffusion parameters estimated from CS-DSI and 3-shell HARDI acquisitions indicates

comparable performance of both schemes. Diffusivities are given in units of m2/s.
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To this end, the mean p-value was extracted from the respective
skeleton within each WM ROI (Vovk and Wang, 2012). A
linear fixed effects model was run for each diffusion parameter
depicted in Figure 5 and the resulting p-value and the effect
size with confidence intervals are reported in Table 2. The
significance level of these 1-tailed tests was Bonferroni corrected
for multiple comparisons and set to 0.025/N, whereN = 10 is the
number of the independent linear fixed effectsmodels. Significant
differences in CS-DSI and 3-shell HARDI are observed for FA
using both FSL’s randomize and the fixed effects model. For the
latter, significant differences are also observed in ADD and ODI.
To further explore differences in estimated diffusion parameters
between the two imaging protocols, we determined residual
errors of the MDT model fitting by computing the NMSE for
the tensor and the NODDI model fitted to CS-DSI and 3-
shell HARDI acquisitions. For the tensor model, the average
NMSE across voxels within the WM ROIs was 0.027 ± 0.013
and 0.022 ± 0.010 for CS-DSI and 3-shell HARDI, respectively.
For the NODDI model, the average NMSE was 0.060 ± 0.016
and 0.053 ± 0.015 for CS-DSI and 3-shell HARDI, respectively.
Figure 6 provides more details on the analysis of the three
subregions of the CC by depicting the group mean across
CC voxels on the skeleton calculated for parameters estimated
from the tensor (FAD, MDD), kurtosis (FAK, MDK, MK, AK,
RK) and NODDI (wIC, ODI) model. The results presented in
Figures 5, 6 indicate similar performance of both the CS-DSI
and the 3-shell HARDI imaging protocol in the estimation of
FA, MD and AD from both the tensor and the kurtosis model
as well as MK, AK, RK, wIC, and ODI. For the tensor model,
a slight upward FA bias is noticeable for CS-DSI compared
to 3-shell HARDI, which is reduced through the application
of the kurtosis model. Differences in mean diffusivity between
the protocols are less significant for MDK in comparison with
MDD. Comparable kurtosis and NODDI metrics are derived
for both acquisition schemes, except for ODI estimated in
the CC regions. Overall, differences in mean and standard
error between CS-DSI and 3-shell HARDI are smaller than

TABLE 2 | The effect size and the corresponding confidence interval obtained

from a linear mixed effects model for each of the diffusion parameter depicted in

Figure 5 is provided together with the degree of significance.

FAD 3.38× 10−2 (2.95× 10−2 to 3.80× 10−2)****

MDD −7.94× 10−12 (−1.80× 10−11 to 2.11× 10−12)

ADD 3.21× 10−11 (1.38× 10−11 to 5.05× 10−11)**

FAK 2.66× 10−4 (−3.97× 10−3 to 4.50× 10−3)

MDK −1.12× 10−11 (−1.66× 10−11 to −5.79× 10−12)

ADK −1.51× 10−11 (−2.41× 10−11 to −6.15× 10−12)

MK 9.08× 10−3 (1.96× 10−3 to 1.62× 10−2)

AK −5.67× 10−3 (−9.95× 10−3 to −1.39× 10−3)

wIC 2.08× 10−3 (−2.97× 10−3 to 7.13× 10−3)

ODI 6.59× 10−3 (3.87× 10−3 to 9.31× 10−3)****

The significance level of these 1-tailed tests was Bonferroni corrected for multiple

comparisons and set to 0.025/N, where N is the number of the independent linear fixed

effects models. If significant (p < 0.025/N), p-values are indicated as: *p < 0.025/N, **p

< 0.005/N, ***p < 0.0005/N and ****p < 0.00005/N.

differences in the diffusion parameter values between different
WM tracts.

