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High accuracy decoding of electroencephalogram (EEG) signal is still a major challenge

that can hardly be solved in the design of an effective motor imagery-based

brain-computer interface (BCI), especially when the signal contains various extreme

artifacts and outliers arose from data loss. The conventional process to avoid such cases

is to directly reject the entire severely contaminated EEG segments, which leads to a

drawback that the BCI has no decoding results during that certain period. In this study,

a novel decoding scheme based on the combination of Lomb-Scargle periodogram

(LSP) and deep belief network (DBN) was proposed to recognize the incomplete motor

imagery EEG. Particularly, instead of discarding the entire segment, two forms of data

removal were adopted to eliminate the EEG portions with extreme artifacts and data loss.

The LSP was utilized to steadily extract the power spectral density (PSD) features from

the incomplete EEG constructed by the remaining portions. A DBN structure based on

the restricted Boltzmann machine (RBM) was exploited and optimized to perform the

classification task. Various comparative experiments were conducted and evaluated on

simulated signal and real incomplete motor imagery EEG, including the comparison of

three PSD extraction methods (fast Fourier transform, Welch and LSP) and two classifiers

(DBN and support vector machine, SVM). The results demonstrate that the LSP can

estimate relative robust PSD features and the proposed scheme can significantly improve

the decoding performance for the incomplete motor imagery EEG. This scheme can

provide an alternative decoding solution for the motor imagery EEG contaminated by

extreme artifacts and data loss. It can be beneficial to promote the stability, smoothness

and maintain consecutive outputs without interruption for a BCI system that is suitable

for the online and long-term application.

Keywords: brain-computer interface, decoding scheme, incomplete motor imagery EEG, power spectral density,

deep belief network

INTRODUCTION

The emergent brain-computer interface (BCI) technology allows individuals with severe
neuromuscular related locomotive disabilities to directly use their brain to operate or communicate
with external peripherals and environments (Daly and Wolpaw, 2008; McFarland and Wolpaw,
2011). Namely, the BCI system provides an alternative interface bridge which can bypass the
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conventional motor neural pathways and map brain intentions
to relative control commands (Ortiz-Rosario and Adeli, 2013).
Brain activity can be characterized by various signal modalities,
such as invasive ElectroCorticoGraphy (ECoG) (Miller et al.,
2010; Hiremath et al., 2015), non-invasive electroencephalogram
(EEG) (Lazarou et al., 2018), the functional Magnetic Resonance
Imaging (fMRI) (Cohen et al., 2014), and the functional Near-
Infrared Spectroscopy (fNIRS) (Naseer and Hong, 2015). Due
to its manageability, easy capture, high time resolution and
relative cost effectiveness, the EEG signal has beenwidely adopted
for substantial BCI applications, such as remote quadcopter
control (Lin and Jiang, 2015), motion rehabilitation (Xu et al.,
2011; Zhao et al., 2016), biometric authentication (Palaniappan,
2008), and emotions prediction (Padilla-Buritica et al., 2016).
Currently, the electrophysiological brain patterns used in EEG-
based BCI systems are mainly Steady-State Visual Evoked
Potentials (SSVEPs) (Chen et al., 2015; Zhang et al., 2015; Zhao
et al., 2016; Nakanishi et al., 2018), P300 (Cavrini et al., 2016),
sensorimotor rhythms (SMRs) (Yuan and He, 2014; He et al.,
2015), and motion-related cortical potential (MRCP, one kind of
a slow cortical potential) (Karimi et al., 2017). Compared to other
patterns, the SMRs-based BCI is more flexible and suitable for
practical applications due to the spontaneous EEG signals, which
are generated by individuals voluntarily without any external
stimuli.

The SMRs are derived from the motor imagery EEG,
which evoked by mentally imaging the movements of
limbs without actual actions (Yuan and He, 2014). The
underlying neurophysiological phenomena are event-related
synchronization (ERS) and event-related desynchronization
(ERD) in the SMRs, which are induced simultaneously by an
exogenous event. The variability of ERS/ERD intensity or power
in particular frequency bands can be utilized to distinguish the
different motor imagery EEG signals (Pfurtscheller et al., 2006;
Koo et al., 2015). Some remarkable SMRs-based BCI systems for
motor imagery classification have been created and applied in
wheelchair control (Li et al., 2013), objects control in 2D (Ma
et al., 2017) or 3D space (LaFleur et al., 2013), and robotic arm
control (Xu et al., 2011; Meng et al., 2016). However, there are
still various challenges faced in the establishment of efficient
SMRs-based BCI systems, such as fewer recognizable motor
types or states, apparently lower recognition rate, and longer
training time (Yuan and He, 2014; He et al., 2015). In addition,
due to the volume conduction effect of scalp and skull, the
EEG is a non-stationary and non-linear dynamic signal with
low signal-to-noise ratio and vulnerable to be interfered or
submerged by complex background artifacts, which makes it
really challenging to accurately decode various motor imagery
tasks (Blankertz et al., 2011). Consequently, the crucial issue that
needs to be solved is how to improve the decoding performance
of the SMRs-based BCI in the condition of various artifacts.

The artifacts affecting the quality of motor imagery EEG
mainly contain electrooculography (EOG), electromyography
(EMG) and electrical line interference. Traditionally, a variety
of filters can be available to alleviate or even eliminate electrical
line interference and some high frequency noises, like EMG
(35Hz above). In the past researches, many typical attempts

have been proposed to reduce EOG, such as filter-based method
(Shoker et al., 2005), independent component analysis (ICA)
(Lindsen and Bhattacharya, 2010) and discrete wavelet transform
(DWT) (Peng et al., 2013). However, these methods can cause
the loss of some useful EEG components. And the procedures
for manual parameter tuning are needed to obtain optimal
performance of these methods. Moreover, they generally fail in
the case of the EEG contains extreme noises. Otherwise, the
EEG signals could be accidentally overwritten or lost caused by
hardware or system malfunctions during recording periods. For
the above cases, good decoding performance for SMRs-based
BCI systems could still hardly be achieved. One intuitive and
helpless solution to avoid such extreme artifacts and data loss
is usually to reject the entire severely disturbed EEG segments.
Consequently, this raises some defects including no decoding
results during certain period, additional EEG rejection process
and increased BCI training time. Furthermore, from a practical
perspective, consecutive and smooth recognition of SMRs-based
BCI systems is extremely necessary for the online and long-term
application. This requires that the BCI system can continuously
decode brain signals without any interruption. If entire EEG
segments are discarded due to extreme artifacts or data loss,
the BCI system cannot obtain the decoding results during the
corresponding time slice. Hence, it is very important to decode
incomplete motor imagery EEG for SMRs-based BCI systems
in the condition of extreme artifacts and data loss. Currently,
only few studies have been conducted to solve the decoding
performance from the incomplete EEG signals. Zhang et al.
applied a Bayesian tensor factorization based method to find the
underlying low-rank EEG tensor from incomplete EEG signals
and improve the decoding accuracy with robustness after artifacts
and outliers removal (Zhang et al., 2016). Cui et al. used a
fully Bayesian CP factorization for incomplete tensors method
to analyze and classify incomplete EEG signals with different
data missing ratios (Cui et al., 2016). However, such decoding
methods for incomplete EEG need complicated matrix and
tensor computations, which are not efficient for an online BCI
application. Moreover, the classification accuracies obtained by
these methods need further improvement.

