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Alzheimer’s disease (AD) is a progressive brain disorder with gradual memory loss that

correlates to cognitive deficits in the elderly population. Recent studies have shown the

potentials of machine learning algorithms to identify biomarkers and functional brain

activity patterns across various AD stages using electroencephalography (EEG). In this

study, we aim to discover the altered spatio-temporal patterns of EEG complexity

associated with AD pathology in different severity levels. We employed the multiscale

entropy (MSE), a complexity measure of time series signals, as the biomarkers to

characterize the nonlinear complexity at multiple temporal scales. Two regularized logistic

regression methods were applied to extracted MSE features to capture the topographic

pattern of MSEs of AD cohorts compared to healthy baseline. Furthermore, canonical

correlation analysis was performed to evaluate the multivariate correlation between

EEG complexity and cognitive dysfunction measured by the Neuropsychiatric Inventory

scores. 123 participants were recruited and each participant was examined in three

sessions (length = 10 seconds) to collect resting-state EEG signals. MSE features were

extracted across 20 time scale factors with pre-determined parameters (m= 2, r = 0.15).

The results showed that comparing to logistic regression model, the regularized learning

methods performed better for discriminating severe AD cohort from normal control,

very mild and mild cohorts (test accuracy ∼ 80%), as well as for selecting significant

biomarkers arcoss the brain regions. It was found that temporal and occipitoparietal brain

regions were more discriminative in regard to classifying severe AD cohort vs. normal

controls, but more diverse and distributed patterns of EEG complexity in the brain were

exhibited across individuals in early stages of AD.

Keywords: Alzheimer’s disease, EEG, complexity analysis, pattern recognition, LASSO

1. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive loss of
memory and cognitive dysfunctions. Despite of many efforts, the pathological mechanism of AD
progression still remains unsettled. In recent decades, the emerging field of interdisciplinary studies
between computational cognitive and data sciences has enabled data-driven knowledge discovery
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systems for investigating multivariate patterns based on large-
scale, complex brain data. More specifically, advances of machine
learning techniques have contributed to the clinical science by
not only improving the automated diagnostic/predictive tools,
but also enhancing the understanding of pathological mechanism
underlying AD progression. In the past years, there were studies
to demonstrate the capability of machine learning algorithms in
addressing the sophisticated patterns using various brain data,
e.g., electroencephalography (EEG) and magnetic resonance
imaging (MRI). Trambaiolli et al. (2011) identified the bipolar
peaks of EEG signals as biomarkers for differentiating AD,
mild cognitive impairments (MCI) and early dementia patients.
Casanova et al. (2011) found that most informative voxels
in structural MRI data locate in the gray and white matter
tissues, which can discriminate patients from cognitive normal
subjects accurately using large-scale regularization. Other studies
encouraged the utilization of an integrative EEG biomarkers
derived from various sources in order to provide predictive
models with diverse and comprehensive information (Poil et al.,
2013; Triggiani et al., 2017).

Among modern neuroimaging modalities, EEG as a non-
invasive, inexpensive technique has drawn extensive attentions
for investigating nonlinear dynamics of neuronal brain functions.
It was reported that AD progression can be characterized by the
reduced complexity in EEG signals, which is hypothesized to be
related to the loss of neurons and possible connectivity caused by
pathological aging process. A recent and comprehensive review is
refered to Dauwels et al. (2010). In this study, we used Multiscale
Entropy (MSE) for estimating the nonlinear complexity of EEG
signals across multiple temporal scales (Costa et al., 2002).
Previous studies investigatedMSE as a measure of complexity for
understanding AD pathology using univariate (Escudero et al.,
2006; Park et al., 2007) and multivariate EEG dynamics (Labate
et al., 2013). It was reported that the decreased complexity in
short-time scale and increased complexity in long-time scale
distinguish AD patients from normal controls (Mizuno et al.,
2010; Yang et al., 2013). A recent study (Azami et al., 2017)
also indicated the potentials of the second-order MSE features
for characterizing EEG changes with AD progression. Moreover,
correlation was found between MSE features from various brain
regions and multiple neuropsychiatric symptoms, particularly
in temporal and occipitoparietal electrodes (Yang et al., 2013).
Since the previous study only assessed the bivariate correlation,
we extend to investigate the relationships in a multivariate
feature space by applying canonical correlation analysis (CCA)
(Hotelling, 1936). CCA is a multivariate technique that is capable
to capture multiple causes and effects to further investigate the
relationship between MSE and neuropsychiatric symptoms.

