
ORIGINAL RESEARCH
published: 09 October 2018

doi: 10.3389/fnins.2018.00698

Frontiers in Neuroscience | www.frontiersin.org 1 October 2018 | Volume 12 | Article 698

Edited by:

Themis Prodromakis,

University of Southampton,

United Kingdom

Reviewed by:

Jiang Wang,

Tianjin University, China

Da-Hui Wang,

Beijing Normal University, China

*Correspondence:

Saeed Safari

saeed@ut.ac.ir

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 18 December 2017

Accepted: 18 September 2018

Published: 09 October 2018

Citation:

Akbarzadeh-Sherbaf K, Abdoli B,

Safari S and Vahabie A-H (2018) A

Scalable FPGA Architecture for

Randomly Connected Networks of

Hodgkin-Huxley Neurons.

Front. Neurosci. 12:698.

doi: 10.3389/fnins.2018.00698

A Scalable FPGA Architecture for
Randomly Connected Networks of
Hodgkin-Huxley Neurons

Kaveh Akbarzadeh-Sherbaf 1, Behrooz Abdoli 1, Saeed Safari 1* and

Abdol-Hossein Vahabie 2

1High Performance Embedded Architecture Lab., School of Electrical and Computer Engineering, College of Engineering,

University of Tehran, Tehran, Iran, 2 School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran

Human intelligence relies on the vast number of neurons and their interconnections

that form a parallel computing engine. If we tend to design a brain-like machine,

we will have no choice but to employ many spiking neurons, each one has a large

number of synapses. Such a neuronal network is not only compute-intensive but also

memory-intensive. The performance and the configurability of the modern FPGAs make

them suitable hardware solutions to deal with these challenges. This paper presents

a scalable architecture to simulate a randomly connected network of Hodgkin-Huxley

neurons. To demonstrate that our architecture eliminates the need to use a high-end

device, we employ the XC7A200T, a member of the mid-range Xilinx Artix®-7 family, as

our target device. A set of techniques are proposed to reduce the memory usage and

computational requirements. Here we introduce a multi-core architecture in which each

core can update the states of a group of neurons stored in its corresponding memory

bank. The proposed system uses a novel method to generate the connectivity vectors

on the fly instead of storing them in a huge memory. This technique is based on a cyclic

permutation of a single prestored connectivity vector per core. Moreover, to reduce both

the resource usage and the computational latency even more, a novel approximate

two-level counter is introduced to count the number of the spikes at the synapse for the

sparse network. The first level is a low cost saturated counter implemented on FPGA

lookup tables that reduces the number of inputs to the second level exact adder tree. It,

therefore, results in much lower hardware cost for the counter circuit. These techniques

along with pipelining make it possible to have a high-performance, scalable architecture,

which could be configured for either a real-time simulation of up to 5120 neurons or a

large-scale simulation of up to 65536 neurons in an appropriate execution time on a

cost-optimized FPGA.

Keywords: Hodgkin-Huxley model, spiking neural network, scalable hardware architecture, connectivity matrix,

approximate computing, permutation matrix

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00698
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00698&domain=pdf&date_stamp=2018-10-09
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:saeed@ut.ac.ir
https://doi.org/10.3389/fnins.2018.00698
https://www.frontiersin.org/articles/10.3389/fnins.2018.00698/full
http://loop.frontiersin.org/people/494408/overview
http://loop.frontiersin.org/people/619030/overview
http://loop.frontiersin.org/people/194013/overview
http://loop.frontiersin.org/people/591093/overview

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

1. INTRODUCTION

Computational neuroscientists and computer researchers have
two complementary views on mathematical modeling of the
human intelligence. While the neuroscientists try to find
the mathematical models of experimental results, computer
scientists, due to the limited processing power, attempt to
develop intelligent algorithms just inspired by the neuroscientific
theories. There is generally a gap between the algorithms
developed by these two groups from the intelligent point of
view. Furthermore, the advent of the deep learning makes this
gap even wider. The outstanding success of deep learning is

deeply indebted to the emergent software libraries (Jia et al.,
2014; Abadi et al., 2015; Seide and Agarwal, 2016) that have
employed the power of graphical processing units (GPUs) and
the hardware frameworks in both application specific integrated
circuits (ASICs) (Jouppi et al., 2017) and field programmable gate
arrays (FPGAs) (Caulfield et al., 2016; Mahajan et al., 2016).

Spiking neural networks (SNNs) are more complicated than
artificial neural networks (ANNs) in terms of neuron models
and the number of synapses. While neuron model of ANN
employs the multiplication and addition of weights and inputs
followed by a linear or nonlinear activation function, the spiking
neuron models such as Izhikevich simple model (Izhikevich,
2003), FitzHugh-Nagumo (Izhikevich, 2007), and Hodgkin-
Huxley (Hodgkin and Huxley, 1952) are continuous nonlinear
dynamical systems. Implementing a continuous model in a
digital computing machine is done by discretizing the model
which results in more arithmetic operations. According to the
type of neuron model, it may be far more compute-intensive

than neuron models used in ANNs. If we define the number
of synapses (aka weights in the ANN literature) as a metric
for the size of a network, while the size of a large DNN is
about a few millions, for the brain it is about 100e6 times larger
(Gerstner et al., 2014). In fact, the brain relies on the parallelism
instead of fast neuronal cells. A variety of software frameworks
have been introduced to model a single neuron or a network
of neurons in detail. NEURON (Carnevale and Hines, 2006),
GENESIS (Kornbaum and Enderle, 1995), NEST (Gewaltig and
Diesmann, 2007), Brian (Goodman and Brette, 2009), NeMo
(Fidjeland et al., 2009), PCSIM (Pecevski, 2009), PyNN (Davison,
2009), and HRLSim (Minkovich et al., 2014) are of the most cited
ones. Although all of these frameworks today support GPUs to
speed up simulations (Brette et al., 2007), their hardwired micro-
architectures put obstacles in the way of parallelism utilization
for irregular applications such as spiking neural networks (Fung,
2015). A custom hardware design using either ASIC or FPGA is
an alternative way that is more amenable to parallelism.

When it comes to talking about ASIC, we have three ways
ahead. It is possible to design a circuit in a fully digital, fully
analog, or mixed-signal manner. Some projects employ the
digital way to implement their circuit. A digital circuit is easy to
design and fabricate. Nevertheless, it consumes more area and

more power than the analog ones. Some other projects utilize
the analog circuit to reduce the power consumption and achieve
more neuron density. Meanwhile, they use a digital circuit to
provide a high-speed communication environment.

SpiNNaker (Furber et al., 2013) is the world’s biggest network
on chip (NOC) powered by over a million ARM processor cores
for real-time simulation of SNNs. IBM TrueNorth (Merolla et al.,
2014) is anothermajor project that utilizes a fully digital approach
to realize a million leaky integrate and fire (LIF) neurons with
256 synapses per neuron. Their proposed architecture is scalable
which means that it is possible to enlarge the network as needed.
Neurogrid (Benjamin et al., 2014) is a project that has chosen
the mixed signal manner to design the system. One setup of this
system using 16 Neurocores has made it possible to simulate one
million neurons with a billion synapses in real-time. BrainScaleS
is the worthy successor of FACET project (Schemmel et al., 2010).
This European project has two major outcomes. In the first step,
they developed a unified software framework called PyNN that
makes it simple to verify the accuracy of their hardware by
running the desired model on either NEST or their chip. In the
second step, which is the main aim of this project, they have
designed a wafer-scale mixed signal circuit. While the dynamics
of adaptive exponential integrate and fire (AdEx) neuron model
and synapses are implemented in the analog part of the circuit,
digital circuits aremainly used in the inter-wafer communication.
There is a growing demand for scaling up the size and complexity
of the hardwares designed for simulating SNNs. Trying to address
this need, researchers have employed emerging technologies such
as memristors.

Memristive devices can be used as alternative solutions to
implement synapses. For instance, in Azghadi et al. (2017), a
hybrid CMOS-memristor circuit is proposed to mimic some
essential learning features of biological synapses. Their proposed
circuit is almost ten times smaller than its pure CMOS
equivalents. Using memristors in a crossbar array structure
delivers a nanoscale, low power, and compact circuit (Hu et al.,
2017). Moreover, memristors are easily tunable for plasticity
rules which give rise to a compact implementation of spike time
dependent plasticity (STDP) and spike rate dependent plasticity
(SRDP) (Bill Legenstein, 2014). To demonstrate the application
of memristors in machine learning, a memristor based crossbar
structure is proposed for handwritten digits recognition with a
recognition accuracy of 97.10% for MNIST benchmark (Zheng
and Mazumder, 2018).