FR was estimated by fitting the CHARMED model to CS-
DSI (Group A and B) and dedicated CHARMED (Group B)
acquisitions. Figure 7 compares the resulting group averaged
FR maps and shows additional maps of MSD, RTOP and NG
derived from the diffusion propagator by means for the MAPL
MRI model. Here, RTOP is visualized as the return-to-origin-
probability to the power of 1/3 (Özarslan et al., 2013). Similar
to Figures 5 and 6, Figure 7 further depicts the group mean
and standard error of the group-specific FR calculated across
all voxels on the skeleton within each WM ROI and provides a
detailed visualization for the three subregions of the CC. Overall,
FR obtained from CS-DSI is close to the CHARMED reference.

The test-retest reliability and repeatability of both diffusion
imaging protocols of interest is validated by means of ICC
and wsCV, respectively. Figure 8 depicts the TRT results for
FA, MD and AD from both the tensor and the kurtosis model
as well as MK, AK, wIC and FR as the average across the
nine WM tracts and its standard error. For both protocols,
diffusion parameter specific ICC and wsCV values greater than
0.85 and less than 4%, respectively, lie within acceptable ranges
(Vollmar et al., 2010; Willats et al., 2014). The ICC values
present similar reliability for both imaging protocols. For 3-
shell HARDI acquisitions, wsCV increases for diffusion metrics
of more advanced diffusion models. For CS-DSI, slightly lower
repeatability is indicated by higher wsCV compared to 3-shell
HARDI, however, repeatability of diffusivities improves with the
use of the kurtosis model.

3.2.2. Fiber Orientation and Macroscopic Brain

Connections
Figure 9 visualizes group averaged tract probability maps
overlaid on the WM atlas. Representative of sensorimotor,
association and commissural tracts, the left (red) and right
(green) corticospinal tract (CST), the left (red) and right
(green) anterior thalamic radiation (ATR) and in blue the
forceps major (FMA) are selected, respectively. The tracking
results for CS-DSI and 3-shell HARDI show similar visitation
counts for streamlines of the CST, ATR and FMA. Note that
for the CST no lateral projections are shown due to the
pre-defined target mask of the autoPtx plugin. Additionally,
Figure 9 depicts single-subject diffusion and fiber ODFs in a
coronal ROI of crossing fibers from the CC, CST, and SLF. By
visual comparison, diffusion ODFs calculated from the diffusion
propagator indicate similar orientational information to that of
fODFs obtained from CS-DSI and 3-shell HARDI. Comparable
fODFs estimated via (Ankele et al., 2017) are obtained for both
CS-DSI and 3-shell HARDI. This finding is supported by the
quantitative analysis results presented in Table 3. Across all
subjects, a high angular cross-correlation of 0.93 is observed
with low standard error, as well as a small angular deviation
of 9.7◦ and 7.8◦ in the estimated fiber directions and in the
crossing angle in multi-fiber voxels, respectively. The minimum
crossing angle that occurs in at least 1% of the WM voxels,
is, on average, as low as 28.7◦ for CS-DSI and 29.1◦ for
3-shell HARDI. Percentages of 15.6/32.9/51.6 are determined
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FIGURE 6 | Sagittal view of group mean values across CC voxels on the TBSS white matter skeleton for parameters estimated from the tensor (FAD, MDD), kurtosis

(FAK, MDK, MK, AK, RK), and NODDI (wIC, ODI) model overlaid on the FA map in WM atlas space. (Top two rows) Kurtosis model fitting reduces the differences in

FA and MD between CS-DSI and 3-shell HARDI compared to the tensor model. (Bottom two rows) Comparable kurtosis and NODDI metrics are derived for both

acquisition schemes. Diffusivities are given in units of m2/s.

for 1/2/3 fiber voxels within the applied WM mask. To
support the quantitative analysis of the orientational information
obtained from CS-DSI and 3-shell HARDI acquisitions (Table 3),
Figure 10 provides maps of the group-averaged angular cross
correlation, angular peak difference, deviation in crossing angle
and number of fibers for an axial slice. For the latter, the
number of fibers estimated in both CS-DSI and 3-shell HARDI
and the difference of both maps (3-shell HARDI−CS-DSI) are
shown.