One of the most challenging tasks for understanding AD
pathology is to characterize the biomarkers and associated
patterns that differentiate different AD severity levels.
Considering the pathological aging of the brain is a highly
heterogeneous process, the generalizability in many existing
research studies is limited by the small sample size, large
individual variability, and high-dimensional data structure.
While most state-of-the-art machine learning algorithms
suffered from over-fitting data and produced poor generalized

prediction results, regularized learning methods attempt to
address this over-fitting issue by adding a regularization term
(called L1-norm or L2-norm) to the cost function. Least Absolute
Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996)
is a classic method that builds a regression model of correlating
input variables (MSE features in this study) to the prediction
outcome (severe AD or not) while posing a penalty on the
number of non-zero coefficients of input variables (L1-norm
feature selection). Later, Elastic net (ENet) was proposed by
combining L1-norm and L2-norm for the purpose of addressing
several drawbacks of LASSO, including the group effect among
input variables in addition to feature selection. The flexibility
and variability of regularization methods allow one to develop
variants for specific purposes (Tibshirani et al., 2005; Bach, 2008).
Specifically, the interpretability/stability of feature selection is
desired for providing scientific insights, since consistent feature
selection across different samples and individuals is more likely
to suggest a meaningful pattern (Fan and Chou, 2016). Stability
selection (Meinshausen and Bühlmann, 2010) is thus proposed
based on the combination of feature selection method and
repeated subsampling. For the cost of computational resources,
the stability selection aims to provide a statistical control on the
error rate of feature selection in a sparse dataset.

Based on the general concept of stability selection approach,
the present study intends to provide a stability-based feature
selection and identify important EEG biomarkers using the
frequency of selection across multiple replicates in cross
validation. The objective of our study is two fold. On one hand,
we are interested in characterizing the functional brain activities
with varying temporal scales that best discriminate severity levels
of AD groups and normal controls based on EEG complexity.
On the other hand, we aim to profile the topolographic map
of EEG biomarkers for various AD severity and investigate the
multivariate correlation patterns to cognitive dysfunctions.

2. MATERIALS AND METHODS

2.1. Participants
One hundred and twenty-three participants were recruited from
theDementia Clinic at the Neurological Institute, Taipei Veterans
General Hospital in Taiwan. The diagnosis for AD was based
on the criteria of the National Institute of Neurological and
Communicative Disorders and the Stroke/Alzheimer’s Disease
and Related Disorders Association (McKhann et al., 1984).
All patients had received neurological examinations, laboratory
tests, EEG monitoring, and neuroimaging evaluation during the
diagnostic process. Our study was approved by the Institutional
Review Board of Taipei Veterans General Hospital to conduct
retrospective analysis of the patients’ clinical and EEG data.
We excluded patients who had other conditions that caused
secondary dementia, such as vascular dementia, Parkinson’s
disease, hypothyroidism, vitamin B12 deficiency, syphilis, and
prior history of major psychiatric illness (e.g., major depression,
bipolar disorder, or schizophrenia). The participants were
categorized into four groups according to their severity of
dementia, assessed by the Clinical Dementia Rating (CDR) scale
(Morris, 1993). In the following sections, we refer to these groups
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as HC (healthy control; N = 15), AD1 (very mild, CDR = 0.5;
N = 15), AD2 (mild, CDR = 1; N = 69), and AD3 (moderate to
severe, CDR= 2; N = 24).

2.2. EEG Data Acquisition and
Pre-processing
A routine EEG recordings were performed on all participants
(Nicolet EEG, Natus Medical, Incorporated, San Carlos, CA,
USA) in the EEG examination room at the Neurological Institute
of Taipei Veterans General Hospital. The EEG recording protocol
began with a 5-min habituation to the examining environment,
followed by three consecutive sessions of 10–20 s with the eyes
closed and then open, and a session of photo stimulation, while
only the eye closed data was used in the present study. The
recordings were performed using the international 10–20 system
of 19 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4,
T5, P3, Pz, P4, T6, O1, and O2) with linked ear reference, 256 Hz
sampling rate and filtered at 0.05 Hz high-pass, 70 hZ low-pass
and notch filter of 60 Hz, and impedance below 3 k�. Vigilance
was monitored by the EEG technician, who alerted patients when
signs of drowsiness appeared in the tracings. Vertical eyeball
movement was detected from electrodes placed above and below
the right eye, while the horizontal eyeball movement was detected
from electrodes placed at the left outer canthus. EEG signals were
preprocessed to remove the linear trend and visually inspected to
ensure there were no eye movement artifacts. The EEG signals
were exported in European Data Format and were processed
using MATLAB 2016b (Mathworks, Inc.).