Unfortunately, despite all these efforts, the ASIC suffers from
inflexibility that means neuron models, synapses, and synaptic
plasticity algorithms are hardwired into the silicon and it is not
possible to adapt them to other models. As FPGAs are today
common among companies such as Microsoft (Caulfield et al.,
2016) and Baidu (Ouyang et al., 2014) for the deep learning
applications, their flexibility opens up a good opportunity for
reconfigurable SNNs’ accelerators.

Some research projects exploit FPGAs in the heart of
their SNN. For example, in Yaghini Bonabi et al. (2014), the
network consists of two competitive mini-columns of HH
neuron model. The final design is implemented on a Xilinx
Virtex 7 FPGA. Another example is the work reported in Pani
et al. (2017). They utilize Xilinx Virtex 6 to implement a 1440
fully connected network using Izhikevic neuron model. Their
proposed architecture is able to run the simulation in real-
time at a sampling rate of 10 kHz. Some researchers focus on

Frontiers in Neuroscience | www.frontiersin.org 2 October 2018 | Volume 12 | Article 698

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

specific applications such as (Yang et al., 2018) that presents an
FPGA implementation of a real-time scalable hardware platform
for a hippocampal spiking neural network. They employ a
randomly connected SNN with a 10K Izhikevich neuron model
which is organized in four excitatory neuron groups (NGs)
and one inhibitory NG with sparse synaptic connections. Each
NG is accompanied by one synaptic group (SG) that calculates
input synaptic currents to the NGs. In a similar context, (Yang
et al., 2017) introduces multiplier-less techniques to implement
a digital SNN for a conductance-based subthalamic nucleus
model. Their techniques consist of a novel “shift MUL” method
and piecewise linear approximation. From the perspective of
generality, NeuroFlow (Cheung et al., 2016) is a general purpose
simulator which has been exclusively developed for a cluster
of FPGAs provided by Maxeler Technologies. This generality
is achieved by high-level synthesis (HLS) provided by the tools
from the Maxeler called MaxCompiler. This compiler receives a
java code describing the behavior of the network and generates
an equivalent register transfer level (RTL) code in a hardware
description language that is either Verilog or VHDL. HLS is
relatively a new trend in digital design which aims to reduce the
development time, but it usually infers an inefficient hardware in
terms of area and performance. HLS has some major limitations
that cause some difficulties from hardware reuse, data types, and
level of parallelism points of views.

This brief review highlights a gap in the hardware
implementations of SNNs; that is, the need to give more
attention to FPGA implementations. In this work, we are going
to propose a scalable architecture, which can be configured as a
real-time or a large-scale randomly (or fully) connected network,
or something in between. To reach this goal, we propose a
hardware module which reads states of neurons in succession,
calculates the synaptic efficacy on the corresponding neuron,
updates its state, and writes it back to its memory bank. This core
processes the neuron states serially. To improve performance
through parallelism, we employ multiple excitatory or inhibitory
cores. Updating each synaptic conductance requires sharing
firing activities among the cores, this is performed by a vector
which is responsible for storing the spike occurrence per iteration
per neuron. Moreover, a detailed exploration of our neuronal
network model with different number system representations
leads us to select the Q9.24 number format as a trade-off between
the accuracy and performance. Although this architecture has
been accompanied by several techniques to improve the accuracy
and performance, our major contribution is introducing a novel
exact/approximate method to update synaptic conductances
(section 2.6.2). This approach shows a great potential to create
embedded systems for randomly connected networks of any
neuron models using FPGAs.

In section 2, we introduce the neuron and the network model
and discuss the details of the number system representations.
Then, we examine how linear approximation reduces the
hardware cost. At the end of this section, we present both single
cycle and 7-stage pipeline implementations of our proposed
architecture. In section 3, we show the accuracy of our
implementation by comparing the hardware and the software
results. In addition, we report the effects of the memory

configurations on the performance and the number of neurons.
Finally, section 4 belongs to discussion and conclusion.

2. MATERIALS AND METHODS

2.1. Neuron and Network Model
In this section, we present the original Hodgkin-Huxley neuron
model and the structure of the neuronal network used by this
paper. The HH model comprises both transient and persistent
currents of Na and K ions as well as an overall leak current that
indicates the impact of all other ionic channels (Izhikevich, 2007).
The standard complete set of equations consists of a first order
differential equation depictingmembrane voltage and three other
equations to describe gating variables; that are,

Cm
dv

dt
= Iext − gNam

3h(v− ENa)− gKn
4(v− EK)− gL(v− EL),

dx

dt
= αx(v)(1− x)+ βx(v)x =

(x∞(v)− x)

τx(v)
,

(1)
that x stands form, n, h; and,

x∞(v) =
αx(v)

αx(v)+ βx(v)
, τx(v) =

1

αx(v)+ βx(v)
, (2)

where the parameters alpha and beta are transition rates between
open and closed states of related ionic channels. For the sake
of simplicity, we can ignore the detailed description of alpha
and beta equations and approximate the time constant τx
and steady-state value of gating variable x∞ by Boltzmann
and Gaussian functions (Dayan and Abbott, 2005; Ermentrout
and Terman, 2010) stated in Figure 1. The exponential nature
of these voltage-dependent variables poses a serious challenge
to hardware designers. Implementing exponential functions is
costly from the logic resources point of view; therefore we look
for approximate methods with lower cost. In section 2.4, we will
explain a piecewise linear technique to approximate x∞ and τ−1

x .
Approximating inverse time constant eliminates the need for a lot
of division hardware that is one of the most resource consuming
elementary operators in the hardware designer community.

There are various types of network topologies such as
small world (Yu et al., 2011, 2013) and randomly connected
(Brette et al., 2007). Since we are interested in reservoir
computing paradigm, we select a suitable topology for this
context. Rich dynamics of randomly connected networks
have been increasingly utilized in the context of reservoir
computing paradigm (Lukoševičius and Jaeger, 2009). In this
paper, therefore, an architecture is proposed to speed up the
COBAHH (Hodgkin-Huxley neuron model with conductance-
based synapses) network model introduced in Brette et al.
(2007). This network uses a randomly connected network of
the HH neuron model with exponential synaptic conductance.
Embedding the synapses dynamics in Equation (1) is performed
by replacing Iext with appropriate expressions for inhibitory and

Frontiers in Neuroscience | www.frontiersin.org 3 October 2018 | Volume 12 | Article 698

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

FIGURE 1 | Steady-state values and inverse time constants of gating variables.

excitatory connections. The resulting expression,

Iext = −ge(v− Ee)− gi(v− Ei),

dge

dt
=

ge

τe
,

dgi

dt
=

gi

τi
.

(3)

has two extra terms to mimic the behavior of excitatory and
inhibitory synaptic channels. ge and gi are the excitatory and
inhibitory conductances respectively. When an inhibitory or an
excitatory neuron fires, fixed weights (wi and we) will be added to
the corresponding conductances (gi and ge) of its post synaptic
neurons, regardless of which neuron fires. More details about
the network model and Python implementation are available
in the Brian simulator (Stimberg et al., 2014). We choose this
network model due to its generality. We can use a hardware
design that describes this network to model any randomly
connected network. The major limitation of this network is its
fixed inhibitory and excitatory weights.

Implementing such a network in hardware is strongly
challenged by the number system representation and the target
hardware platform. In the next two sections, we try to answer to
following two questions:

1. What are the effects of number system representation on the
accuracy and performance?

2. What constraints does target FPGA impose on our design?

2.2. Number System Representation
There are two main binary number system representations
called floating-point and fixed-point. From the hardware
implementation point of view, while the first one consumes a
high amount of logic resources, the second one is hardware
friendly. Therefore, when we are going to design a digital
hardware, the first question that comes to mind is the number
system representation and the number of bits required to uphold

the precision. In this subsection, our main aim is to determine
how fixed-point and floating-point representations and their bit
width affect accuracy.

Dynamic range and the gap between two consecutive numbers
are the most important distinguishable criteria (Ercegovac and
Lang, 2003). The floating-point number system has a larger
dynamic range in contrast to the fixed-point number system,
which means that the corresponding range of values in floating-
point numbers are wider than fixed-point numbers for the
same word length. To determine the required dynamic range,
we should extract the upper and lower bounds of each variable
using a software model. The simulation results show that an
intermediate variable has the greatest dynamic range. It is
noticeable that this variable almost varies from -90 to 130. Hence
we require either nine or eight integer bits to represent all
variables in unbiased or biased representations respectively. A
biased representation requires a bias compensation method to
produce true results. The compensation methods cost a lot from
the hardware resource requirements point of view (Ercegovac
and Lang, 2003). In order to reduce the hardware cost, we choose
an unbiased representation with nine integer bits. Consequently,
although the large dynamic range is a definite advantage of the
floating-point representation, simulation results show that this
feature does not justify heavy hardware implementation cost.