In this paper, to improve the decoding performance for
incomplete motor imagery EEG and satisfying the needs of
smooth operation for the BCI system, a novel decoding scheme
composed of Lomb-Scargle periodogram (LSP) for feature
extraction and deep belief network (DBN) for classification was
proposed. Instead of rejecting the entire EEG segment, the
portions that affected by extreme artifacts or data loss were
directly removed and the remaining portions were used to
construct the incomplete motor imagery EEG signals in this
study. Generally, the most robust and representative feature
for the contents of different motor imageries is spectral power
in particular bands of ERS/ERD (Pfurtscheller et al., 2006).
The conventional fast Fourier transform (FFT) or Welch
periodogram can be available to estimate the spectral power
features for the intact motor imagery EEG. Nevertheless,
these spectral analysis methods cannot work well for the
non-uniformly sampled signals (Stoica et al., 2009), such as
incomplete motor imagery EEG signals. The LSP method can
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handle signals that have been sampled non-uniformly or have
missing data points (Stoica et al., 2009; Stankovic et al., 2014)
and is suitable for processing incomplete signals. Hence, the LSP
method was adopted to extract major spectral power features
from the incomplete motor imagery EEG signals in this study.
A DBN structure based on the restricted Boltzmann machines
(RBM) was exploited and optimized to learn different motor
imagery EEG classes. The proposed scheme may offer the
following advantages: (a) It can provide comparable decoding
performance for the incomplete motor imagery EEG with
different proportion of data removal; (b) The extracted spectral
power features are more robust for the representation of the
incompletemotor imagery EEG; (c) It is applicable to consecutive
and smooth operation without any disruption for the online BCI
system.

The remaining parts of this paper are organized as follows.
The overall systematic framework of decoding scheme for
incomplete motor imagery EEG is introduced in section
Overall Decoding Scheme Framework. Accordingly, section EEG
Processing Pipeline describes the EEG signal processing pipeline
in detail, including artifacts and data loss preprocessing, spectral
features extraction and DBN classifier construction. The motor
imagery experiments and datasets are presented in section

Motor Imagery Experimental Paradigm and Datasets. Some
experimental comparison results and discussions are given in
section Experimental Results and Discussions. Finally, section
Conclusions and Future Works gives the conclusions and ideas
for future works.

OVERALL DECODING SCHEME
FRAMEWORK

The objective of our study is to address the issue of improvement
of the recognition accuracy and stability associated with different
motor imagery tasks for the incomplete EEG signals. The
schematic diagram of the overall decoding system is illustrated
in Figure 1, which primarily synergizes three procedures:
preprocessing for raw EEG, spectral power feature extraction,
and motor imagery recognition. Definitely, the raw EEG signals
were captured by the means of non-invasive wet electrodes
arranged on the brain scalp when individuals perform diverse
motor imagery tasks, such as imagining limbs movements. The
preprocess procedure was devoted to constructing incomplete
motor imagery EEG datasets, which covered band-pass filtering,
sliding windows segmentation, and data loss or noise removal.

FIGURE 1 | The overall decoding scheme for incomplete motor imagery EEG signals based on deep belief network (DBN).
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The deep belief network was composed of three layers of
pre-trained stacking RBMs along with an output layer of
softmax regression. The spectral power features within specific
frequency bands extracted through Lomb-Scargle periodogram
were normalized to pre-train each layer of the RBMs and
fine-tune the weights of the DBN. Stochastic binary units
were utilized in the pre-training stage to initialize the deep
neural network. Deterministic real-valued probabilities were also
implemented to adjust the connection weights of each layer by
error backpropagation algorithm. After a fine-tuning stage, the
trained DBN was employed to decode the corresponding classes
of motor imagery from incomplete EEG, such as movement
intention of left hand, right hand, or foot. The structure of each
layer in the DBNwas optimized and determined by various group
experiments. Moreover, simulated and extensive experiments
for multi-subjects, different feature extraction methods (FFT or
Welch) and classifiers (supervised Support Vector Machines,
SVMs) were conducted to verify the viability and effectiveness
of the proposed decoding scheme for incomplete motor imagery
EEG signals.

EEG PROCESSING PIPELINE

Preprocessing
In order to exclude the unwanted components of the interested
EEG segments, the preprocessing procedure was designed to
transform the intact EEG with complex artifacts or data loss
into incomplete EEG segments. Essentially, the preprocessing
pipeline consists of three sub-parts: (a) signal filtering, (b) sliding
windows segmentation, and (c) artifacts or data loss removal.
More explicitly, the signal filtering was dedicated to alleviating
the background noises arose from experimental, instrumental,
and electrical or physiological sources. The sliding windows
were mainly responsible to segment the expected motor imagery
fragments from the continuous EEG signals. For the motor
imagery EEG segments, the portions with extreme artifacts or
data loss were directly discarded and the remaining portions were
utilized to form incomplete signals.

Signal Filtering
Because of the fact that EEG signals contain useful information
below 100Hz, noise elements above this frequency may be
directly excluded through low-pass filters. For motor imagery
EEG, the phenomenon of ERS/ERD obviously appears in
the frequency range of mu (8–12Hz) and beta (18–26Hz)
rhythm band (Pfurtscheller et al., 2006). In other words, the
frequency band of 8–30Hz possesses the most discriminative
information associated with different motor imagery tasks. In
this study, a fifth-order Butterworth band-pass filter with gain
1.5, cutoff frequencies [8, 35] Hz was applied to attenuate
the frequency component of specific noises while amplifying
interested frequency band for motor imagery classification.
After signal filtering, a large part of noise can be removed,
such as EMG (high frequency noise, higher than 35Hz), low
frequency component of EOG (lower than 8Hz) and electrical
line interference (50 or 60Hz). In addition, the baseline drift

caused by head or limb motions can also be alleviated to reduce
the impact on the raw EEG signals.

Sliding Windows Segmentation
For a continuous recorded EEG signal, we just only focus
on the motor imagery segments. Then, the band-filtered and
continuous EEG signals were segmented by a time window,
which corresponding to a trial of motor imagery task. Moreover,
a trial of motor imagery task needs repeatedly imagine limb
movements for a certain time to generate stable and effective
brain activity. In existing motor imagery EEG studies, the
features can be extracted either by using the whole EEG trial
or by dividing the trial into a number of overlapping/non-
overlapping time segments (Asensio-Cubero et al., 2011, 2013;
AYDEMIR, 2016). To improve the temporal resolution of EEG
and obtain better performance of the classifier, a sliding window
was commonly adopted to split the targeted motor imagery trial
into overlapped segmentations which can be used for multiple
classifications by a voting strategy (Herman et al., 2008; Shahid
and Prasad, 2011; Choi, 2012). In this study, instead of using
the whole data length of EEG trial, a four-second EEG trial was
divided into 16 segments of 1 s length with 0.2 s step size by the
1 s sliding window with 80 % overlap.