4. DISCUSSION

This work investigates CS-DSI for accelerated diffusion
microstructure MRI in population imaging. For this purpose, we
consider a 3-shell HARDI acquisition scheme as a gold standard
protocol for multi-shell imaging in population studies, to which
CS-DSI is compared to. We aimed to implement the comparison
of these two conceptually very different diffusion protocols as
even as possible, but we do not expect perfect agreement of
diffusion parameters estimated from 3-shell HARDI and CS-DSI
acquisitions due to differences in: the dMRI sequence parameters,
even though the differences were kept minimal, subject motion
during acquisitions and the selection of specific DWIs based on
the b-value requirements for diffusion model fitting. Keeping
these effects in mind, qualitative as well as quantitative dMRI

analysis, overall, indicates comparable performance of CS-DSI
and 3-shell HARDI on both single-subject and group level.

4.1. DMRI Preprocessing
4.1.1. Motion and Distortion Correction
Considering 3-shell HARDI data to be the reference for FSL’s
eddy, the validation results of our approach to apply FSL’s eddy
to DSI data, overall, indicate adequate and similar correction of
susceptibility-induced and eddy-current-induced distortions and
motion artifacts in CS-DSI acquisitions. However, our validation
experiment still captured differences in eddy correction between
CS-DSI and 3-shell HARDI. They suggest that, in the low b-
value regime, eddy correction leads to more reduction in MSE
for CS-DSI compared to 3-shell HARDI. At higher b-values, on
the other hand, the reduction in MSE due to eddy correction
is lower for CS-DSI than for 3-shell HARDI and the final MSE
level is considerably lower for 3-shell HARDI at b = 3,000 s/mm2.
The latter effect might be caused due to the sparse sampling
distribution for CS-DSI at high b-values. Note, however, that
this experiment was only performed with a single subject and
for two different acquisitions for CS-DSI and 3-shell HARDI.
Thus, the graphs presented in Figure 2 do not allow us to draw
conclusions at a significant level. Within the scope of this work,
using the same and preferably state-of-the-art processing tools
for all data is a requirement for a reasonable comparison between
the 3-shell HARDI and CS-DSI imaging protocol. Nevertheless,
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FIGURE 7 | Group averaged whole brain FR maps, FR across the CC skeleton and the FR group mean and standard error across the skeleton within well-known WM

ROIs are obtained by fitting the CHARMED model to CS-DSI (Group A and B) and CHARMED (Group B) acquisitions. Both CS-DSI and CHARMED schemes

incorporate high b-value acquisitions that allow for accurate CHARMED modeling. For CS-DSI, additional maps of MSD, RTOP, and NG are obtained from the

diffusion propagator by means of the MAPL MRI model. MSD and RTOP are given in units of mm2 and mm−1, respectively.

we notice that this approach might perform in favor of 3-
shell HARDI acquisitions and improved corrections could be
achieved with tools specifically tailored for CS-DSI acquisitions.
This work’s overall comparable results for 3-shell HARDI and
CS-DSI, however, show no preference of this processing step
toward multi-shell data or any negative effect on subsequent
dMRI analysis. Note, that we have tried to support motion
estimation across low and high b-values by interleaving b = 0
measurements every 14 and 10 DWIs for CS-DSI and 3-shell
HARDI, respectively. Nevertheless, we acknowledge that motion
estimation becomes increasingly difficult the higher the b-value
gets. We currently investigate the use of integrated free induction
decay navigators (FIDnav) (Kober et al., 2011) as an independent
means to estimate rigid-body head motion parameters. Such a
navigator signal can be acquired within less than 3ms before each
excitation and diffusion weighting (Kober et al., 2012). Ongoing
improvements (Stirnberg et al., 2016; Wallace et al., 2018) may
potentially make purely FIDnav-informed prospective motion
correction possible.