The gap between two adjacent numbers is a criterion for
measuring precision. To investigate the effects of this gap on the
accuracy of our model, firstly, we should study the floating-point
and fixed-point representations in more details. The IEEE-754-
1985 introduces two commonly used formats for floating-point
computation: the 32-bit single-precision and the 64-bit double-
precision. There are not any standards for fixed-point numbers,
so its precision only depends on the designer’s decision about the
number of fractional bits.While the fixed-point system presents a
constant gap between any two consecutive numbers, the floating-
point system exhibits different gaps for different pairs. For the
sake of comparison, we compare the single-precision floating-
point number with the 32-bit fixed-point number (Q8.24). We

Frontiers in Neuroscience | www.frontiersin.org 4 October 2018 | Volume 12 | Article 698

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

FIGURE 2 | Comparing gaps between two adjacent numbers for a single-precision floating-point number and a 32-bit fixed-point number. The fixed-point number

has 24 fractional bits. The positive side is displayed. While the single-precision number has higher or equal precision for values below one, it shows lower precision for

other values.

FIGURE 3 | Effects of number system representations on the accuracy of the

model. Hodgkin-Huxley model is described as a continuous dynamical

system. Digital realization of the system requires discretizing both value and

time. Discretization introduces round-off errors to digital systems. Higher

round-off errors result in more time shift.

suppose that this number of integer bits is the minimum number
required to cover the dynamic range of all variables. The value of
each number in the single-precision format is F = −1s1.f 2e−127

where e varies from 1 to 254 for normal values. The smallest
positive normal value is 2−126 that is achieved by selecting s = 0,
f = 0, e = 1. This value is 2102 times smaller than the smallest
positive value of the fixed-point counterpart that is 2−24. This
difference gets even worse for denormal values, but that is not
our point. The gap between any pairs of two consecutive numbers
in the fixed-point system is 2−24 but the story for the floating-
point numbers is different. Figure 2 shows the positive side of the
variable range. As it can be seen, as the exponent increments, the
gap increases. Consequently, while the floating-point numbers
exhibit higher precision than the fixed-point equivalents for the
values below 0.5, they show lower precision for the numbers
greater than 1. This behavior is more complicated than what can
be easily analyzed. More simulations are required to scrutinize
the effect of the number system precision on our neuron model,
as shown in Figure 3.

Figure 3 compares the fixed-point (Q9.24) and the floating-
point (single and double precision) implementations of our
neuron model. The neuron’s parameters are set in such a way

that it fires regularly without external stimulus. We run this
simulation for just about 2500ms. Magnifying the figure reveals
that the spike time differences are negligible at the start of the
simulation. As the simulation proceeds, the later spikes show
small displacements that increase under time evolution. As a
result of discretization, there is not an ultimate precision. There
are always spike time differences, regardless of the number system
representation or the number of bits.

The result of a computation is not usually an exact number.
If we call two adjacent numbers in the digital arithmetic F1 and
F2 and the exact result x, then F1 ≤ x ≤ F2. Rounding is the
process of assigning one of F1 or F2 to x. The roundoff error is the
difference between x and its assigned value. Different roundoff
errors result in the appearance of spikes at the different times.

Due to its lower hardware cost, in this paper, we use the
fixed-point number representation system. As we said above, we
require 9 bits for the integer part. The number of fractional bits
is a trade-off between accuracy and resource usage, which will
be discussed in section 2.5. This leads us to have not only a
compact but also an accurate enough circuit in comparison with
the floating-point implementation.

2.3. Hardware Platform Constraints
The second question is about the hardware platform. In this
paper, we use the Nexys Video trainer board from Digilent.
Digilent has employed a XC7A200T device, the most powerful
member of cost-optimized Artix R©-7 family, in this board. We
choose this board as our processing engine to show the possibility
of fast simulation of relatively large-scale SNN with a low cost
embedded solution. Xilinx combines traditional reconfigurable
logic gates with on-chip memories, digital signal processing
(DSP) blocks, and gigabit transceivers in XC7A200T. The variety
of additional blocks available on FPGAs makes them perfectly
suitable for digital reconfigurable tasks such as SNNs.

Although there are essential add-on blocks in the Artix
FPGAs, they have some inherent limitations. The finite amount
of memory cells that are available in a FPGA is a major limitation.
The memory limitation results in fewer locations to store the
neuron states and the connectivity matrix. In addition, operand
sizes of the DSP blocks are limited to what are offered by the
manufacturer. In particular, DSP48E1, which is the code name
for the DSP blocks used in 7-series FPGA of Xilinx company,
contains two’s complementmultipliers that support only operand
widths up to 25 bits. Regarding the target device, we may require
more than one DSP block per operation. Given these issues, in

Frontiers in Neuroscience | www.frontiersin.org 5 October 2018 | Volume 12 | Article 698

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

the following, we propose some methods to better utilize these
valuable resources.

2.4. Piecewise Linear Approximation
As mentioned in section 2.1, time constants and steady-state
values of gating variables are approximated by Boltzmann and
Gaussian functions. Implementing any nonlinear function via
logical gates requires algorithms to describe them by basic
elementary arithmetic operators. Polynomial approximation
using techniques such as Taylor expansion and nth order spline
are commonly used in the literature to approximate arbitrary
functions including exponential ones (Jupp, 1978; Miyata and
Shen, 2005). Although all of them show reasonable accuracy
under certain circumstances, their complexities make it difficult
to have a small and fast hardware implementation. Iterative
techniques such as CORDIC approach reduce the hardware size,
but its iterative nature causes more latency than the noniterative
algorithms (Parhami, 2010; Yaghini Bonabi et al., 2014).

Piecewise linear (PWL) approximation can exhibit low
resource consumption as well as low latency. Meanwhile, it can
show high accuracy with well-tuned parameters. There are fast
and accurate PWL techniques especially for approximating the
sigmoid functions. These techniques are widely used to estimate
the activation function of ANNs (Tommiska, 2003; Basterretxea
et al., 2004; Lin et al., 2013). In this paper, we partition the entire
domain into equal intervals. The step size is equal to 2k, k ∈ Z to
reduce the bit width of the memory locations used to store the
PWL coefficients. For each segment, we extract a line equation
in the slope-intercept form (y = ax + b) using the least square
algorithm (Apostol, 1969), then we store the values of slope a
and y-intercept b in amemory row. Figure 4 shows a demo of this
linearization technique. As it can be seen, somememory locations
are not available in the address table. This leads us to have a
smaller area if we use distributed memories instead of block
ones. This figure illustrates another matter of importance, two
segments that are on the right-hand side (S5 and S6) demonstrate
the same slope and y-intercept. This fact makes it possible to
combine them as a single super segment to reduce the memory
size. Super segments may appear at any intervals. Fortunately,
synthesis tool automatically locates all super segments and stores
them each in a single memory row.

2.5. FPGA Implementation of a Single
Neuron
To implement a single neuron on FPGA using the Euler method,
we employ a simple 3-stage pipeline (Figure 5). In the first stage,
we read (RD) the current state of neuronal variables, called here
vold, nold, mold, hold, ge,old, and gi,old, from a memory address.
In the next stage, we compute the next state values of these
variables using the update neuron state (UNS) block. Finally, the
updated state is written back to the same memory address in
the write back (WB) stage. UNS is the most compute-intensive
block. It contains six sub-blocks to compute the new states of the
gating variables, the synaptic conductance, and the membrane
voltage depicted in Equation (3). Each gating variable requires
two lookup tables (LUTs) to hold the slope and the y-intercept
of its voltage-dependent steady-state value and time constant. An

FIGURE 4 | An example of linearization for minf . Its range is split into six equal

segments called S1 to S6 with step size of 16mV. First three left bits of each

segment’s lower endpoint indicate the location of the memory address used to

store the slope and y-intercept of the corresponding straight line (ak ,bk).

arithmetic block uses the output data of both LUTs to compute
the approximate values of x∞ and τ−1

x . We lastly generate xnew
using x∞, τ−1

x , and xold. Full details of discretized equations and
their parameters are visually available in Figure 5. As we said
above, we extract the constants except dt from the Brette et al.
(2007). In this paper, we suppose that dt = 1

128ms. This value
is a power of two (2−7) that converts each division to a simple
shift operation. Moreover, this value is small enough to guarantee
convergence and accuracy of the Euler method for the neuronal
networks with complex neuron dynamics, such as our network
model.

We are now ready to finalize our single neuron
implementation by filling the LUTs in Figure 5 with the
slope and the y-intercept values of the x∞ and τ−1

x PWL
approximations. There remain two parameters still to be
determined: (1) The step size (the piece length) in PWL
approximations and (2) the required number of fractional bits
for the whole architecture including the slope and the y-intercept
values. For the sake of simplicity, we write a simple GUI in
MATLAB that automatically generates all required synthesizable
Verilog files. It only needs an arbitrary step size and a number
for fractional bits to produce all necessary files.