Artifacts or Data Loss Removal
Even if the filter processing is done, some artifacts may still
exist in the EEG segments. Furthermore, the residual elements
stem from artifacts may overlap the effective frequency band
correlated with motor imagery EEG. For instance, the EOG
artifacts resulted from eye blinks are usually presented in the
frequency band of 0–10Hz. The high frequency elements of
the EOG overlapping with ERS/ERD bands cannot be readily
excluded by band-pass filters. On the other hand, the filters are
in general ineffective in the case of the signal with data loss.
Instead of rejecting the entire motor imagery EEG segments,
an additional preprocessing implementation was proposed to
address artifacts and data loss. For the case of the EEG segment
contaminated by extreme artifacts, the entire EEG segment was
divided into data chunks with different widths. The width which
represents the number of data points in each data chunk can be
generated according to a normal distribution with a mean of 10
and a standard deviation of 2. A form of data chunk removal
was applied to directly discard data chunks which contain severe
artifacts. In addition, for the case of data loss within the EEG
segment, a form of data point removal was employed to eliminate
acquisition outliers. For the two forms of data removal, the EEG
portions contaminated by extreme artifacts or data loss within
an EEG segment were directly discarded by a proportion from
10% to 80% in this study. For example, for the case of 10% data
chunk removal, 10% data chunks in a 1 s EEG segment were
randomly discarded. For the case of 10% data point removal, 10%
data points (100 points in this study) in a 1s EEG segment (1,000
points) were randomly discarded. Subsequently, the remaining
EEG data chunks or data points were combined to construct the
incomplete motor imagery EEG segments.
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Feature Extraction Based on
Lomb-Scargle Periodogram
The crucial step in a BCI system is feature extraction, which
is used to find mental task-related information and most
discriminative representations from the brain activities for
subsequent classification. The quality of extracted features highly
affects the performance of the following recognition process. For
motor imagery EEG signals, we concentrated on the spectral
analysis during certain frequency bands. The non-parametric fast
Fourier transform (FFT) and Welch periodogram methods have
been confirmed to effectively estimate the spectral power features
for the intact motor imagery EEG, such as power spectral density
(PSD) (Herman et al., 2008; Djemal et al., 2016). However, due
to the incomplete motor imagery EEG signals belong to a kind
of non-uniformly sampled sequence, these methods may not
extract stable spectral features. In our research, the Lomb-Scargle
periodogram was adopted to estimate the spectral power features
for incomplete motor imagery EEG segments. An incomplete
EEG segment is denoted by X ∈ RC×N , where C is the number of
channels and N is the length of signal points. For each channel,
the signal series were denoted by eeg(ti), where i = 1, 2, ...,N.

Lomb-Scargle Periodogram
For signal series eeg(ti), the spectral power at frequencyωf should
be estimated by solving the following fitting problem of sum of
squared differences:

min
α≥0

φ∈[0,2π]

N
∑

i=1

[eeg(ti)− αcos(ωf ti + φ)]2. (1)

For simplicity, the dependence of α and φ about ωf was replaced
by using

a = α cos(φ) and b = −α sin(φ). (2)

The fitting problem can be reformatted by the term of a and b:

min
a,b

N
∑

i=1

[eeg(ti)− acos(ωf ti)− b sin(ωf ti)]
2. (3)

The optimal parameters in the minimizing Equation (3) can be
obtained by solving

[

â

b̂

]

= R
−1

r (4)

where

R =

N
∑

i=1

[

cos(ωf ti)
sin(ωf ti)

]

[

cos(ωf ti) sin(ωf ti)
]

(5)

and

r =

N
∑

i=1

[

cos(ωf ti)
sin(ωf ti)

]

eeg(ti). (6)

The power at specific frequency ωf corresponding to optimal

parameters â and b̂, is given as follows:

1

N

N
∑

i=1

(

[â b̂]

[

cos(ωf ti)
sin(ωf ti)

])

2

=
1

N
[â b̂]R

[

â

b̂

]

(7)

=
1

N
r
TR−1r.

Accordingly, the powers for each channel signal at all frequency
ω can be obtained by

P(ω) =
1

N
r(ω)TR(ω)−1

r(ω). (8)

Similarly, the estimation step was repeatedly executed for all
channels of the incomplete motor imagery EEG segments to
extract the corresponding spectral features. Previous researches
demonstrated that significant power oscillations in response to
various motor imagery tasks mostly located in 8–30Hz bands
(Pfurtscheller et al., 2006; Shahid and Prasad, 2011). In this
article, the concerned band was divided into four sub-bands
with a bandwidth of 5Hz, including alpha (8–13Hz), sigma
(13–18Hz), low beta (18–23Hz), and high beta (23–28Hz)
rhythms. For each channel, the PSD features of each sub-band
were computed by averaging powers within the frequency range.
Hence, all PSD features for EEG segments were concatenated by
channel arrangement into a feature vector:

V = [p11, p12, p13, p14, p21, p22, p23, p24, · · · , pC1, pC2, pC3, pC4]
(9)

where C is the number of channels.

Feature Normalization
Generally, the original features can be directly fed into a neural
network or an SVM classifier to recognize which motor imagery
class the current EEG signal belongs to. However, the spectral
feature variations caused by various channels or different motor
imagery trials may affect the performance of classifiers. To
eliminate the variation factor of feature scale and accelerate the
convergence of learning algorithm, a min-max normalization
step was utilized in feature vector set V . Refer to (10), the
raw features were divided by the difference of maximum and
minimum to scale all the values between 0 and 1.

F(m)norm =
V(m)− vmin(m)

vmax(m)− vmin(m)
(10)

where, vmax(m) = max{V(m)}, vmin(m) = min{V(m)},m ∈

R4×C.

Deep Belief Network Based on Restricted
Boltzmann Machines
Considering the advantages of high-speed and parallel
computation, a neural network classifier is more suitable
and efficient for the online BCI application and the trained
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parameters can be directly used to distinguish new EEG signals.
Currently, a variety of deep learning architectures based on
neural networks have been constructed and applied in motor
imagery EEG classification (Yang et al., 2015; Kumar et al.,
2016; Tabar and Halici, 2016). In this study, we adopted a deep
belief network (DBN) structure to obtain more robust and
ultimately more notable representation for the incomplete motor
imagery EEG. The DBN structure can be formed by multiple
layers of stacked restricted Boltzmann machines (RBMs) or
auto-encoders.