4.1.2. Compressed Sensing in dMRI
In the context of population imaging, it has been shown before
that CS-DSI provides comparable results to conventional DSI
(Setsompop et al., 2012). A general concern with CS-DSI is the
risk of missing subtle details about the diffusion process due
to insufficient angular q-space sampling. However, the results

of this work support that the risk of a dMRI protocol to not
fully capture all diffusion information is not increased for CS-
DSI accelerated by moderate undersampling because comparable
diffusion parameters are estimated for both CS-DSI and 3-
shell HARDI. Prior experiments based on full DSI simulations,
phantom and in vivo measurements also confirmed the accurate
CS reconstruction at such modest acceleration factors. For a
single subject and 2.3-fold CS acceleration, for instance, the
angular cross-correlation and peak difference both calculated
between full and CS reconstructed DSI data over the brain WM
are 0.964 and 5.3◦, respectively. Fortunately, about 2-fold q-
space undersampling already enables CS-DSI acquisitions within
a similar time frame as 3-shell HARDI. Combining CS with an
undersampling factor of 2.3 and SMS acquisition with an MB
factor of 3 results in about 7-fold accelerated dMRI acquisitions
compared to traditional DSI. CS-DSI scans, thus, can be acquired
within the scan time limits of high throughput population
studies.

In our work, we did consider sparse reconstruction for
the 3-shell HARDI scheme, but decided against it for the
following reasons. Ning et al. (2015) thoroughly investigated CS
reconstruction methods as well as the degree of CS acceleration
for multi-shell imaging. They recommend the CS approaches
by Rathi et al. (2014) and Fick et al. (2016) for accurate signal
reconstruction and suggest a CS factor similar to the one applied
for CS-DSI in this work. Thus, our choice on the degree of
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FIGURE 8 | Parameter specific ICC and wsCV averaged over nine WM tracts

for the tensor (FAD, MDD, ADD), kurtosis (FAK, MDK, ADK, MK, AK), NODDI

(wIC), and CHARMED (FR) model. The latter is only reported for CS-DSI. ICC

values present similar reliability for both imaging protocols. For CS-DSI, slightly

lower repeatability is indicated by higher wsCV compared to 3-shell HARDI.

undersampling for CS-DSI complies with other works in this
research field. However, we do not apply the CS approach
by Rathi et al. (2014) since (1) staggered q-space sampling is
preferred over collinear acquisition schemes for diffusion and
microstructure modeling (De Santis et al., 2014a; Sprenger et al.,
2016) and (2) more thorough investigations are recommended
to ensure incorporating CS reconstruction based on dictionaries
is suitable for population imaging (Bilgic et al., 2012). And
(3), realizing a target angular resolution corresponding to 120
directions per shell (the resolution of the staggered 3-shell
scheme) with an undersampling factor of 2.3 would require a
collinear sampling with 50 directions per shell. I.e., only two
shells would be feasible in our scan time limit, or barely three
shells, if we sacrificed target angular resolution (e.g., 92 = 2.3
× 40 directions per shell). Note, however, that this case would
not allow for additional sparse radial reconstruction without
exceeding a total undersampling factor of 2.3.

Subsampling the established HCP protocol containing 90
directions per shell was investigated using the CS approach by
Fick et al. (2016). Applying a CS factor of 2.3 results in about
120 DWIs which is the number of diffusion weighted acquisitions
we chose for the time-matched 3-shell HARDI protocol in this
work. We use the approach by Fick et al. (2016) for signal
interpolation of the 3-shell HARDI as well as CS-DSI data to
obtain information of the diffusive transport along different
gradient directions than those applied during image acquisition.
As depicted in Figure 3, the reference signal can be adequately
reconstructed for both 3-shell HARDI and CS-DSI as indicated
by an NMSE of about 5% which is similar to the results reported
by Ning et al. (2015). Thus, both the 3-shell HARDI as well as the
CS-DSI data can be further enriched by reconstructing additional

DWIs across the chosen b-value regime via the approach by Fick
et al. (2016). Such investigations of increasing the angular as well
as radial resolution are highly interesting but beyond the scope of
this work.