As we mentioned in section 2.4, we use equal intervals in this
paper. The step sizes for six variables should be selected in such a
way that yields errors of the same order of magnitude. Simulation
results show that this condition will be fulfilled if the variables
are chosen in a way that satisfies δm = δn = δ

τ−1
n

= 2δh =

4δ
τ−1
h

= 4δ
τ−1
m
. Here, the symbol δ is a notation for the step size.

To analyze the effects of the step size on the error and the resource
usage, we initially choose three different step sizes with this

Frontiers in Neuroscience | www.frontiersin.org 6 October 2018 | Volume 12 | Article 698

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

FIGURE 5 | Single cycle implementation of a single neuron. Reading the

current neuron state, updating it, and writing the new state back to the

memory are the three stages. The ge,up and gi,up are the updated versions of

the old synaptic conductances (ge,old , and gi,old) with regard to the

presynaptic neuronal activities. It should be noted that the corresponding

memory locations of ge,old and gi,old are filled with zeros for the single neuron

implementation. Moreover, since there is not any presynaptic neurons,

ge,up = ge,old and gi,up = gi,old . For the sake of clarity, the constants are

displayed in green.

constraint. Afterwards, we simulate the PWL models to extract
the related errors. Table 1 summarizes the simulation results of
MATLAB environment with double precision. As expected,
while halving the step size reduces the error, doubling it increases
the error a few times larger. The last two columns of Table 1
report the resource consumption of PWL approximations for the
Q9.24 number format. Reasons for selecting this format will be
discussed in the following paragraphs.

To determine the two above-mentioned parameters, we
choose the base step size to simulate and synthesize our single
neuron design using VIVADO. Then, we vary the number of
fractional bits from 16 to 30. We start from 16 bits simply
because there is not tonic spiking behavior below it. As a metric
of accuracy, we use the interspike interval (ISI) of our neuron
model in the tonic spike regime. Figure 6 (top) shows the ISI of

fixed-point representations for a different number of fractional
bits in contrast with the ISI calculated by the double precision
floating-point format called here the reference ISI. As it can be
seen, as the number of bits increases, the ISI gets closer to the
reference. Interestingly, the value of ISI gets even smaller than
the reference. This is another evidence suggesting that there is no
ultimate precision in the digital era. Indeed, selecting the number
of fractional bits is a tradeoff between accuracy and resource
consumption.

Using the utilization report of VIVADO, we draw the DSP
blocks and the LUTs usages in Figure 6middle, bottom. As these
bar graphs indicate, the number of worthy DSP blocks remains
constant from 21 to 24 fractional bits. Moreover, the number of
LUTs shows a negligible rise. Since the ISIref = 72.4042ms and

ISIQ9.24 = 72.4651ms, the relative error is η = |
ISIref−ISIQ9.24

ISIref
| ×

100 = 0.08%. Consequently, selecting the Q9.24 format results
in a small relative error and low usage of resources. To determine
the effect of the step size on the results, we repeat the single
neuron simulation for double and half step sizes. There is a close
correlation between the number of fractional bits and the step
size. If we continuously decrease the step size while the number
of fractional bits is fix, we will finally find that the relative error
will not be further reduced. According to Table 2, while doubling
the step size increases the relative error to almost 25%, halving it
has an insignificant effect. Moreover, the resource consumption
of the half step size is about 35% larger than base step size. These
comments reveal that the base step size is the best choice. In
the rest of this paper, we use the base step size to approximate
the gating variables and utilize the Q9.24 fixed-point system in
arithmetic blocks.

2.6. Proposed Pipeline Network
Architecture
In this section, we introduce the key concepts of our proposed
pipeline architecture. For the sake of clarity, we explain the main
idea with an example. Figure 7 (Top) illustrates the example of
our proposed network architecture. It is often assumed that 20%
of neurons are inhibitory and 80% of neurons are excitatory, but
our sample network consists of four cores. In order to control
the excitation-inhibition balance, we can partially fill the cores.
Here, our aim is to validate the functionality. Therefore, we fully
fill all the cores. Each core is capable of updating neurons’ states
in both parallel and serial. The first three cores are excitatory and
the last one is inhibitory. Four neuron states are updated in each
clock cycle. Meanwhile, each core is responsible for computing
next states of 210 = 1024 neurons serially.

The process starts by fetching the states of four neurons from
the related memory banks in parallel and then updating their
synaptic conductances using the update synaptic conductance
(USC) units. The UNS units are employed to compute the
neurons’ next states. The UNS is the same as the unit described in
section 2.5 for a single neuron. Each core uses a small comparator
to check the membrane voltage for the probable spike. The one-
bit output of this comparator is shifted to a 1024-bit first-in, first-
out (FIFO) buffer. This FIFO is responsible for storing the spiking
activity in each iteration. Finally, the updated states are written

Frontiers in Neuroscience | www.frontiersin.org 7 October 2018 | Volume 12 | Article 698

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

TABLE 1 | Linear approximations for the steady-state values and the time constants of the gating variables.

Step size name Step size value (δx(mV)) Max Error MATLAB (1e-4) LUTs DSP blocks

m∞ Double 4 23.49 74 2

Base 2 5.9610 69 2

Half 1 1.4936 159 2

n∞ Double 4 18.881 70 2

Base 2 4.7894 67 2

Half 1 1.1999 165 2

h∞ Double 2 20.2161 73 2

Base 1 5.1042 159 2

Half 0.5 1.2770 240 2

τ
−1
m Double 1 11.8597 205 2

Base 0.5 2.9692 158 2

Half 0.25 0.80312 295 2

τ
−1
n Double 4 17.8569 74 2

Base 2 4.5093 70 2

Half 1 1.1532 181 2

τ
−1
h

Double 1 12.8224 191 2

Base 0.5 3.2051 157 2

Half 0.25 0.80196 241 2

Different step sizes result in different maximum absolute errors for software simulations and resource usages for hardware implementation with Q9.24 number format. The step sizes in

the middle rows are called the base, the upper and lower rows show the double and the half step sizes respectively.

FIGURE 6 | Inter spike intervals and resources usage for various numbers of

fractional bits in the fixed-point number representation. Here, we choose the

base step size for simulation and sythesis of the single neuron. The reference

line (green) shows the ISI of the floating-point representation.

back to the memory banks. The memory banks’ addresses are
generated using a neuron counter (NC). The generated address
is propagated by the NC-PIPE to keep the address for the write
back stage. Controlling this datapath requires a simple finite state
machine stated in Figure 7 (Bottom). In following subsections,
we will discuss the matter in more details.

2.6.1. Memory Banks (Neuron State Memory)
In this paper, we use block memories to store the states of the
neurons. Xilinx 7 series FPGAs have blockmemories that support
Simple Dual-Port mode. This means that each block memory
provides two ports, one for writing to the memory and one for
reading from it simultaneously. Each block memory can store up
to 36Kbits of data and can be configured as a 32K×1, 16K×2,
8K×4, 4K×9, 2K×18, 1K×36, or 512×72 memory. This means
that we can save the states of 512 up to 32K neurons on a bunch of
block memories without waste of resources. Indeed, this helps us
to combine the parallel and serial computing in our architecture.
We could increase the degree of parallelism to speed up the
simulation using shallower block memories. Furthermore, it is
possible to simulate a larger network by increasing the degree of
serialization using deeper block memories. We can control the
parallelism and serialization by configuring the number and the
depth of memory banks.

As we said above, we exploit 33 bits (Q9.24) for each variable,
but the gating variables only vary from 0 to 1. Therefore, we
do not require nine bits for the integer part. As a result, we
employ the Q9.24 format for v, ge, gi and a reduced one for m,
n, h. In the example of this section, we employ four memory
banks called B0-B3. Each bank contains 1,024 words of 177 bits
(Figure 8). Therefore, the pipeline requires 1024 clock cycles
to complete an iteration. Each word stores the state variables
including membrane voltage, three gating variables and two
synaptic conductances for inhibitory and excitatory synapses.
While the first three banks (B0-B2) store the states of excitatory
neurons, the fourth bank (B3) holds the inhibitory neurons’
states.

Frontiers in Neuroscience | www.frontiersin.org 8 October 2018 | Volume 12 | Article 698

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

TABLE 2 | The inter spike interval (ISI) and the resource usage of the single

neuron model in the Q9.24 format for three different step sizes.

Step size ISI(ms) η(%) LUTs DSP blocks

Double 54.2612 25.05 1711 56

Base 72.4651 0.08 2103 56

Half 72.4676 0.08 2834 56

A 10-bit counter is used to address neurons’ states stored in
memory banks. In the first clock cycle, this neuron counter is an
all-zero vector that addresses the 0th, 1024th, 2048th, and 3072nd
neurons’ state variables in parallel. Next clock cycle increments
the counter and the next four neurons’ states are fetched. This
process continues until reaching the end of the memory banks.
When the states of all neurons are updated, one iteration is
completed.