Restricted Boltzmann Machine (RBM)
Each RBM is composed of a visible layer, a hidden layer, and
connection weights between two layers, which is greedily trained
in an unsupervised mode (Hinton et al., 2006; Tang et al., 2015).
The basic structure of RBM is presented in Figure 2. The neurons
used in the RBM are stochastic binary units. Traditionally,
the visible layer receives the input data and have undirected
connections with the neurons of the hidden layer. Meanwhile, the
neurons from the same layer are disconnected. The hidden layer
is responsible to reconstruct the input data as close as possible by
tuning the connection weights and biases repeatedly. For motor
imagery EEG, each visible neuron represents a spectral feature
with hypothetically Gaussian distribution. The energy function
of joint configuration for the two layers is defined as

E(v, h) = −

m
∑

i=1

bivi −

n
∑

j=1

ajhj −

m
∑

i=1

n
∑

j=1

vihjwij (11)

where vi and hj are the binary states at the visible neuron i and
hidden neuron j respectively. bi and aj are the corresponding
biases of neurons, wij is the connection weight between them.
Based on the Boltzmann distribution and energy function, a joint
probability for pair of the visible and hidden layer is determined
by

p(v, h) =
1

Z
e−E(v,h) (12)

where Z =
∑

v,h
e−E(v,h) denotes the partition function or

normalization term.
Considering that the hidden neurons are conditional

independent due to no connections between them, given visible

FIGURE 2 | The basic structure of restricted Boltzmann machine (RBM).

vector v, the conditional probability of neuron hj being 1 can be
obtained as follows:

p(hj = 1|v) = σ (aj +
∑

i

viwij) (13)

Similarly, given hidden vector h, the conditional probability of
the visible neuron vi being 1 can be determined by

p(vi = 1|h) = σ (bi +
∑

j

hjwij) (14)

where σ (•) denotes the logistic sigmoid function.
Given the training dataset S = {s1, s2, ..., sns}, ns is the number

of training samples, the parameters of RBM are trained to fit
the training samples by maximizing a log-likelihood function,
including connection weights w, biases a and b.

LS =

ns
∑

i=1

log p(v, h) (15)

Based on gradient ascent and contrastive divergence methods
(Hinton et al., 2006), the derivative of the log-likelihood with
respect to weights w can be formulized by

∂ log p(v, h)

∂wij
= Edata

[

∂E(v, h)

∂wij

]

− Emodel

[

∂E(v, h)

∂wij

]

(16)

where Edata [•] and Emodel [•] are respectively the expectation
under the distribution of the training dataset and the model.
Furtherly, the gradient can be rewritten by

∂ log p(v, h)

∂wij
= Edata

[

vihj
]

− Emodel

[

vihj
]

(17)

The contrastive divergence method can be used to approximately
estimate the expectation Edata

[

vihi
]

. The Gibbs samplingmethod
can be adopted to calculate the expectation Emodel

[

vihi
]

. Hence,
the learning rule of connection weights can be obtained by

1wij = η(Edata
[

vihi
]

− Emodel

[

vihi
]

) (18)

Similarly, the updating rules of the biases are respectively

1bi = ε(Edata [vi]− Emodel [vi]) (19)

and

1aj = ε(Edata
[

hj
]

− Emodel

[

hj
]

) (20)

where η and ε donate the learning rate. According to the updating
rules of parameters, each RBM is trained to reconstruct the input
data in an unsupervised way.
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Deep Belief Network
Three layers of RBM were superposed to construct a deep belief
network with a layer of softmax regression in the study, as
shown in Figure 1. The raw input data was fed to the bottom
layer of RBM, and the output of the hidden layer from the
lower RBM was delivered to the visible layer from the higher
RBM. Compared to logistic regression, the softmax regression
was used to solve multiclass recognition problems by statistically
estimating the maximum probability of the class that a sample
belongs to (Salakhutdinov and Hinton, 2012). The procedures
of the DBN primarily consisted of pre-training stage and fine-
tuning stage. The pre-training stage was conducted in each layer
of RBM to obtain initial parameters of the DBN. The softmax
regression was added to obtain prediction error to optimize
the parameters by backpropagation algorithm in the fine-tuning
stage. Additionally, some constraint terms were incorporated
into the cost function of softmax regression to avoid overfitting,
including weight decay and sparsity constraint (Cho, 2013; Plis
et al., 2014; Jiang et al., 2016). In our research, the weight decay
was set to 0.05 and the sparsity constraint was set to 0.1. The
learning rates for connection weights and biases were set to
0.5 and 0.25 respectively. All these parameters were determined
and optimized by a grid search procedure with 5-fold cross-
validation.

MOTOR IMAGERY EXPERIMENTAL
PARADIGM AND DATASETS

In our study, nine right-handed volunteers (all males, mean
age 26.5 years, ranging from 25 to 28 years, numbered
S01-S09) with thin hair participated in the motor imagery
experiments. All subjects were healthy, without any history
of neurological, psychiatric or cognitive disorders. Specifically,
none of them has any prior experience of the BCI experiment
related to motor imagery. Moreover, details of motor imagery
experimental procedures were explained to all participants and
written informed consents were signed for all subjects before
the experiment. The experimental protocol was reviewed and
approved by the local ethics committee of the University of
Chinese Academy of Sciences.

In an electromagnetic shielding environment, the participants
were seated in a comfortable chair with armrests and watched
an LCD screen from a distance of about 1m, while wearing
an EEG recording cap. Three kinds of motor imagery tasks
were performed including imagining left hand, right hand and
foot movements. Before the experiment, the instructor explained
the meaning of kinesthetic imagery of the limb movements to
the participants. Additionally, all participants performed motor
imagery practice to get familiar with the kinesthetic sensation.
Each participant carried out an experimental block consisted
of 10 sessions, which lasted ∼1.5 h. All sessions were executed
in the same condition and a rest period with several minutes
was given between two consecutive sessions. The experiment
paradigm of each session was devised in Figure 3. For all sessions,
the first 2 s was an idle state with a black screen. Subsequently,
a fixation green cross was emerged at the center of the screen

FIGURE 3 | The motor imagery EEG experimental paradigm.

with a duration of 1 s to indicate the beginning of one trial.
Immediately, a red arrow pointing to the left, right or down
appeared with a duration of 5 s in addition to the fixation
cross. In this specific period, the subjects were instructed to
respectively perform the relevant motor imagery tasks according
to the direction of the arrow, such as imagining repeated finger
flexion and extension with the left or right hand at approximate
1Hz frequency. Meanwhile, the subject must pay attention to
imagine the kinesthetic experience of limb movements as much
as possible. In addition, to minimize the artifacts, the participants
were asked to limit their head movements and try not to blink
or swallow during the motor imagery period. During the inter-
trial interval, the arrow cue and fixation cross were disappeared
with the remaining of a black screen for 2 s, and the subject was
instructed to perform idle state instead of motor imagery. To
avoid the adaptability of brain activity for a given motor imagery
task, each of the 3 cues was presented 10 times by a random
sequence in each session. Hence, there are 30 trials for a session.
For each subject, there are total 300 trials of motor imagery tasks
in an experiment.

During the motor imagery tasks, EEG signals were collected
through a grid cap with 64 Ag/AgCI passive electrodes provided
by Plexon Inc., USA. The multiple electrodes with roughly 3 cm
separation distance were closely arranged on the cap according
to the international 10–20 positioning system. Extra conductive
glues or gels were injected into each electrode for higher
conductivity and better attachment. The left mastoid electrode
was used as the reference channel and the right mastoid electrode
served as the ground. The original EEG data were recorded with
a sampling rate of 1 kHz by OmmiPlex Neural Data Acquisition
System (Plexon Inc., USA), including analog pre-amplification,
analog-to-digital conversion, and a low-pass filter with a cutoff
frequency of∼200–300Hz. An additional notch filter with 50Hz
was applied to eliminate the power line artifacts. Finally, the
recorded motor imagery EEG signals for each subject were saved
in the form of times× channels× trials with 5,000× 64× 300.