A limitation of this work is the choice of different maximum
b-values for CS-DSI and 3-shell HARDI. We selected the well-
established 3-shell HARDI scheme as a gold standard protocol for
multi-shell imaging in population studies, as investigating a novel
design of the 3-shell HARDI scheme as outlined above exceeds
the scope of this work. We decided against including shells at
higher b-values for the 3-shell HARDI scheme since, to comply
with the scan time limits of our study, this adaptation would
come at the cost of a reduced number of samples at lower b-value
shells, which would increase the CS factor, or the exclusion of
shells, which we do not consider for the reasons discussed before.
We aimed to address this limitation of our work by applying
the CS approach by Fick et al. (2016) to extrapolate high b-
value acquisitions for 3-shell HARDI. Overall, we observe an
increase in the reconstruction error with increasing b-value (see
Figure 3). Compared to signal interpolation, of course, higher
NMSE was expected for signal extrapolation, yet not to this
extent, since Ning et al. (2015) report lower NMSE for signal
extrapolation using this method. We argue that an NMSE of
up to 30% due to signal extrapolation and reduced SNR at
higher b-values for 3-shell HARDI is not favorable for subsequent
diffusion and microstructural parameter estimation. Thus, we
did not include results from sparse reconstruction for the 3-
shell HARDI scheme in our dMRI analysis. We acknowledge,
however, that 3-shell HARDI variants specifically tailored for
high b-values (e.g., including b = 6,800 s/mm2) would avoid
signal extrapolation and may thus reduce the NMSE at high
b-values compared to Figure 3.

4.2. DMRI Analysis
4.2.1. Diffusion and Microstructural Parameter

Estimation
Diffusion parameter maps and the quantitative statistical analysis
across all subjects show good agreement between CS-DSI and
3-shell HARDI for diffusion models processing DWIs with b-
values up to approx. 3,000 s/mm2. Overall, diffusion parameters
stemming from distinct WM tracts can be well distinguished
for both CS-DSI and 3-shell HARDI and are not masked by
differences in the dMRI protocols. For the DT model, a slight
upward FA bias of CS-DSI compared to 3-shell HARDI is
explained by reduced SNR due to longer TE for higher b-value
acquisitions (Farrell et al., 2007). Slightly lower residual errors
from the tensor and NODDI model fitting for 3-shell HARDI
compared to CS-DSI support this finding. Additionally, the 3-
shell HARDI protocol allows us to fit the DT model to the
30 DWIs of the inner shell at b = 1,000 s/mm2 (Table 1). In
contrast, a subset of 28 CS-DSI DWIs is used to fit the DT
model to measurements with multiple b-values in the range
of 230–1,300 s/mm2 (Table 1). This may lead to a different fit
to the mono-exponential signal decay. The resulting difference
between CS-DSI and 3-shell HARDI in FAD is confirmed by
statistical analysis as depicted in Figure 5 and Table 2. For ODI
estimated for both acquisition schemes in the CC WM regions,
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FIGURE 9 | Comparable orientational information can be extracted from both CS-DSI and 3-shell HARDI acquisitions. (Left) Group averaged tract probability maps

are superimposed on the JHU ICBM FA white matter atlas for the left (red) and right (green) corticospinal tract (CST), the left (red) and right (green) anterior thalamic

radiation (ATR) and in blue the forceps major (FMA). (Right) Single-subject fODFs obtained by means of the SHORE/MT-CSD model (SHORE order 8) for both CS-DSI

and 3-shell HARDI and, only for the latter, by means of the CSD model. Single-subject dODFs are derived from the DSI propagator.

our results show an anterior-posterior gradient indicated by a
decrease in ODI from the genu over the body to the splenium
of the CC (Figures 5, 6). In these WM ROIs, an overall increase
in ODI is observed for CS-DSI compared to 3-shell HARDI
which is supported by the statistical analysis using the linear
fixed effects model. This difference might stem from differences
in the acquisition scheme, but further investigations are needed.
To investigate the significant differences observed for ADD and
ODI with fixed effects models, we performed further statistical
analyses. As depicted in Figure 5, the biggest differences in ADD