2.6.2. Update Synaptic Conductance Unit
The update synaptic conductance unit is used to update inhibitory
and excitatory synaptic conductances (gi and ge respectively) of
the current neuron, according to presynaptic activities generated
in the previous iteration. In order to update inhibitory and
excitatory synaptic conductances, we should answer these two
questions:

1. Which neurons have fired in the previous iteration?
2. Which neurons are the presynaptic neurons of the current

neuron?

To describe the major contributions of the work, we will try to
answer the above questions, along with other parts of the USC, in
following subsections.

2.6.2.1. Spike vector
To answer the first question, we use a 4096-bit spike vector (SV),
in which 1s and 0s indicate if the spikes have occurred. For
example, a 1 in the column 3165 of SV shows that the neuron
3165 located in B3 (so it is an inhibitory neuron) has fired in the
previous iteration. This vector has been partially generated inWB
stages of all four cores. At the end of each iteration (1024 clock
cycles), these partial SVs, called SV0-SV3, are merged together
to form the next iteration SV. A partial SV is a 1024-bit FIFO
filled with the output of the comparator next to the UNS. This
comparator compares vold and vnew with a threshold value to
determine the state of firing. If a neuron fires, a 1 enqueues to the
FIFO, otherwise a 0 enqueues. After 1024 clock cycles, at the end
of one iteration, all partial SVs are filled with the corresponding
firing activities.

2.6.2.2. Permutation vector
To answer the second question, we require a random 4096×4096
binary connectivity matrix. Each row of this matrix (here it is
called the connectivity vector) shows the presynaptic neurons of
the neuron associated with that row. Storing this matrix needs
a memory with the size of 16Mb. Although this size of memory
is not a large one for modern memory chips, it is still large for
a mid-range FPGA with a few megabits of internal memory.

For example, the most powerful FPGA of Artix R©-7 family has
only 13Mb of block memory. To overcome this shortcoming, it
seems that there are only two choices. We have to either switch
to a high-performance FPGA and pay its cost or use an external
memory chip.

The problem still persists even if we choose the highest
performance FPGAs. XCVU190 is a good example that with
132.9Mb on-chip memory has the highest amount of memory
in a Virtex R©-7 family. This device supports a connectivity
matrix for just about 11.5k neurons. A better solution is to
switch to external memories instead of internal ones. This
solution eliminates the limitation of internal memory capacity
but imposes a new constraint, which is the bandwidth of
memory interface. The limited bandwidth dramatically increases
the number of clock cycles needed to fetch a complete row of
connectivity matrix. More cycles result in more simulation time.
In the following paragraphs, we are going to review methods that
address these problems. In the last part of this subsection, we
introduce our alternative novel solution.

The first method includes techniques used to compress sparse
matrices (Navabi, 2011). These algorithms reduce the size of the
matrix, but they are inherently sensitive to the density of the
matrix. The density of the connectivity matrix (which is defined
as one minus sparsity and represents the probability of existing a
connection between every two randomneurons) is often assumed
to be below 20%. A connectivity matrix with a lower density
causes a more compressed matrix. Every density requires a
specific hardware to decode the compressed matrix. Therefore,
it is impossible to design an optimized unique hardware that
supports all ranges of density values. In the search for a low
cost and fast alternative method, we attempt to generate the
rows of this matrix cycle by cycle instead of storing the whole
connectivity matrix.

Generating a random binary vector with a specific sparsity to
represent a row of the connectivity matrix is more complicated
than it seems. There are several ways to generate random
binary vectors using a pseudo-random number generator
(PRNG). Some techniques use linear recurrence such as a linear
congruential generator (LCG) (L’Ecuyer and Panneton, 2005).
Improving the randomness is achieved by introducing modern
algorithms such as linear feedback shift register (LFSR). The
LFSR is the most popular technique used in the hardware
implementation to make a binary random sequence (Golomb,
1981). Some algorithms are based on chaotic iterations and
offer a higher degree of randomness (González and Pino, 1999).
Furthermore, cryptographic algorithms can be used as a source
of randomness in some applications (Petit et al., 2008). Due
to the complexity of encryption and decryption processes, this
technique is usually utilized when a cryptographic hardware
accelerator is available. Finally, there is a hardware-friendly
PRNG which is based on cellular automata. We can use 1D or 2D
cellular automata (CA) or their hybrid forms to generate a PRNG
sequence with an acceptable degree of randomness (Matsumoto,
1998; Shackleford et al., 2002; Comer et al., 2012). However,
many papers have been published to investigate the CA-
based PRNG from the randomness and hardware requirements
points of views. A simple 1D CA rule, called Rule-30, results

Frontiers in Neuroscience | www.frontiersin.org 9 October 2018 | Volume 12 | Article 698

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

FIGURE 7 | A network architecture that supports 4096 neurons (Top) and its finite state machine (Bottom). This architecture consists of four parallel cores for

excitatory and inhibitory neurons. Control signals are shown in green. The process starts and terminates by pressing the Start and Stop push buttons respectively.

in satisfactory randomness as well as reasonable hardware
resources. Unfortunately, binary vectors that are generated using
PRNG techniques suffer from a drawback in our application:
they have almost an equal number of ones and zeros. It
means that they have a density of nearly 50%. As mentioned
before, the density of a connectivity matrix often varies from
network to network but remains below 0.2. To create a vector
with a density different from 50%, it is possible to combine
several independent pseudorandom vectors using bitwise logical
operations. Although this technique is a practical approach, it has
two major drawbacks. It is an inflexible approach which means
that it cannot be used for generating a vector with arbitrary
density. Furthermore, to generate a sparse vector, we require to
compute the bitwise AND of several independent vectors which
increases both the resource usage and latency.

To generate a random sequence with an arbitrary density,
we should employ 4096 different PRNGs (for example Rule-30
CA with a minimum period of 4096). Then we compare their
outputs with a threshold. The output of the comparator is an
entry of the connectivity vector. Such a technique is not a good
one from the resource usage point of view.The resource sharing
can be employed to reduce the hardware cost at the expense
of more clock cycles. Consequently, generating a connectivity
vector using the above-mentioned approach suffers from either
high resource usage or high latency.

In this paper, we propose a low cost permutation-based
technique to generate the connectivity vectors. This technique
reduces the hardware cost to only one Flip-Flop for each element
of the connectivity vector and some routing overhead. Our
proposed algorithm starts with generating seeds, called here
Seed0 to Seed3 (Figure 9). The following steps should be taken
to generate the seeds for 4096 neurons:

1. Select an arbitrary value for the density of the connectivity
matrix.

2. Generate an offline random connectivity vector with the above
density using a software such as MATLAB. We call this vector
Seed0 in later steps.

3. Find a 4096×4096 permutation matrix with 4096-cycle. We
use python SymPy and NumPy packages.

4. Extend Seed0 for remaining 4095 rows using the above
permutation matrix. We now have our desired connectivity
matrix.

5. Split connectivity matrix into four 1024×4096 matrices. The
first row of each submatrix is called Seed0, Seed1, Seed2, and
Seed3 respectively.

Now inside the FPGA, we wire 4096 Flip-Flops together with the
pattern of the above permutation matrix. Each core needs one
of these units as its local PV register stated in Figure 7 (Top).
We assign each seed to its corresponding core and store it in the

Frontiers in Neuroscience | www.frontiersin.org 10 October 2018 | Volume 12 | Article 698

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

FIGURE 8 | Layout of memory banks. Shaded boxes show the 1K×36 block

memories.

FIGURE 9 | Generating a connectivity matrix using permutation matrix. Initial

seed (Seed0) has a predfeined density. Next rows of the connectivity matrix are

unique reordered versions of Seed0 using a 4096-cycle permutation matrix.

PV register as its initial value. This register in each clock cycle
provides a new connectivity vector.

2.6.2.3. Approximate counters
The content of SVs and PVs are the probable spikes and
the connectivity vectors, respectively. Performing bitwise AND
operation between these 4096-bit vectors give us another 4096-bit
vector. Each “1” entry in this vector signifies a presynaptic neuron
of the current neuron that has fired in the previous iteration. As
mentioned earlier, the first 3072 bits belong to excitatory neurons,
and the remainder of bits are representatives of inhibitory
neurons. Therefore, we need two different counters to compute
the impact of inhibitory and excitatory synapses on the current
neuron. The upper and lower counters in Figure 7 (Top) are
responsible for calculating coefficients of we and wi respectively.
In exact adders, we require 10 and 12 bits to represent the
addition of 1024 and 3072 bits. Furthermore, we need a huge tree
of full and half adders to implement such a counter. The exact
counters are necessary for simulating fully connected networks,
but there is a different story for the sparse connectivity matrix.
Suppose that the density of the connectivity vector (PV) is below
20% (that is true in many cases). Performing AND operation
with SV, which itself is a sparse vector, reduces the density of
the outcome even more. Our simulation results show that the
sparsity of AND(SV,PV) is always less than 2%. We can employ
this sparsity to design an approximate counter with less hardware

TABLE 3 | A comparison between exact and approximate counters from the

resource consumption and the latency points of views.