2.3. Multiscale Entropy Analysis (MSE)
In this study, we employed MSE (Costa et al., 2002) to measure
the nonlinear complexity of EEG signal. Let us consider a single-
channel EEG signals with length = N, denoted by {x1, x2, ....xN}.
MSE provides an estimate of the sample entropy over multiple
time scales in two steps: (1) the construction of coarse-grained
time series based on various scale factors, denoted by τ , and (2)
the estimation of sample entropy for each time scale. In the first
step, the range of τ need to be pre-defined as a set of increasing
integers starting from 1. (i.e., [1, 2, ... T]). For each possible
value of τ , the corresponding coarse-grained time series yj(τ )
is obtained by applying a non-overlapping sliding window with
length = τ and taking the average of all values in each window,
represented by the following equation (1 ≤ j ≤ N/τ ):

yj(τ ) =
1

τ

jτ
∑

i=(j−1)τ+1

xi. (1)

If we denote M as the largest integer such that M ≤

N/τ , the coarse-grained time series is then rewritten as
{y1(τ ), y2(τ ), ..., yj(τ ), ...yM(τ )}.

In the second step, the sample entropy (Richman and
Moorman, 2000) is calculated for each coarse-grained time series
as a function of τ . To calculate the sample entropy for a time
series with length = M, two parameters need to be determined:
the pattern length m and the similarity criterion r. Within
the coarse-grained time series {y1(τ ), y2(τ ), ..., yj(τ ), ...yM(τ )},

we denote a vector of pattern length = m as Ym(k) =

{yk(τ ), yk+1(τ ), ..., yk+m−1(τ )}. Accordingly, the total number of
pairs of vectors that satisfy D(Ym(k),Ym(l)) < r(k 6= l) is
denoted by Nm. The sample entropy I(τ ) for this time series with
parameters τ and r is defined as:

I(τ , r) = − log
Nm+1

Nm
. (2)

In this study, we use m = 2 and r = 0.15, and the range of
scale factors is [1, 20] by following our previous work (Yang et al.,
2013). Figure 1 shows the averaged raw EEG signals, spectral
power and MSE scores across all groups; a cross-over is observed
in the MSE curves with the increasing scale factors. In short-time
scales (≤ 8), lower MSE features are observed from the severe
AD group comparing to normal controls, but in long-time scales
(> 8) an opposite pattern is observed.

2.4. Hybrid Machine Learning Model for
Classification and Biomarker Identification
The objective of applying machine learning model to analyze
the MSE features of EEG signals is two-fold: first, we intend
to discriminate between control group and AD groups (AD1,
AD2, and AD3) by performing a binary classification task in
a one-to-one manner (exhaust all the possible combination of
pairs). Second, we aim to examine the multivariate correlation
patterns between MSE features and dementia symptoms rated
by clinicians based on The Neuropsychiatric Inventory (NPI)
(Cummings et al., 1994). After extracting MSE features from
19-channel EEG device using 20 scale factors, 380 (= 19 ×

20) dimensions were obtained for the feature space. The
machine learning model may be over-fitted in training with
the relatively less samples on this high dimensional feature
space. Therefore, regularization learning methods are employed
to perform classification tasks between different AD/HC groups
while reducing the dimensionality of trained model. A logistic
regression (LR) model is trained and fitted with a penalization
on the number of features with non-zero coefficients. As a result,
an automatic feature selection is performed by forcing some
features to yield zero coefficients. In the following subsections, we
present two classic types of regularized LR models. Furthermore,
we implement canonical correlation analysis, a unsupervised
learning method, for inferring the correlations among two sets
of variables.