and ODI between acquisition schemes occur in the WM regions
of the CST and CC, respectively. Running a linear fixed effects
model with CST and CC regions excluded for ADD and ODI,
respectively, we observe p-values above the significance level.
This finding confirms that mainly these WM regions affect the
overall significance obtained for ADD and ODI by the fixed
effects model across all WM ROIs. Fitting the kurtosis model
results in more similar DT derived parameters of both protocols.
This can be explained by the reduced b-value dependency of the
kurtosis model compared to the DT model (Veraart et al., 2011).
The kurtosis model accounts for the diffusional non-Gaussianity
and incorporates the non-monoexponential behavior of the
multiple b-value CS-DSI acquisitions in the estimation of the
diffusion tensor. The similarity between protocols in parameters
derived from the kurtosis model is supported by p-values
above the significance levels across all WM ROIs. An in-house
implementation of the kurtosis model that integrates important
constraints for robustness to noise (Groeschel et al., 2016) was
found to improve the fit and the derived parameter maps. Since
DT derived metrics from the DT model and the kurtosis model,
however, are not directly comparable (Lanzafame et al., 2016),

those parameters should be reported for both models. To further
extend the comparison of DT model parameters obtained from
CS-DSI and 3-shell HARDI, future work could convert CS-DSI
and 3-shell HARDI data to corresponding single-shell HARDI
data (Yeh and Verstynen, 2016). In this way, FA and diffusivities
can be obtained for CS-DSI and 3-shell HARDI without fitting
the tensor model to measurements with multiple b-values.
Despite the slight SNR reduction and the effects of multi b-
value data on the DT model fitting, the CS-DSI imaging protocol
delivers reliable data. Our results on kurtosis metrics agree
with recent findings by Sprenger et al. (2016) who investigate
acquisition schemes for diffusion kurtosis imaging (DKI) and
report that both 3-shell and CS-DSI schemes are suitable choices.
The comparable performance of both schemes with respect to
kurtosis model fitting indicates a low dependency of kurtosis
parameter estimation on the acquisition scheme as similarly
suggested by Sprenger et al. (2016) with respect to the bias onDKI
metrics. Further, in contrast to the 3-shell HARDI scheme, CS-
DSI provides high b-value acquisitions increasing its potential for
future image analysis. In this work, we selected the CHARMED
model as an example of a state-of-the-art diffusion model that
requires DWIs at high b-values (> 3,000 s/mm2). Our results
show that compared to the dedicated CHARMED reference,
CS-DSI allows for accurate FR parameter estimation that the
standard 3-shell HARDI scheme applied in population imaging
cannot provide. Together with the diffusion parameter maps
derived from the diffusion propagator, this experiment highlights
the advantages of the higher b-value CS-DSI acquisitions. Future
developments of novel mathematical or biophysical diffusion
models might have similar requirements which would be fulfilled
by dMRI data collected with the CS-DSI imaging protocol. In
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TABLE 3 | Quantitative analysis of the orientational information obtained from

CS-DSI and 3-shell HARDI acquisitions: Group mean and standard error are

reported for the angular cross correlation of both schemes, the angular deviation

in the estimated fiber directions and in the crossing angle in multi-fiber voxels, the

minimum crossing angle resolved by each scheme and the percentages of 1/2/3

fiber voxels within the WM mask.

Mean SEM

Angular cross-correlation 0.931 0.006

Angular peak difference 9.7 0.4

Deviation in crossing angle 7.8 0.3

Min. crossing angle (CS-DSI/3-shell) 28.7/29.1 0.2/0.4

Percentage of 1/2/3 fiber voxels 15.6/32.9/51.6 0.6/0.9/1.3

All metrics are computed for fODFs estimated with SHORE order 4, except for the angular

cross correlation (SHORE order 8).

the context of a long-term population study, this benefit gained
from including scans with higher diffusion weighting in the
imaging protocol makes up for the compromise of a slightly
reduced SNR (~4% in brain tissue) that, in any case, with the
emergence of novel denoising techniques (Veraart et al., 2016b)
could potentially be overcome.