Type No. LUTs Latency (nS)

Exact 5777 14.907

(6:1] 1454 12.167

(8:2] 3532 13.938

(16:2] 3092 12.938

(32:2] 3068 12.186

(64:2] 3020 11.85

(128:2] 2460 9.916

Both exact and shaded rows have equal accuracies for densities less than or equal to

20%.

cost than the exact counterpart. Note that we cannot utilize
approximate counters for fully connected networks. Instead, we
have to use exact counter in these cases.

In an exact counter, wemust employ two huge adder trees with
3072 and 1024 inputs to produce (3072:12] and (1024:10] exact
counters respectively. The size of the adder tree progressively
increases with the number of inputs. To reduce the hardware
resources, we propose a novel two-level approximate adder. In
the first level, we put some saturated counters to reduce the
number of inputs to the next level. In the second level, we put
an exact adder tree (see Figure S1 for more details). Table 3
compares the exact counter with several approximate ones from
the resource usage and latency points of views. We evaluate
the accuracy by putting the corresponding type of adder in our
network hardware and comparing it with the results extracted
from the network with an exact adder. Our simulations show
that the approximation with the (64:2] saturated counter reach
the accuracy of the exact model. Meanwhile, it consumes by far
lower LUTs than the exact counter.

2.6.3. Deep Pipelining
Up to now, we have used a simple 3-stage pipeline to describe
the functionality of our architecture in detail. Improving the
performance could be achieved by adding more pipeline stages.
Adding four levels of pipeline registers makes a 7-stage pipeline
that introduces a higher clock frequency (see Figure S2 for more
details). Fortunately, DSP48E1 offers internal pipeline registers.
These internal registers can be used as the pipeline registers to
save the FPGA fabric Flip-Flops and reduce the routing overhead.

3. RESULTS

To demonstrate the capabilities of our proposed architecture,
we use Verilog hardware description language to describe the
example explained in section 2.6; that is, a network made of 4
cores and 4096 neurons. The Nexys Video board from Digilent
is employed to implement the network. We organize the results
as follows: First, the possibility of generating various network
activities using this hardware is shown. Next, the results of the
proposed hardware implementation are compared with those of

Frontiers in Neuroscience | www.frontiersin.org 11 October 2018 | Volume 12 | Article 698

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

the softwaremodel. Finally, we report the resource utilization and
the hardware performance.

For comparing the effects of the connection probability or
the sparseness of the network on the network behavior, we show
the spiking activities with different connection probabilities in
Figure 10A . This figure illustrates the network activity for three
different connection densities, including 1, 20, and 100%. We
employ the exact hardware for simulating the fully connected
network and the approximate one for the sparse networks. The
network activities show irregular spiking for the density of 1%
and synchronous spiking for the denser connections. The raster
plots show similar behavior to many papers in the term of the
relationship between sparseness and synchrony of the network
activity (e.g., Börgers and Kopell, 2003; Uhlhaas et al., 2009).

The validation of the hardware simulation is carried out
by comparing the raster plots with their software equivalents.
Figure 10B illustrates the first 150ms of the raster plots and
their corresponding population activities. To smooth out the
population activities, we use a simple moving average with a
window length of 128 iterations (1 ms). For the 1% density,
the population activity of the hardware model matches the
software one for about the first 50 ms whereas the network
starts to display chaotic behavior after that. Since the chaotic
systems are highly sensitive to initial conditions, slight differences
between the values of the variables for the hardware and
software models can result in significant differences in the later
states. It, therefore, is reasonable to expect two chaotic patterns
that do not necessarily agree. Different number representations
have different precisions (roundoff errors) which affect the
evolution of the network. Chaotic systems with different number
representations, therefore, meet completely different destinies
even for the double and the single precision floating-point
representations in software simulations (see Figure S3 for more
details).

While the propagation of uncertainties originated from the
fixed-point number representation and PWL approximations of
non-linear functions causes a different chaotic behavior in the
sparsest case, it results in slight jitters in firing times of neurons
in the case of two other network connectivities. To investigate
the average jitter values, we provide a comparison of population
activities in the hardware model and the software model for the
first synchronous firing columns which show the highest jitters in
these raster plots. Regardless of leading or lagging, the hardware
model shows average jitters of µ = 79.1ms − 76.9ms = 2.2ms
and µ = 120.1ms − 119.6ms = 0.5ms for densities of 20%
and 100% respectively. As it can be seen, the fully connected
network has lower jitter value than the network with density of
20%. Overall, this analysis shows that the hardware simulations
have close resemblances to the software results in terms of the
spike timing.

Figure 10C compares the raster plots from the ISI
distributions and the mean firing rates (MFR) criteria points
of views. The line graphs show the histograms of the ISI
values for the software and the hardware models (bin width
equals 0.15 ms). For the sake of clarity, these graphs are
confined to the range of the most probable ISIs. There are close
similarities between the graphs for all connection densities.

Quantitatively, their correlation coefficients are 0.99, 0.96,
and 0.93 for the densities of 1, 20, and 100% respectively.
Regarding the MFR, the bar graphs of Figure 10C illustrate the
mean firing rates for the whole simulation time of Figure 10A.
Although both software and hardware implementations
show slight MFR differences for the two higher densities (20
and 100%), such differences are not statistically significant
[p > 0.05, (pdensity=20% = 0.5, pdensity=100% = 0.9), paired
sample t-test]. But for the density of 1%, this difference is
statistically significant [p < 0.05, (pdensity=1% = 1e − 5), paired
sample t-test] as expected for two different chaotic patterns
(see Figure S3 for more details). In sum, our results show that
the proposed approximation techniques and the used number
system representations are accurate enough to capture the main
patterns of activities in the network model and give a reasonably
precise description of what happens in the software model.

To evaluate the proposed architecture from the performance
and area points of views, we summarize the timing and utilization
reports in Table 4. This table reveals two interesting points. First,
the table makes a comparison between the resource utilization
of the exact and the approximate implementations. As it can
be seen, the approximate one consumes only 29130 LUTs, in
contrast with 46045 LUTs used by the exact one. This value shows
almost 37% reduction in the resource utilization. Secondly, a
deeper pipeline results in higher performance. While single cycle
implementation reaches the maximum frequency of 25.6 MHz
for the approximate network, the pipeline implementation gets
to the 71.4 MHz. The 7-stage pipeline makes a considerable gain
in exchange for almost only 1000 registers. This small number
of extra registers does not affect the final utilization. As a result,
we always employ the pipeline hardware, exact one for the fully
connected network and approximate one for the sparse network
(density≤20%).

The number of cores per chip is limited by the most utilized
logic resource, which is the DSP block with utilization of 37%.
It means that for each core, we require a bit less than 10% of
DSP blocks. If we tend to use the full capacity of our device,
we will be only able to implement up to 10 cores per device
(Table 4). As mentioned before, to achieve higher performances
or larger networks, we could employ deeper or shallower core
banks.

According toTable 5, for example, if we configure thememory
banks in their shallower form (512×72), we only require three
block memories per bank to provide the required 177 bits
for storing membrane voltage, gating variables, and synaptic
conductances. Furthermore, XC7A200T only contains 365 blocks
of memories. Therefore, we could implement 365/3 = 121 banks
in a device, but we should not forget that the number of DSP
blocks limits the maximum number of cores to only 10. Thus, the
maximum number of cores is bounded to the minimum number
imposed by the memory or DSP blocks. It means that 5120 is the
maximum number of neurons that could be implemented in this
case. A single iteration for all neurons requires 512 clock cycles.
As dt = 1

128ms, a 1ms simulation requires 128 iterations. If we
employ the approximate pipeline hardware with the frequency of
71.4MHz, this configuration shows almost a real-time speed or
even faster if we partially fill the banks. Interestingly, switching

Frontiers in Neuroscience | www.frontiersin.org 12 October 2018 | Volume 12 | Article 698

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

FIGURE 10 | Comparing simulation results for both software (green) and hardware (black) implementations. (A) The raster plots are shown for three different sparsities

of the network. (B) We focus on the first 150 ms to draw a comparison between the software and the hardware simulations. Moreover, the corresponding population

activities are illustrated. (C) The bar and the line graphs are utilized to show the mean firing rates (MFRs) and the ISI distributions respectively. Error bars represent

standard deviations.

TABLE 4 | Post place and route reports for a network with four cores.