2.4.1. L1-Norm and L2-Norm Regularized Learning

Methods
The original form of LASSO is a linear regression model
with a penalty term that controls the number of non-zero
coefficients for all variables. In a classification problem, LASSO is
reformulated with the cost function of LR, which is rewritten as
the following problem (Tibshirani, 1996; Friedman et al., 2001):

max
β0 ,β

{

N
∑

i=1

[yi(β0 + βTxi)− log(1+ eβ0+βTxi )]− λ

p
∑

j=1

|βj|

}

,

(3)
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FIGURE 1 | An illustration of general distribution for each group, including (A) raw EEG signals, (B) spectral powers, and (C) MSE on channel F8 for all groups. These

curves show that MSE curves are more distinguishable than EEG signals and spectral powers in overall, and the trend with increasing scale factors in the MSE curve

of each AD group is different.

where f (xi) = β0 + βTxi and yi are the prediction and target
class for the ith sample respectively.

∑p
j=1 |βj| is also known as

L1-norm penalty that controls the shrinkage with corresponding
parameter λ selected via nested cross-validation.

However, LASSO attempts to addresses cluster information of
correlated variables, which is referred to as grouping effect. It
only selects one and drops the other variables when fitted with
a group of related variables (Zou and Hastie, 2005). In this study,
this grouping effect is observed among MSE features extracted
from the same electrode; however, we may want to keep multiple
correlated MSE variables in our model in order to characterize
the correlation in spatial patterns of functional brain activity.
Therefore, we used ENet, a variation of LASSO, to account for
this grouping effect (Zou and Hastie, 2005). Similar to Equation
(3), ENet is formulated with a penalty term but in a different
format:

λ

p
∑

j=1

[

(1− α)‖βj‖ + α|βj|

]

, (4)

where α is a trade-off parameter that controls the balance
between L1-norm and L2-norm. As α approaches 1, the sparsity
of solution will increase such that α = 1 is equivalent to LASSO.
On the other hand, α = 0 is equivalent to ridge regression.
As α approaches 0, the algorithm tends to encourage group
selection of correlated features and stabilize the solution path.
In our study, we choose the α = 0.7 for ENet as a empirical
choice.

2.4.2. CCA Between MSE and Cognitive Declines
In our study, we used CCA for analyzing the multivariate
correlation patterns between MSE features and cognitive decline
symptoms related to dementia. The NPI scores includes 12
symptoms: delusions (DEL), hallucinations (HAL), agitation
(AG), dysphoria (DEP), anxiety (ANX), apathy (APA), irritability
(IRR), euphoria (EUP), disinhibition (DIS), aberrant motor
behavior (ABE), night-time behavior disturbances (NIG), and
appetite and eating abnormalities (APP). CCA (Hotelling, 1936)
is a multivariate analysis approach for finding the relationship

FIGURE 2 | An illustration of canonical correlation analysis. The objective is to

find a linear combination (projection) of set X and Y , or the rotated canonical

space, by maximizing the linear correlation between the two sets of new

canonical variables U and V (ρ = 1 in our case). In our study, we have MSE

features as set X and the scores of 12 symptoms from NPI scale as set Y .

between two sets of variables, X and Y, with the objective to
maximize the Pearson correlation based on projections on new
subspaces of X and Y. Figure 2 illustrates the cencept. The new
feature space is constructed by canonical variables set U and V,
which correspond to original MSE and symptoms rating scales.
CCA is formulated as follows:

argmax
u∈Rp ,v∈Rq

uTXTYv
√

(uTXTXu)(vTYTYv)
, (5)

where X is a n × p matrix that represents n samples in p-
dimensional space;Y is a n×qmatrix that represents n samples in
q-dimensional space;X and Y are two sets of paired variables that
correspond to n samples. This problem is solved as a generalized
eigen-decomposition problem.

2.4.3. Model Validation and Biomarker Identification
The evaluation of overall performance uses the following three
metrics: (1) accuracy indicates the ratio of correctly classified
patients in the entire sample; (2) sensitivity indicates the ratio
of correctly identified AD patients; and (3) specificity indicates
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the ratio of correctly identified normal controls, defined as
follows:

Accuracy =
TN+ TP

TN+ TP+ FP+ FN
, (6)

Sensitivity =
TP

TP+ FN
, (7)

Specificity =
TN

TN+ FP
, (8)

where TP= true positive, TN= true negative, FP= false positive,
and FN = false negative. In particular, normal control group
is treated as the negative class in the classification task of this
study. If two groups are both AD patients, the less severe group is
defined as the negative class. We reported the accuracy of both
training and test set to show the potential risks of overfitting,
indicated by the gap between training and testing accuracy.