Measures for test-retest reliability and repeatability, the ICC
and the wsCV, were obtained on a subset of 5 subjects for each
of the diffusion protocols of interest. Due to the wide range
of questions we aimed to answer, rescans could be collected
for just a small sample size. Differences between the subjects,
e.g., through subject motion during acquisition, will not be
smoothed out across just 5 subjects and will, therefore, influence
the TRT evaluation and comparison between CS-DSI and 3-
shell HARDI. Despite this limitation of our pilot study data, we
report ICC and wsCV values above 0.85 and smaller than 4%,
respectively, for both imaging protocols. TRT indices of this scale
are in agreement with related work on TRT analysis of diffusion
models (Vollmar et al., 2010; Willats et al., 2014) and lie within
acceptable ranges for reliability and repeatability. Both CS-DSI
and 3-shell HARDI provide similar ICC confirming the validity
of both diffusion protocols. Our results, further, show that for
both protocols, repeatability decreases with the use of more
advanced methods. This may simply be explained by the models’
requirements of higher b-value acquisitions with lower SNR
and increased eddy-current-induced distortions contributing to
more differences between scan and rescan. The same effects
occurs for high b-value CS-DSI data that provides adequate
repeatability indices but higher within-subject variability than 3-
shell HARDI. Our results on test-retest repeatability point toward
a similar direction as the findings by Sprenger et al. (2016) on
the superior performance of multi-shell schemes in terms of bias
and precision. However, due to the limitations of our pilot study,
which influence TRT analysis, further investigation in this regard
is necessary. Additionally, for CS-DSI, the TRT results show
improved repeatability of diffusivities when using the kurtosis
rather than the DT model. This supports our earlier findings
from the group averaged diffusion parameters indicating that,
for multiple b-value CS-DSI acquisitions, the kurtosis model is
better suited for the estimation of DT derived parameters than
the tensor model.

4.2.2. Fiber Orientation and Macroscopic Brain

Connections
Three state-of-the-art methods for the estimation of fiber
orientations which form the basis for tractography were
evaluated and compared for both CS-DSI and 3-shell HARDI.
Visual comparison suggests that comparable orientational
information is provided by CS-DSI and 3-shell HARDI.
Specifically, for 3-shell HARDI, fODFs estimated via (Ankele
et al., 2017) are in good agreement with fODFs obtained by
means of the state-of-the-art CSD approach. Thus, we based
the quantitative comparison of the orientational information
obtained for CS-DSI and 3-shell HARDI on the fODFs estimated
using the former method. In this regard, the similarity of the
orientational information obtained from both advanced dMRI
acquisitions and their robustness across subjects is quantified
by a high angular cross-correlation with low standard error.
Additionally, the high angular cross-correlation coincides with
the small angular deviation in the estimated fiber directions
and in the crossing angle in multi-fiber voxels. An adequate
minimum crossing angle can be resolved by each of the advanced
acquisition schemes. The reported percentages of 1/2/3 fiber
voxels within the applied WM mask agree with previous works
(Schultz, 2012; Jeurissen et al., 2013). We do not compute this
metric per acquisitions scheme due to the lack of a protocol-
specific criterium for choosing the threshold used for fiber
selection. Due to this limitation, Figure 10 shows small variations
in the estimated number of fibers between CS-DSI and 3-
shell, which are, however, on average below 1 fiber in WM.
Additionally, comparable tissue volume fraction maps for WM,
GM and CSF are obtained for CS-DSI and 3-shell HARDI,
which can provide guidance for fiber tracking equally well
for both acquisition schemes. Thus, despite acquiring dMRI
data with different diffusion protocols and employing different
methods for ODF reconstruction, comparable fiber orientations
of the brain microstructure can be estimated from both CS-DSI
and 3-shell HARDI. Supporting these results, probabilistic fiber
tracking based on the standard FSL pipeline further indicates
good agreement of fiber orientation estimates from both dMRI
protocols. Recent investigations by Gigandet et al. (2013) on
the dependency of brain network connectivity measures on
different acquisitions schemes agree with our finding that DSI
acquisitions are at least as suitable as 3-shell HARDI scans for the
extraction of orientational information, although both schemes
are conceptually very different. Gigandet et al. (2013) further
report the highest connectivity for a DSI acquisitions scheme
similar to the one applied in this work.