To obtain dominant motor imagery EEG, a 4 s segment from
0.5 s after cue to 4.5 s was cut out from each trial. As mentioned in
section EEG Processing Pipeline, the data was further band-pass
filtered and segmented by a sliding window. Hence, the motor
imagery datasets were represented by a three-dimensional array
of size 1,000 × 64 × 4,800 for each subject, where 1000 was
the length of time window (1 s), 4,800 was the number of motor
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imagery segments containing three class, and 64 was the number
of channels. For each channel signal, there were 4 spectral power
features estimated by Lomb-Scargle periodogram method. Then,
the whole sample datasets with features were 4,800× 256 for each
subject, where 256 was the number of features (4× 64 channels).
The datasets were randomly divided into 75% training datasets
(3,600× 256) and 25% testing datasets (1,200× 256).

EXPERIMENTAL RESULTS AND
DISCUSSIONS

Simulation Comparison With Different
Spectral Estimation Methods
To evaluate the effectiveness of the Lomb-Scargle method for
incomplete signals, the simulated signal was devised by mixing
two sinusoidal signals with a dominant frequency of 4Hz and
8Hz, respectively. The amplitude ratio between 4Hz and 8Hz
sinusoidal signal was set to 0.75. For the simulated signal,
data points with a certain proportion were randomly removed
to construct incomplete or irregular signals. In addition, for
comparison with Lomb-Scargle periodogram, traditional Welch
and FFT periodogram methods were also applied to estimate
spectral power for different incomplete signals.

The estimated spectral powers for the intact signal and the
incomplete signal with various degrees of missing data are
given in Figure 4. For the simulated signal, the data points
were eliminated by a proportion from 10 to 80% with a step
of 10%. Meanwhile, the powers were normalized to the same
scale by dividing a factor, which was the proportion value of

remaining data. From Figure 4, we can see that the spectral
components at dominant frequency 4 and 8Hz are more and
more insignificant with the increase of proportional data removal
for all three estimation methods. Especially, the spectral powers
were obviously degraded after 30% data removed. However, the
spectral powers estimated by Lomb-Scargle periodogram were
more notable than those estimated by Welch or FFT method
for various incomplete signals (the p-value from paired t-test
was < 0.05). Indeed, the components at 4Hz and 8Hz were well-
obtained for the incomplete signal even with 80% data removed.
It demonstrated that compared to the traditional spectral analysis
methods like FFT andWelch, the LSP method can estimate more
stable and optimal spectral features from various incomplete or
irregular signals. It proved that the LSP was particularly suited to
estimate rhythm components in non-uniformly sampled signals
(Stoica et al., 2009).

Incomplete Motor Imagery EEG: Point
Removal Form and Chunk Removal Form
To systematically validate the discrimination ability of the PSD
features extracted by the LSP method for the incomplete EEG,
two forms were adopted to randomly remove the portions from
the intact motor imagery segments to construct incomplete
signals. For the condition of data loss, a form of data point
removal was applied to eliminate the EEG outliers, which
caused by high contact impedance between electrodes and scalp.
Figure 5 presents the recognition performance of intact EEG
and incomplete EEG with different proportions of data point
removal for the nine subjects, obtained by the DBN classifier

FIGURE 4 | The comparison results of spectral power estimations for the complete signal and incomplete signal with different proportional removal (from 10 to 80%

with a step of 10%). Three estimation methods were used: Lomb-Scargle, Welch and FFT periodogram.
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FIGURE 5 | The classification results of the intact EEG and incomplete EEG with various ratios of data point removal (from 10 to 80% with a step of 10%), for the nine

subjects (from S01 to S09). Three spectral feature extraction methods were used for comparison: the black lines, red lines and blue lines represent the accuracy of

DBN with FFT, Welch and Lomb-Scargle feature extraction, respectively.

with three feature extraction methods (FFT, Welch, and Lomb-
scargle). For simplify, threemethods were denoted as FFT+DBN,
Welch+DBN, and Lomb-Scargle+DBN, respectively. From
an overall perspective, the recognition accuracy showed a
descending trend gradually along with the increasing proportion
of data point removal for all three methods in Figure 5.
For the intact motor imagery EEG, the average accuracies
(±standard deviation) across the nine subjects were 72.27%
(±1.33%) for FFT+DBN, 73.26% (±1.44%) for Welch+DBN,
74.77% (±0.43%) for Lomb-Scargle+DBN, respectively. There
was no significant difference (p > 0.078, paired t-test) between
the average accuracy of Lomb-Scargle+DBN and those of
the other methods for the intact EEG across all subjects.
This can be inferred that compared to the FFT and Welch
method, the LSP method may not provide high-quality PSD
features for the intact motor imagery EEG. Especially, for the
intact EEG of subject 1 (S01), the accuracy of Welch+DBN
was higher than that of Lomb-Scargle+DBN. Considering the

computational complexity and the efficiency, it is not preferable
to apply the Lomb-Scargle+DBN for the intact motor imagery
EEG classification. However, the accuracy variation of Lomb-
Scargle+DBNwas obviously smaller than those of the FFT+DBN
and Welch+DBN for the incomplete EEG with different point
removal ratios. More specifically, for the incomplete EEG with
point removal in the range from 10 to 80%, the mean difference
of accuracy across the nine subjects was 13.38% (±2.67%)
for FFT+DBN, 13.08% (±3.07%) for Welch+DBN, and 7.45%
(±1.18%) for Lomb-Scargle+DBN, respectively. It demonstrated
that the classification performance of Lomb-Scargle+DBN was
significantly better compared to FFT+DBN (p = 0.012 < 0.05,
paired Student’s t-test) and Welch+DBN (p = 0.008 < 0.01,
paired Student’s t-test) for the incomplete motor imagery EEG.
Implicitly, the spectral power features extracted by Lomb-Scargle
periodogram can significantly improve the classification accuracy
of the DBN for various degrees of incomplete EEG. An acceptable
classification accuracy (above 65%) can be achieved by the
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FIGURE 6 | The classification results of intact EEG and incomplete EEG with various ratios of data chunk removal (from 10 to 80% with a step of 10%), for the nine

subjects (from S01 to S09). Three spectral feature extraction methods were used for comparison: the black lines, red lines and blue lines represent the accuracy of

DBN with FFT, Welch and Lomb-Scargle feature extraction, respectively.

Lomb-Scargle+DBN method even when 80% of points were
eliminated, while the accuracies of FFT+DBN and Welch+DBN
were ∼60% or even lower. Interestingly, from Figure 5, we can
find that the accuracies for the incomplete EEG after 30% data
point removal declined sharply and substantially. Especially in
the case of subject 1 (S01 EEG datasets), the accuracy obtained
by FFT+DBN or Welch+DBN roughly varied from 70 to 53%
for the incomplete EEG between 30 and 80% data point removal.
This finding implied that the performance of spectral power
features deteriorated distinctly for the methods of FFT and
Welch periodogram, which was in accordance with the previous
simulation comparison.