The classifier will be impacted by the imbalanced data during
training phase, and the trained model is usually more biased to
the majority class. The Receiver Operating Characteristic (ROC)
analysis is thus employed for performance evaluation. The area
under ROC curve (or AUC) is used as an alternative metric
without bias from the selection of threshold parameter (e.g.,
cut-point) in binary classification of logistic regression.

In addition, we use a leave-one-subject-out cross-validation
design to minimize the bias introduced by sample variability.
That is, the generalization error is estimated by leaving out
samples collected from in the three sessions of one participant for
testing and training the model on remaining samples. Validation
repeats for all participants as testing samples. Furthermore, the
importance of EEG biomarkers was assessed by overall selection
frequency in all iterations.

3. RESULTS

3.1. Classification for AD Severity
Table 1 presents the classification performances of three
algorithms. AD groups are considered as the target class. ENet
classifier with α = 0.7 (Enet 0.7) yields the best accuracy for
classification tasks of HC vs. AD2 and AD1 vs. AD2, and LASSO
classifier performs better in discriminating HC vs. AD1, AD1 vs.
AD3, and AD2 vs. AD3. Neither model is able to classify AD1
vs. AD2 given the low specificity, although the AUC achieved
∼ 0.7. From the feature selection perspective, grouping effect
is accounted for in ENet, which allows for multiple selection
among correlated MSE features. This property, considering the
high correlation among EEG biomarkers, may better describe
the topological patterns for brain activity. Finally, LR with no
regularization performed 100% accurate for the training tasks,
but the model has poor generalizability because of low test set
accuracy and AUC, which indicates the over-fitting issue. All the
above results show that the regularized learning methods provide
insights about EEG biomarkers with lower risks of over-fitting
than LR models.

3.2. Multivariate Correlation Between MSE
and Cognitive Declines
The structure coefficients in canonical variables for all channels
and symptoms are presented in Figure 3. These structure
coefficients can be interpreted as the loadings of each original
variables (MSE features and cognitive declines) projected into
the canonical space. In Figure 3, the left panel shows the
coefficients of symptoms and right panel shows the absolute
values of coefficients for MSE features across all channels.
These figures describe how the MSE features and cognitive
symptoms contributed to all canonical variables, which suggests
a multivariate correlation pattern between clinician’s rating and
functional brain activity. Our study focus on canonical variables
1–6, since they have higher coefficients of MSE features. For
example, in canonical variable 1, the combination of symptoms
IRR, DIS, ANX and ABE is associated with channels P3,
O1, O2 and central electrodes in short-term complexity, but
associated with the frontal area in long-term complexity. In
canonical variable 2, the combination of DIS, DEL and APA is
associated with central-frontal region. In canonical variable 3,
the combination of symptoms DEP, ANX, AG, APA and APP
with is associated with frontal region. Canonical variables 4
and 5 present a similar correlation pattern between symptoms
ANX, EUP, and APP, and frontal region, but with different signs
(positive and negative). Canonical variable 6 presents a positive
functional correlation between temporal regions with HAL and
AG, but a negative correlation with DIS and IRR. We noted that
most significant coefficients are assigned to low time factors (1–
4), while very few non-zero coefficients are distributed in frontal
regions for higher (5–8) time factors. In addition, canonical
variables 7–12 yield relatively small coefficients comparing to
canonical variables 1–6.

3.3. Topological Patterns of EEG Changes
Associated With AD Severity
Figures 4, 5 display the frequency distribution of selected MSE
features in all EEG channels across the brain regions. In the
classification tasks of HC vs. AD1 and HC vs. AD2, the selected
MSE features were concentrated in the low scale factors (1-4)
and distributed diversely from frontal-central to temporal and
occipital regions. In contrast, in the classification task of HC
vs. AD3, a relatively consistent selection of channels was shown
across subjects, mainly in channels T5, T6, O1, and O2.

4. DISCUSSION

4.1. Classification Results
In overall, we found the AD3 is most differentiable from any
other groups, including both patients and controls. This result
suggested a significant change in EEG complexity of moderate
to severe AD patients comparing to early stage dementia.
Furthermore, the mild AD patients can be discriminated from
other groups in a moderate accuracy, indicating the presence of
alteration in EEG dynamics can be captured (∼ 70% accuracy). In
contrast, none of our developedmodels can discriminate between
control and very mild AD patients. However, the classification
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TABLE 1 | Summary of classification performances for all classification tasks among three methods LASSO, Enet, and LR.