4.3. CS-DSI in Population Imaging
This work primarily focuses on showing that for a wide range
of state-of-the-art diffusion analysis techniques, CS-DSI is able
to provide diffusion information similar to that captured by
3-shell HARDI, despite the small SNR loss due to higher b-
value acquisitions. This is the starting point for validating the
applicability of CS-DSI for population imaging. Note that in
this work we do not aim to decide whether CS-DSI or a
multi-shell scheme is more suitable for population imaging. We
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FIGURE 10 | Spatial maps of the orientational information obtained from CS-DSI and 3-shell HARDI acquisitions: An axial slice of group-averaged whole brain maps

of the angular cross correlation, the angular peak difference, the deviation in crossing angle and the number of fibers per imaging scheme and the corresponding

difference (3-shell HARDI−CS-DSI) is shown. All metrics are computed for fODFs estimated with SHORE order 4, except for the angular cross correlation (SHORE

order 8). The angular peak difference and the deviation in crossing angle are reported in degrees.

rather chose the latter as a gold standard protocol. The CS-
DSI protocol proposed in this work for population imaging
should at least deliver dMRI data comparable to that obtained
by conventional and well-established dMRI protocols such as 3-
shell HARDI. Our pilot study affirms the above for CS-DSI and
3-shell HARDI acquisitions collected at both 1.5 and 2.0 mm
isotropic resolution. Here, we only present the results for 1.5
mm isotropic resolution as we observed the same trends for both
resolutions. Furthermore, the collection of CS-DSI acquisitions
allows for high flexibility in dMRI analysis as already noted
in previous works such as Sprenger et al. (2016). First, CS-
DSI contains high b-value acquisitions and thus provides dMRI
data applicable to diffusion models that specifically require high
diffusion weightings and with a great potential to be well-suited
for future methods developed for dMRI analysis (Veraart et al.,
2016a). Second, complimentary biomarkers can be extracted
directly from the diffusion propagator which is obtained in a
model-free manner by CS-DSI without any prior assumptions.

Diffusion measures such as the return-to-origin probability
and the return-to-axis probability as well as the propagator
anisotropy and non-Gaussianity have already been proposed to
map the microstructure of brain tissue (Özarslan et al., 2013).
Also, the clinical feasibility of estimating those parameters from
subsampled MR data has recently been reported (Avram et al.,
2016). Future developments might further exploit the diffusion
information content provided by the diffusion propagator. In this
work, we additionally determined propagator-based diffusion
parameters andCHARMEDparameters to highlight and quantify
the potentials of CS-DSI to provide dMRI data well-suited for
such analysis which further extends this protocol’s scope of
application for population imaging.

5. CONCLUSION

The contributions of this work are three-fold: (1) defining an
imaging protocol for compressed sensing DSI complying with
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stringent scan time limits of long-term population studies, (2)
conducting a pilot study delivering dMRI data for an in depth
investigation of this protocol based on a wide spectrum of
state-of-the-art diffusion processing and analysis techniques, and
(3) validating the applicability and potentials of accelerated
DSI using CS for population imaging. The results of this
work indicate comparable performance of CS-DSI and the 3-
shell HARDI scheme well-established in population imaging in
the estimation and reliability of diffusion and microstructural
parameters when considering DWIs up to the same maximum
diffusion weighting for both protocols. Further, both schemes
perform comparable in the inference of fiber orientation and
macroscopic brain connections. These findings hold despite the
slightly smaller SNR of CS-DSI scans due to higher b-value
acquisitions. Providing such high b-value data, CS-DSI enables
the accurate fitting of specific microstructure models such as
the CHARMED model. Additionally, the diffusion propagator
obtained by means of the model-free DSI approach allows for
high quality fiber orientation estimation and the extraction
of further complimentary biomarkers. Even if stringent scan

time limits are imposed, CS-DSI provides high radial resolution
while maintaining high angular resolution and it is a forward-
looking acquisition strategy with a great potential for future
developments. Thus, CS-DSI presents a well-suited imaging
protocol for dMRI within the scope of a scan time-limited, high
throughput, long-term population study.
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