Similarly, to eliminate the effects of extreme artifacts, a
form of data chunk was adopted to remove the EEG portions
contaminated by tremendous electrophysiological artifacts or
complex background noises. The corresponding classification
results for the intact EEG and incomplete EEGwith various ratios

of data chunk removal are presented in Figure 6. Compared
to the data point removal, the accuracies of the incomplete
EEG dramatically and significantly decreased across different
degrees of data chunk removal (p = 0.022 < 0.05, paired
Student’s t-test). Especially, the average accuracies for the
incomplete EEG with 80% data chunk removal were 51.03%
(±2.23%), 51.47% (±1.60%), and 64.17% (±0.63%), significantly
lower than those for the incomplete EEG with 80% data
point removal by 58.13% (±2.52%), 59.15% (±2.87%), and
66.44% (±1.13%) for FFT+DBN, Welch+DBN, and Lomb-
Scargle+DBN respectively. More commonly and exactly, the
mean difference of accuracy for the incomplete EEG with
chunk removal in the range from 10 to 80% across the
nine subjects was 20.51% (±2.39%), 19.68% (±2.21%), and
9.30% (±1.17%) for FFT+DBN, Welch+DBN, and Lomb-
Scargle+DBN respectively. The statistical analysis indicated that
the proposed Lomb-Scargle+DBN method for the incomplete
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TABLE 1 | Statistical classification performance for the incomplete EEG with point and chunk removal.

Incomplete EEG (point form) (%) Incomplete EEG (chunk form) (%)

FFT Welch Lomb-Scargle FFT Welch Lomb-Scargle

S01 63.46 ± 7.64 63.09 ± 7.85 70.38 ± 2.93 60.78 ± 8.50 60.46 ± 7.88 68.54 ± 3.13

S02 65.85 ± 5.10 66.14 ± 4.60 70.34 ± 2.25 62.06 ± 5.86 62.12 ± 5.40 67.82 ± 2.84

S03 64.21 ± 6.24 65.01 ± 6.40 71.20 ± 3.49 63.35 ± 6.67 62.69 ± 7.34 69.30 ± 3.36

S04 65.31 ± 4.62 66.54 ± 4.24 71.24 ± 2.44 62.25 ± 7.17 62.43 ± 6.72 68.30 ± 3.85

S05 65.66 ± 3.41 66.93 ± 3.55 71.21 ± 2.34 62.15 ± 7.80 63.18 ± 7.12 69.20 ± 4.02

S06 65.59 ± 4.32 66.46 ± 4.24 70.52 ± 2.72 63.09 ± 8.73 62.89 ± 8.59 69.36 ± 3.92

S07 65.58 ± 4.46 65.99 ± 4.30 70.79 ± 2.21 62.01 ± 8.46 62.66 ±7.52 69.48 ± 3.53

S08 66.28 ± 4.94 67.44 ± 4.75 70.79 ± 2.99 62.31 ± 8.46 62.55 ± 8.39 69.83 ± 3.56

S09 65.25 ± 5.00 66.83 ± 4.40 70.34 ± 2.75 62.40 ± 8.16 62.82 ± 8.48 67.94 ± 4.02

Mean 65.24 ± 5.08 66.05 ± 4.93 70.72 ± 2.68 62.26 ± 7.70 62.42 ± 7.49 68.86 ± 3.58

The maximum mean of comparative experiments were highlighted in the bold.

EEG was constantly and significantly superior to the other
two methods (p = 0.007 < 0.01 for FFT+DBN and Lomb-
Scargle+DBN, p = 0.007 < 0.01 for Welch+DBN and Lomb-
Scargle+DBN, paired Student’s t-test). Moreover, the accuracies
of the incomplete EEG in the condition of data chunk removal
varied remarkably larger than those in the condition of data
point removal (p < 0.05, paired t-test). It can be attributed to
the fact that except for extreme artifacts, the informative signals
corresponding to motor imagery tasks were also eliminated
by the chunk form within the same contaminated segments.
Thereby, for the incomplete EEG with data chunk removal, the
extracted spectral powers of the mu/beta rhythms related to
motor imagery tasks were relatively inferior to those for the
incomplete EEG with data point removal.

In addition, the overall recognition performance for the
incomplete EEG across various degrees of point and chunk
removal are provided in Table 1. The results (mean ± standard
deviation) were obtained by averaging accuracies for the
incomplete EEG with different ratios of point and chunk removal
in the range from 10 to 80%. It can be observed that the
classification results of Lomb-Scargle+DBN were significantly
higher than those of FFT+DBN and Welch+DBN for both
incomplete EEG with point and chunk removal. The incremental
performances between Lomb-Scargle+DBN and FFT+DBN
were 5.48%, 6.60% for the incomplete EEG with point and chunk
removal, respectively. The p-values computed by the paired
Student’s t-test of this comparison were all < 0.001. Likewise,
the incremental performances between Lomb-Scargle+DBN
and Welch+DBN were 4.67%, 6.44% for the incomplete EEG
with point and chunk removal, respectively. The p-values
computed by the paired Student’s t-test of this comparison were
also < 0.001. Furthermore, from the view of standard deviation,
the Lom-Sacrgle+DBN method (2.68% for point form, 3.58%
for chunk form) performed prominently lower variability than
FFT+DBN (5.08% for point form, 7.70% for chunk form) and
Welch+DBN (4.93% for point form, 7.49% for chunk form).
Therefore, it is evident that the Lomb-Scargle+DBNmethod can
significantly and steadily improve the recognition performance
for the different incomplete motor imagery EEG.

Comparison of DBN With Various
Structures
It should be noted that the structures of DBN adopted in the
incomplete EEG experiments were determined and selected by
an optimization method. As previously mentioned, the DBN was
constructed by three hidden layers of pretrained RBMs and an
output layer of softmax regression. For this study, a number of
256 dimensional vectors were fed to the input layer of the DBN.
Hence, the dimension of the input layer was 256. Furthermore,
three units were utilized in the output layer of softmax regression,
which corresponded to three motor imagery tasks. To obtain the
relevant optimal parameters, various numbers of units were tried
for the three hidden layers. More explicitly, different numbers
of units varied over a range were used in one hidden layer,
while the numbers of units in the remaining two hidden layers
were unchanged. Since optimal parameters selection of the DBN
was a combinatorial process, which yields comparable solutions
rapidly. To evaluate the sensitivity of the hidden layers to the
changes of the unit numbers, 5-fold cross-validation was applied
for the classification of motor imagery EEG. For each subject,
the intact EEG and incomplete EEG with various ratios of data
removal were divided into 5 sections, in which 4 sections were
adopted for training, and the rest section was used for the
test. The average performances were obtained by executing 5
times procedures repeatedly. Additionally, all the evaluations
were conducted in the features extracted by the Lomb-Scargle
periodogram.