Method Group Sensitivity (%) Specificity (%) Test accuracy (%) Train accuracy (%) AUC

LASSO HC vs. AD1 40.54 43.40 42.22 51.72 0.45

HC vs. AD2 86.44 28.00 69.05 87.55 0.64

HC vs. AD3 88.71 69.09 79.49 95.61 0.83

AD1 vs. AD3 90.48 72.22 82.05 96.49 0.87

AD2 vs. AD3 47.19 84.21 72.40 80.80 0.71

AD1 vs. AD2 87.64 31.08 71.03 84.74 0.69

Enet (α = 0.7) HC vs. AD1 43.90 44.90 44.44 51.72 0.47

HC vs. AD2 86.59 28.77 69.84 87.15 0.64

HC vs. AD3 87.30 68.52 78.63 96.49 0.83

AD1 vs. AD3 88.89 70.37 80.34 100.00 0.86

AD2 vs. AD3 46.67 84.13 72.04 82.25 0.71

AD1 vs. AD2 88.20 32.43 71.83 86.75 0.70

LR HC vs. AD1 56.10 55.10 55.56 100.00 0.54

HC vs. AD2 83.66 20.20 58.73 100.00 0.53

HC vs. AD3 68.85 46.43 58.12 100.00 0.61

AD1 vs. AD3 71.64 52.00 63.25 100.00 0.64

AD2 vs. AD3 32.00 79.22 58.06 100.00 0.56

AD1 vs. AD2 17.53 81.94 57.14 100.00 0.49

None of LR models has achieved 60% accuracy, so they are considered as ineffective models with no highlights. LASSO outperforms the other two methods for tasks HC vs. AD3, AD1

vs. AD3, and AD2 vs. AD3. Enet outperforms for tasks HC vs. AD2 and AD1 vs. AD2. The LR performs worst in all tasks. Bold highlights the best performances with accuracy at least

60%.

task of AD1 vs. AD3 yields the best accuracy (82.05%) using
the LASSO classifier). This may imply that participants with
less mild AD share very much complexity in common with
healthy controls. In contrast, the classification task of HC vs.
AD3 only yields accuracy = 79.49%. Although the classification
performances in overall are not significantly high, our purpose
is to utilize regularization methods to identify the brain activities
patterns measured by nonlinear features of EEG collected from
subjects including normal controls and AD cohorts at different
severity levels. Limited by the inevitable data quality issues
of EEG signals, the present study did not overemphasize the
importance of accuracy because the models may learn false
patterns as the result of achieving high performances on a noisy
dataset. Instead, our study is focused on developing a robust
model and providing scientific insights about a consistent pattern
of EEG biomarkers across different individuals.

4.2. Functional Activity Patterns From
Feature Selection of Regularization Models
From the classification task of HC vs. AD3, the LASSO classifier
consistently selects MSE features from right temporal region
across all folds in cross-validation. This findingmay be consistent
with prior studies that Alzheimer’s disease is associated with rapid
decline in the volume of medial temporal lobe (Jobst et al., 1994).
It is possible that the atrophic changes in severe AD could result
in prominent changes in functional brain activity so machine
learning algorithm can consistently detect the difference between
healthy elderly and patient with severe AD.

On the other hand, our results present thatmajor changes with
the progress to severe AD occur in occipital and parietal regions,

in particular the right hemisphere with lower scale factors (1–
4 and 5–8) and left hemisphere with higher scale factors (13–16
and 17–20). However, the classification task of HC vs. AD2 and
HC vs. AD1 yields a unstable classification performances, and the
selected channels are diversely distributed across different brain
regions. This uncertainty may reflect the heterogeneous course
of the disease observed in very early and mild AD. In other
words, we should expect higher individual variability among
patient from AD1 and AD2 comparing to AD3, and thus leads
to a varying feature selection solution depending on the different
partitioning of subsamples in cross-validation.

AD is known to have an insidious course of onset, with the
functional decline leading the structural deficit during the course
of illness. Previous studies of machine learning of AD focused
mainly on structural brain imaging data, such as ADNI (Frisoni
et al., 2010). Few studies have used functional brain activity
data to classify AD. Therefore, our results may implicate in the
early screening of AD in the future application using functional
brain data. Our future directionmay includemore considerations
for stabilizing the feature selection procedure across subjects
during early developmental stages of AD. Variables from different
sources, e.g., age, gender, spectral features, network metrics,
asymmetry, synchrony patterns, can be introduced to build
a more comprehensive model for classifying AD and normal
control cohorts.