Single Cycle Pipeline

Exact Approximate Exact Approximate

Timing (Frequency) Timing (Frequency)

23.3 MHz 25.6 MHz 58.8 MHz 71.4 MHz

Resource Resource

Used (%) Used (%) Used (%) Used (%)

LUT 46,045 34 29,130 21 46,045 34 29130 21

LUT-FF pairs 8,465 6 5,326 4 4,606 3 2810 2

Slice Registers 24,600 9 24,600 9 25,430 9 25430 9

DSP Blocks 280 37 280 37 280 37 280 37

BRAM 20 6 20 6 20 6 20 6

While the Approximate columns show the results of the networks employed the two-level approximate counters, the networks in the Exact columns use exact single level counters.

to the 8k×4 configuration simply enlarges the network to 65536
neurons while it is only 15 times slower than real-time. For the
example of this paper with 4096 neurons, the memory banks
contain 1024 rows, therefore the simulation time is half real-
time.

4. DISCUSSION AND CONCLUSION

The main purpose of this paper is to demonstrate that although
the SNNs are compute-intensive and memory-intensive, it
is possible to run either real-time or large-scale simulation

Frontiers in Neuroscience | www.frontiersin.org 13 October 2018 | Volume 12 | Article 698

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

TABLE 5 | Block memory configurations for both real-time and large-scale neuronal networks (time resolution = 1
128ms).

Type Block memory configuration No. BRAM/Bank No. core No. neurons Performance (FPGA/real-time)

Real-time 512×72 3=⌈177/72⌉ 10 5120 0.94

Large-scale 8k×4 45=⌈177/4⌉ 8 65536 15.09

using cost-optimized FPGAs. The hardware implementations
of SNNs are utilized as accelerators not only in the field of
computational neuroscience but also in the field of machine
learning. They have much less energy consumption and much
higher performance than their software equivalents. Using cost-
optimized hardware enables more neuroscientists to test their
hypotheses in a reasonable time. Furthermore, the SNNs have
become increasingly popular in the field of machine learning.
They are the third generation of neural networks (Maass, 1997)
and can be an emergent computing paradigm, in contrast with
traditional Von Neumann architecture. Our work makes the
FPGA-based implementation of SNNs a proper candidate to
bring intelligence to embedded cognitive systems.

In this work, we focus on an architecture to implement
a randomly connected network of Hodking-Huxley neurons.
Instead of utilizing dedicated weights for synapses, fixed
synaptic weights are used to update the synaptic conductances.
Nevertheless, these types of networks are widely used in the field
of both neuroscience and machine learning. As an example, there
is at least a population of randomly connected neurons in many
neuronal networks and our architecture can be recruited in them
too.

Introducing a novel method to update synaptic weights is our
main contribution. We use a permutation-based technique to
generate connectivity vectors on the fly and diminish thememory
requirement for storing the whole connectivity matrix (section
2.6.2.2). In this method, connectivity vectors are generated
by permuting an initial seed, with a given density, on each
clock cycle. To avoid generating repetitive connectivity vectors,
we select a permutation matrix with a cycle of length N,
where N is the number of neurons. Although the randomness
of the connectivity matrix generated by this method is not
comparable withmodern PRNGs, its advantages clearly outweigh
this disadvantage.

In order to reduce the computational complexity of the
neuronal network, we employ the approximation techniques
in different parts of our design. First, a simple and general
piecewise linear approach is used to approximate the inverse
time constant and steady states of the gating variables (section
2.4). In this technique, we simply partition the entire range
into equal intervals and approximate the resulting curves by
the straight lines using the least square algorithm. Moreover,
another approximation technique is used to build a faster and
smaller adder that counts the presynaptic network activities for
the case of a sparse network. This is a two-level adder that has
the saturated counters in its first level (section 2.6.2.3). This
technique reduces the resource usage almost 37% and increases
the frequency almost 21% (Table 4). However, its accuracy is the
same as the exact counter for the connectivity matrices that have
a density smaller than 20%.

In a typical neuronal network, we require at least a few
thousands of the neurons, and each consumes lots of logic
resources. If we tend to implement a large-scale network,
we will have to share the logic resources among a group of
neurons. It adversely affects the overall throughput of the system.
Therefore, a 7-stage pipeline is used to increase the throughput.
Consequently, a large-scale and fast simulation of neuronal
networks can be achieved by using both resource sharing and
pipelining techniques simultaneously. Moreover, we can control
the number of neurons per group to fulfill the requirements such
as simulation speed and size of the network. In order to speed
up the simulation time, a smaller group size is used. However, a
larger one is exploited to enlarge the network size.

Our results confirm that our approximation techniques
dramatically reduce both computational complexities and
memory usage and make our architecture suitable for embedded
applications, even though the most complex neuron model is
used in our work. While some works exploit either Hodgkin-
Huxley neuron model or its variants (Zhang et al., 2013;
Smaragdos et al., 2014; Osorio, 2016; Yang et al., 2017), some
other works utilize its reduced forms (Graas et al., 2004; Yaghini
Bonabi et al., 2014). Meanwhile, the majority of researchers use
simple neuron models such as Izhikevich or leaky integrate and
fire (Cassidy et al., 2007; Soleimani et al., 2012; Ambroise et al.,
2013; Furber et al., 2013; Cheung et al., 2016; Pani et al., 2017) to
cope with the computational complexity of the HH model.

One of the most prominent digital implementations of
a general-purpose simulator for SNNs is SpiNNaker (Furber
et al., 2013). Each node is a chip that contains 18 identical
ARM9 processors called cores. One of the cores is a monitor
processor that performs system management tasks and another
one is reserved for fault tolerance. Each node also contains
a router, which is used to create the biggest NOC in the
world. It could be configured to simulate both the LIF and the
Izhikevich neuron models. Although the SpiNNaker naturally
exhibits superior performance, our proposed architecture is still
comparable from a few perspectives. While each custom node
of the SpiNNaker could simulate 16K neurons with a time step
of 1ms, our architecture is capable of simulating up to 65536
much more complex neurons with a 128 times smaller time
step. Furthermore, contrary to the SpiNNaker, our design is
implementable on a single FPGA chip and, thus, easily accessible
for researchers.

A more affordable solution to build a general-purpose
hardware simulator is FPGA. NeuroFlow (Cheung et al., 2016),
as mentioned in Introduction, is a great project that uses HLS
to implement a high-level Java code on a cluster of FPGAs.
Moreover, its number representation is the floating-point which
is more accurate than the fixed-point with the same word

Frontiers in Neuroscience | www.frontiersin.org 14 October 2018 | Volume 12 | Article 698

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

length. Advantages and disadvantages of the floating-point
representations will be discussed in the following paragraphs.
Furthermore, the designers of NeuroFlow have selected external
DRAMs to store neuron parameters. Although this is inevitable
when a large-scale network must be simulated, it is possible
to store parameters in small BRAMs for some networks by
designing an architecture with less memory usage. The latter
approach is adopted in this paper.

An efficient hardware realization of the subthalamic nucleus–
external globus pallidus oscillation system is introduced in
Yang et al. (2017). They employ a variant of the HH model
that includes various Calcium currents to reproduce required
dynamics. In common with us, they approximate nonlinear
functions of their neuron model using a PWL technique.
Compared to our PWL approximation, while we select lengths
of pieces as a power of two to better utilize block memories, they
choose the slope values in that way to replace multipliers with
shift operators. Moreover, they employ 1

64 + 1
256 for the time

step which is adequate for most applications, but it is coarser
than ours. Finally, they use the same number representation as
us. They use Q10.20 that is consistent with what has been found
in our study (i.e., Q9.23).

A recent study proposes an FPGA implementation of 1440
Izhikevich neurons in a fully connected network (Pani et al.,
2017). Although there are some similarities between their study
and our proposed architecture such as scalability andmodularity,
a number of differences exist. While our architecture is designed
in a way that supports arbitrary connection densities for a
randomly connected network, their study only simulates fully
connected circuits. Moreover, their work simulates 1440 neurons
in real-time with a step size of 100µs while our architecture is
capable of simulating 5120 neurons in real-time with a smaller
step size of 7.8µs (see Table 5). If we select a step size of 100µs,
which is 12.8 times larger than its initial value, we can simulate
12.8×5120=65536 neurons in real-time.

In line with the idea of using PWL technique, a multiplier-
less biologically inspired neuron model based on the Izhikevich
simple model is demonstrated in Soleimani et al. (2012). Their
neuron model utilizes the PWL method to approximate the
quadratic nullcline of Izhikevich neuron model. Their proposed
piecewise linear neuronmodel has a low hardware cost. However,
because of the lack of resource sharing, their final network
contains only 30 neurons. Moreover, their selected time step is
almost eight times larger than ours. Although PWL methods
for approximating nonlinear functions are widely used in the
literature, some works focus on other realizations of nonlinear
functions. For instance, in Yaghini Bonabi et al. (2014), the
CORDIC is used to implement exponential functions of the
HH neuron model. The CORDIC is more accurate than
a PWL approximation at the cost of more resource usage.
Moreover, their architecture, similar to Soleimani et al. (2012),
lacks resource sharing. Therefore, their approach is capable of
implementing up to only 150 independent reduced HH neurons.
Their word length (Q10.22 fixed-point) appears to be consistent
with our results and (Yang et al., 2017).