For the first hidden layer, the numbers of units varied in a
range of [15 30 45 60 75 90] while the numbers of units in
the other two hidden layers maintained a constant value with
50 and 35 units, respectively. The corresponding comparison of
classification performances for the DBN with different numbers
of units in the first hidden layer is presented in Table 2. The
results showed that the maximum mean accuracy 71% was
obtained in the condition of 60 units of the first hidden layer.
The decoding accuracies were remarkably improved in the 60
units compared to other numbers of units for the first hidden
layer (p < 0.05, paired Student’s t-test). Similarly, Table 3 gives
the performance of the second hidden layer varying in [10 20

Frontiers in Neuroscience | www.frontiersin.org 11 September 2018 | Volume 12 | Article 680

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chu et al. Incomplete Motor Imagery EEG

TABLE 2 | Comparison of classification accuracies based on different numbers of

units in the first hidden layer for the nine subjects.

15 units 30 units 45 units 60 units 75 units 90 units

S01 0.62 0.65 0.68 0.68 0.60 0.63

S02 0.71 0.70 0.65 0.70 0.62 0.59

S03 0.60 0.58 0.62 0.73 0.60 0.58

S04 0.59 0.67 0.60 0.72 0.70 0.64

S05 0.61 0.63 0.64 0.71 0.62 0.59

S06 0.64 0.65 0.63 0.71 0.61 0.60

S07 0.63 0.65 0.67 0.69 0.64 0.63

S08 0.63 0.66 0.62 0.70 0.62 0.58

S09 0.62 0.64 0.62 0.71 0.62 0.63

Mean 0.63 0.65 0.64 0.71 0.63 0.61

The maximum mean of comparative experiments were highlighted in the bold.

TABLE 3 | Comparison of classification accuracies based on different numbers of

units in the second hidden layer for the nine subjects.

10 units 20 units 30 units 40 units 50 units 60 units

S01 0.63 0.68 0.65 0.70 0.73 0.67

S02 0.63 0.67 0.65 0.68 0.72 0.66

S03 0.60 0.67 0.67 0.70 0.70 0.62

S04 0.62 0.70 0.70 0.69 0.73 0.67

S05 0.61 0.68 0.66 0.69 0.69 0.65

S06 0.62 0.67 0.69 0.68 0.74 0.67

S07 0.64 0.65 0.66 0.60 0.74 0.68

S08 0.60 0.62 0.70 0.70 0.75 0.65

S09 0.59 0.60 0.62 0.68 0.68 0.64

Mean 0.62 0.66 0.67 0.68 0.72 0.66

The maximum mean of comparative experiments were highlighted in the bold.

30 40 50 60] units with the other two hidden layers of 60 and
35 units respectively. The accuracies of 50 units in the second
hidden layer (about 72%) were significantly higher than those of
other numbers of units (p < 0.05, paired Student’s t-test). Table 4
represents the results of the third hidden layer taking units from
[25 30 35 50 70 85] when the other two hidden layers of 60 and
50 units respectively. It can be observed that the performances
of 35 units in the third hidden layer were significantly different
compared to the other numbers of units (p < 0.01, paired
Student’s t-test). The process of adjusting parameters was very
tedious and tricky for the BDN. Nevertheless, the change of the
classification accuracy was lower than 10% for the motor imagery
tasks with different numbers of units in the three hidden layers.
It suggested that the DBN classifier was robust relative to the
variation of the network structure. In brief, the structure of the
DBN used in this experiment was 256× 60× 50× 35× 3.

Comparison Between DBN and SVM
In this series of experiments, performance comparisons between
DBN and SVM were evaluated, with respect to the recognition
accuracy for the incomplete EEG in the case of point removal and

TABLE 4 | Comparison of classification accuracies based on different numbers of

units in the third hidden layer for the nine subjects.

25 units 30 units 35 units 50 units 70 units 85 units

S01 0.60 0.62 0.72 0.66 0.65 0.70

S02 0.65 0.62 0.69 0.60 0.65 0.66

S03 0.64 0.68 0.70 0.70 0.66 0.65

S04 0.62 0.64 0.70 0.62 0.60 0.62

S05 0.62 0.63 0.71 0.62 0.64 0.63

S06 0.63 0.65 0.68 0.64 0.64 0.62

S07 0.60 0.66 0.68 0.63 0.68 0.64

S08 0.64 0.60 0.71 0.63 0.60 0.65

S09 0.61 0.60 0.70 0.65 0.62 0.65

Mean 0.62 0.63 0.70 0.64 0.64 0.65

The maximum mean of comparative experiments were highlighted in the bold.

chunk removal respectively. As previously described, the Lomb-
Scargle periodogram can extract effective and robust spectral
features for various incomplete EEG to promote the classification
performance. Hence, the DBN and SVM classifiers were executed
on the same feature datasets extracted by the Lomb-Scargle
method. For the three motor imagery tasks, three binary SVMs
with a Radial Basis Function (RBF) kernel were built to obtain
the final accuracy by a majority voting strategy. The relevant
parameters of the binary SVM were optimized using a grid-
search trick (Quitadamo et al., 2017) in a range of [−5 5], such
as regularization parameter C and kernel width σ of the RBF.
In addition, 5-fold cross-validation method was also applied to
avoid overfitting for both classifiers.

Figures 7, 8 present the comparison results between DBN
and SVM for the intact EEG and incomplete EEG in the case
of point removal and chunk removal (ratios from 10 to 80%
with a step of 10%), respectively. For the intact motor imagery
EEG, the performance between DBN and SVM across the nine
subjects was no significantly difference (p = 0.062 > 0.05, paired
Student’s t-test), with mean accuracies of 74.77% (±0.44%),
73.74% (±0.78%) respectively. From Figure 7, the overall
performance of the DBN for the incomplete EEG with different
ratios of point removal was better than that of the SVM.
Especially, for the case of subject 5, 8, and 9 (S05, S08,
and S09 EEG datasets), the accuracies of the DBN for the
incomplete EEG after 30% data point removal were obviously
improved, with an average increment of 2.64%. However, for
the incomplete EEG with different ratios of data chunk removal,
the accuracy improvement of the DBN was not significant
compared with the SVM. For some subjects, such as subject
2, 3, 4, and 9, the SVM can outperform the DBN for the
incomplete EEG with chunk removal in some degree (seen in
Figure 8).

For further clarification, the average accuracies (± standard
deviation) of the DBN and SVM across the incomplete EEG with
various ratios of data removal (from 10 to 80%with a step of 10%)
were presented in Table 5, including the case of point removal
and chunk removal respectively. As shown, for the incomplete
EEG with point removal method, the average classification
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FIGURE 7 | The comparative performances between DBN and SVM classifiers for the intact EEG and incomplete EEG with various ratios of data point removal (from

10 to 80% with a step of 10%), for the nine subjects (from S01 to S09).

performance of the DBN (70.72 ± 2.65%) was higher than
that of the SVM (69.89 ± 3.08%) across the nine subjects.
For the case of point removal, the p-value computing from
the Student’s t-test between DBN and SVM was 0.021 < 0.05.
Moreover, the DBN led to relatively lower variability compared
to the SVM, with a mean standard deviation of 2.65% and
3.08% respectively. These results indicated that the DBN was
superior to the SVM for the incomplete EEG classification in
terms of point removal. Whereas, in the case of chunk removal,
the increase of accuracy between DBN (68.86 ± 3.58%) and
SVM (68.74 ± 3.53%) was lower than that in the case of point
removal. And there was no statistical difference between DBN
and SVM (p = 0.79 > 0.50, paired Student’s t-test) for the
incomplete EEG with chunk removal. This may be due to the
reason that compared to the incomplete EEGwith point removal,
the extracted features from the incomplete EEG with chunk
removal were relatively poor and weaken the performance of the
DBN and SVM. However, it is likely that the DBN can perform

better than the SVM for the motor imagery classification of the
incomplete EEG when parameters are subtly tuned and extra
layers are added.