4.3. Neurological Insights for AD
Progression
In our study, the regularization learning algorithms enable the
discovery of meaningful associations between the model/feature
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FIGURE 3 | Structural coefficients of canonical variables reformed from MSE and cognitive dysfunction symptoms. We decide to focus on the first six canonical

variables because they yielded higher coefficients in the MSE features.

selection and the spatial/temporal functional brain activity
patterns. Specifically, in the cross-validation, we assumed the
frequency of being selected for each electrode/brain region
and scale factor implies how much it accounts for the
between-group differentiation. Our findings suggested the

posterior brain regions as the most impacted areas from
cognitive declines following dementia, which is consistent with
previous quantitative EEG studies (Yang et al., 2013). The
electrodes picked by regularized learning algorithm in our
study also have some overlap with EEG biomarkers using a
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FIGURE 4 | The frequency distribution of MSE features selected by LASSO across brain regions. The plotted values are the ratio of being selected in cross validation

for each electrode and scale factors; we categorize the 20 scale factors (MSE features) into 5 bins; the plotted value for each bin is the maximal frequency within the

bin. For instance, if scale factors 1, 2, 3, and 4 computed using channel O1 is selected in 30, 50, 70, and 90% of all replications in cross-validation, the value assigned

to channel O1 will be 0.9 for the scale factors 1–4.

multivariate extension of MSE in a recent study (Azami et al.,
2017).

In addition, the multivariate correlation patterns obtained by
CCA in our study suggest the grouped symptoms can provide
rich information associated with MSE. We observed a collection
of functional correlations of central parietal and left occipital
brain regions with symptoms such as ABE and IRR, and a
group of negative correlations between frontal regions with
ANX, EUP, and APP. The sleep changes (reflected in NIG) were
found associated with short-term complexity in occipitoparietal
electrodes, which is consistent as reported by Yang et al. (2013).
Our study further validated the potential of complex patterns of
clustered neuropsychiatric symptoms that may be associated with
EEG complexity in various regions at short- and long-term time
scales.

4.4. Limitations and Future Work
The present study still has a few limitations. First, EEG data
segments used in this study are relatively short (10 s), and
therefore may not be able to provide long-term complexity
information. Moreover, the number of trials is limited; to
compromise this shortcoming, we collected multiple sessions
for each participant in order to extend the sample size. Finally,
since each channel was considered individually during feature
extraction and classification, the interaction between electrodes
may not be fully presented in our current dataset; the future
workmay consider connectivity patterns to give a comprehensive
view of EEG alterations with AD progress. Furthermore, a
multi-variate MSE (MMSE) analysis, proposed by Ahmed and
Mandic (2011), that accounts for spatio-temporal dynamic brain
patterns, i.e., both within-and cross-channel dependencies, will

Frontiers in Neuroscience | www.frontiersin.org 8 October 2018 | Volume 12 | Article 685

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fan et al. Recognizing AD Severity via Regularized Learning

FIGURE 5 | The frequency distribution of MSE features selected by Elastic Net (alpha = 0.7) across brain regions.

be investigated and integrated in machine learning models in our
AD study.

5. CONCLUSION

In this study, we examined the functional brain activity
patterns in varying AD severity levels with a contrast to
normal controls. MSE was used as a measure of nonlinear
dynamic to represent the signals complexity using 10 seconds
of resting EEG. Regularized logistic regression was applied
to this supervised machine learning problem, in which we
trained leave-one-subject-out cross-validated model with the
MSE features for a comparison between AD cohorts and
normal controls. We demonstrated∼80% classification accuracy
between severe AD cohorts and normal controls and found
that the long-term complexity of EEG signals decreases with

the severity of AD. Moreover, cognitive function declines
can be analyzed in combination with the original MSE
features to indicate the integrated correlation patterns of
dementia symptoms and EEG complixity alternations. These
findings relate neurological changes associated with different
AD severity to the state-of-the-art assessment scales. On the
other hand, regularized learning methods showed the capability
for automatic selection of significant EEG biomarkers. Our
future work will explore the integrative patterns including EEG
complexity, synchrony and functional connectivity in this AD
research direction.
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