CONCLUSIONS AND FUTURE WORKS

In this study, a decoding scheme based on the combination
of LSP and DBN was proposed to recognize incomplete motor
imagery EEG segments. To construct incomplete EEG segments,
point and chunk removal form were respectively utilized to
randomly and proportionally eliminate the uninteresting EEG
point or portion. The point removal form was mainly used to
eliminate outliers within the EEG segments due to data loss. And
the chunk removal form was used to eliminate portions within
the EEG segments due to extreme artifacts. The LSP method was
carried out to extract robust spectral power features of mu/beta
rhythms related to motor imagery tasks for the incomplete
EEG. The DBN consisted of three layers of stacking restricted
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FIGURE 8 | The comparative performances between DBN and SVM classifiers for the intact EEG and incomplete EEG with various ratios of data chunk removal (from

10 to 80% with a step of 10%), for the nine subjects (from S01 to S09).

Boltzmann machines (RBMs) and a softmax regression layer was
devised to perform motor imagery classification. Since this was
a preliminary study, the chunk and point removal was processed
in a random manner. However, for the real application, a more
specific search process was needed to determine which chunks or
points should be removed.

To validate the effectiveness of the proposed decoding scheme
for the incomplete EEG, various comparative experiments were
conducted and evaluated on simulated signal and real motor
imagery EEG, including the comparison of different spectral
power estimation methods (FFT, Welch and Lomb-Scargle)
and different classifiers (DBN and SVM). For the simulation
comparison with three spectral estimation methods, the results
show that the Lomb-Scargle method can extract more stable
and remarkable spectral power for the incomplete or irregular
signals. Furthermore, the PSD features extracted by the three
estimation methods were recognized using a DBN classifier,
and the classification accuracy of the Lomb-Scargle+DBN

was not dramatically declined compared to FFT+DBN and
Welch+DBN for the incomplete motor imagery EEG with
increasing proportion of point removal or chunk removal (from
10% to 80% with a step of 10%). These results suggest that
the Lomb-Scargle+DBN can lead to significantly and steadily
improve the recognition performance for the incomplete motor
imagery EEG. The significance statistical analysis between Lomb-
Scargle+DBN and FFT+DBN or Welch+DBN was less than
0.05 for the incomplete EEG in the case of point removal and
chunk removal. After three groups of experimental tests and
comparisons, the structure of the DBN was determined to be 256
× 60 × 50 × 35 × 3 to improve the learning performance of the
DBN. Extended comparison between DBN and SVM indicated
that the DBN was superior to the SVM for the incomplete EEG
in terms of point removal. Moreover, for the classification of the
intact motor imagery EEG, there was no significant difference
for the average accuracy (p > 0.078, paired t-test) between
the Lomb-Scargle+DBN and the other methods (FFT+DBN
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TABLE 5 | Statistical classification performance of the DBN and SVM for the

incomplete EEG with point and chunk removal.

Incomplete EEG (point form) (%) Incomplete EEG (chunk form) (%)

DBN SVM DBN SVM

S01 70.38 ± 2.93 69.68 ± 3.26 68.54 ± 3.13 68.68 ± 3.75

S02 70.34 ± 2.25 69.56 ± 3.17 67.82 ± 2.84 68.25 ± 3.35

S03 71.20 ± 3.49 70.64 ± 3.70 69.30 ± 3.36 69.82 ± 2.31

S04 71.24 ± 2.44 71.24 ± 2.44 68.30 ± 3.85 68.20 ± 3.90

S05 71.21 ± 2.34 69.51 ± 3.04 69.20 ± 4.02 68.34 ± 3.87

S06 70.52 ± 2.72 69.93 ± 2.94 69.36 ± 3.92 68.75 ± 3.84

S07 70.79 ± 2.21 70.23 ± 2.68 69.48 ± 3.53 69.04 ± 3.30

S08 70.49 ± 2.99 69.12 ± 3.39 69.83 ± 3.56 69.27 ± 3.97

S09 70.32 ± 2.45 69.08 ± 3.11 67.94 ± 4.02 68.35 ± 3.47

Mean 70.72 ± 2.65 69.89 ± 3.08 68.86 ± 3.58 68.74 ± 3.53

The maximum mean of comparative experiments were highlighted in the bold.

and Welch+DBN). Considering the computational complexity
and the efficiency, it is not preferable to apply the Lomb-
Scargle+DBN for the intact motor imagery EEG classification.
Therefore, the proposed decoding scheme is suitable to improve
the classification performance for the incomplete motor imagery
EEG. It means that instead of rejecting the entire segment, the
motor imagery EEG segment with data loss or extreme artifacts
can still be used to generate comparable classification results
when the affected portions are eliminated.

Thanks to decoding the incomplete EEG, the proposed
schemewill be beneficial to improve the stability, smoothness and
maintain continuous outputs for a BCI system. Especially, for
online BCI systems, the intentions of subjects are continuously
decoded from the EEG signals with no interruption. In the
future work, the online test based on motor imagery EEG will
be carried out to evaluate the validity of the proposed decoding
scheme for the incomplete signals. Additionally, because of the
Lomb-Scargle periodogram was particularly suited to estimate
rhythm components in non-uniformly sampled signals (Stoica
et al., 2009), it may be applicable to other modalities of the EEG
signal related to spectral analysis. For example, the proposed
method can be applied to decode the incomplete SSVEP EEG.
For the structure of the DBN, more dedicated procedures can be
implemented to further boost the decoding performance, such
as adding layers of the RBMs and utilizing search algorithms to
optimize the hyper-parameters of the DBN. Additionally, optimal
frequency bands associated with relevant motor imagery tasks

can be further investigated to promote the overall performance
of the proposed method. For the segmentation processing of the
sliding window with 80% overlapping, there was a correlation
between the 16 samples from the same EEG trial. This factor
may influence the performance of the proposed method for the
incomplete EEG classification. In the next work, similar to the
study of Asensio-Cubero et al., a comparative research should be
conducted by applying the proposed method to three different
segmentation strategies: (1) no segmentation, by applying the
proposed method directly to the whole EEG trial, (2) uniform
segmentation without overlapping, and 3) segmentation with
different overlapping (sliding window method) (Asensio-Cubero
et al., 2011). In this study, the BCI system based on motor
imagery EEG works in a synchronous way. And an asynchronous
BCI system needs to be further investigated in the future work.
In conclusion, the introduced decoding scheme provides an
effective solution for the incomplete motor imagery EEG in the
BCI system.
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