Unlike our paper, some authors implement conductance-
based neuron models using the floating-point arithmetic,

more stable numerical integration methods than the Euler
method, or both. For example, Osorio (2016) presents an
FPGA architecture for applying the 4th order Runge-Kutta
(RK4) rather than the Euler method to the HH model. RK4
is more stable and accurate than a first-order numerical
procedure such as the Euler method. However, its hardware
implementation consumes far more hardware resources.
Moreover, their number representation is the double-precision
floating-point. The author generates customized floating-point
cores for the required arithmetic functions using the FloPoCo.
Combining double-precision floating-point representation
with RK4 results in the most similar FPGA implementation
to the software implementation. Meanwhile, this architecture
consumes more resources and burns more power than other
architectures. In another work, (Smaragdos et al., 2014)
accelerates an extended HH model for Inferior-Olive neurons.
The VIVADO HLS is utilized to implement a network with
at most 14,400 neurons using single precision floating-point
computations in a Virtex 7 FPGA. In line with the previous
study, (Zhang et al., 2013) introduces an HH neuroprocessor
which is capable of generating complex spiking patterns
using single-precision floating-point numbers. The authors
combine their customized accelerators (neuroprocessors) with
a LEON3 processor and an advanced microcontroller bus
architecture (AMBA) to build a system on chip (SOC). LEON3
configures the neuroprocessors and dispatches spikes between
cells. Overall, some authors investigate more precise number
formats and numerical procedures to guarantee the convergence
for complex neuron models and neuronal networks. For a
given word length, the floating-point representations show
higher precision than fixed-point for simulating spiking
neural networks. A higher precision results in lower jitter
value and may be necessary in tasks that require precise
spike timing. Despite this fact, the majority of studies pay
more attention to fixed-point representations due to the
complexities of designing floating-point modules and their
resource requirements.

In this work, we illustrate how the combination of some
techniques can provide an embedded implementation of a
randomly connected large-scale SNN. This work is a part of our
long-term goal. That is, our desire to bring the intelligence to the
embedded world. As an example of a possible future application,
we will consider the possibility of employing our architecture as
a reservoir of a liquid state machine (Maass, 2011).

AUTHOR CONTRIBUTIONS

KA-S and SS defined themethods. KA-S and A-HV developed the
theoretical framework. KA-S and BA performed the simulations
and implemented the design on the FPGA. All authors discussed
the results and contributed to the final manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2018.00698/full#supplementary-material

Frontiers in Neuroscience | www.frontiersin.org 15 October 2018 | Volume 12 | Article 698

https://www.frontiersin.org/articles/10.3389/fnins.2018.00698/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al.

(2015). TensorFlow: large-scale machine learning on heterogeneous distributed

systems. arXiv:1603.04467 [preprint].

Ambroise, M., Levi, T., Joucla, S., Yvert, B., and Saïghi, S. (2013). Real-time

biomimetic Central Pattern Generators in an FPGA for hybrid experiments.

Front. Neurosci. 7:215. doi: 10.3389/fnins.2013.00215

Apostol, T. M. (1969). Multi-Variable Calculus and Linear Algebra with

Applications to Differential Equations and Probability, 2nd Edn. New York, NY:

Wiley.

Azghadi, M. R., Linares-barranco, B., Abbott, D., Leong, P. H. W., and Member,

S. (2017). A hybrid CMOS-memristor neuromorphic synapse. IEEE Trans.

Biomed. Circ. Syst. 11, 434–445. doi: 10.1109/TBCAS.2016.2618351

Basterretxea, K., Tarela, J. M., and del Campo, I. (2004). Approximation of sigmoid

function and the derivative for hardware implementation of artificial neurons.

IEE Proc. Circ. Devices Syst. 151, 18–24. doi: 10.1049/ip-cds:20030607

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran,

A. R., Bussat, J. M., et al. (2014). Neurogrid: a mixed-analog-digital

multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716.

doi: 10.1109/JPROC.2014.2313565

Bill, J., and Legenstein, R. (2014). A compound memristive synapse model for

statistical learning through STDP in spiking neural networks. Front. Neurosci.

8:412. doi: 10.3389/fnins.2014.00412

Börgers, C., and Kopell, N. (2003). Synchronization in networks of excitatory

and inhibitory neurons with sparse, random connectivity. Neural Comput. 15,

509–538. doi: 10.1162/089976603321192059

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,

et al. (2007). Simulation of networks of spiking neurons: a review of tools

and strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-

0038-6

Carnevale, N., and Hines, M. (2006). The NEURON Book. Cambridge: Cambridge

University Press.

Cassidy, A., Denham, S., Kanold, P., and Andreou, A. (2007). “FPGA based silicon

spiking neural array,” in Biomedical Circuits and Systems Conference, 2007,

BIOCAS 2007 (Montreal, QC: IEEE), 75–78.

Caulfield, A. M., Chung, E. S., Putnam, A., Angepat, H., Fowers, J., Haselman, M.,

et al. (2016). “A cloud-scale acceleration architecture,” in 2016 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO) (Taipei:

IEEE), 1–13.

Cheung, K., Schultz, S. R., and Luk, W. (2016). NeuroFlow: a general purpose

spiking neural network simulation platform using customizable processors.

Front. Neurosci. 9:516. doi: 10.3389/fnins.2015.00516

Comer, J. M., Cerda, J. C., Martinez, C. D., and Hoe, D. H. K. (2012). “Random

number generators using Cellular Automata implemented on FPGAs,” in

Proceedings of the 2012 44th Southeastern Symposium on System Theory (SSST)

(Jacksonville, FL), 67–72.

Davison, A. P. (2009). PyNN: a common interface for neuronal network

simulators. Front. Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Dayan, P., and Abbott, L. F. (2005). Theoretical Neuroscience: Computational

And Mathematical Modeling of Neural Systems, Computational Neuroscience.

Cambridge, MA: Massachusetts Institute of Technology Press.

Ercegovac, M., and Lang, T. (2003). Digital Arithmetic, The Morgan Kaufmann

Series in Computer Architecture and Design, 1st Edn. San Francisco, CA:

Morgan Kaufmann.

Ermentrout, G., and Terman, D. H. (2010). Mathematical Foundations of

Neuroscience, 1st Edn., Interdisciplinary Applied Mathematics 35. New York,

NY: Springer-Verlag.

Fidjeland, A. K., Roesch, E. B., Shanahan, M. P., and Luk, W. (2009). “NeMo: a

platform for neural modelling of spiking neurons using GPUs,” in 2009 20th

IEEE International Conference on Application-specific Systems, Architectures

and Processors (Boston, MA: IEEE), 137–144.

Fung, W.W. L. (2015).GPU Computing Architecture for Irregular Parallelism. PhD

thesis, University of British Columbia.

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2013). Overview of the SpiNNaker system architecture. IEEE Trans. Comput.

62, 2454–2467. doi: 10.1109/TC.2012.142

Gerstner, W., Kistler, W., Naud, R., and Paninski, L. (2014). Neuronal Dynamics:

From Single Neurons to Networks and Models of Cognition. Cambridge, UK:

Cambridge University Press.

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Golomb, S. W. (1981). Shift Register Sequences, Revised Edn. Laguna Hills, CA:

Aegean Park Press.

González, J. A., and Pino, R. (1999). A random number generator based

on unpredictable chaotic functions. Comput. Phys. Commun. 120, 109–114.

doi: 10.1016/S0010-4655(99)00233-7

Goodman, D., and Brette, R. (2009). The Brian simulator. Front. Neurosci. 3:26.

doi: 10.3389/neuro.01.026.2009

Graas, E. L., Brown, E. A., and Lee, R. H. (2004). An FPGA-Based approach to high-

speed simulation of conductance-based Neuron Models. Neuroinformatics 2,

417–436. doi: 10.1385/NI:2:4:417

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of

membrane current and its application to conduction and excitation

in nerve. J. Physiol. 117, 500–544. doi: 10.1113/jphysiol.1952.sp

004764

Hu, M., Member, S., Chen, Y., Yang, J. J., and Wang, Y. (2017). A

compact memristor-based dynamic synapse for spiking neural networks.

IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 36, 1353–1366.

doi: 10.1109/TCAD.2016.2618866

Izhikevich, E. M. (2003). Simple Model of Spiking Neurons. Trans. Neur. Netw. 14,

1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience: The Geometry of

Excitability and Bursting, 1st Edn. London, UK: MIT press.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al. (2014).

“Caffe: convolutional architecture for fast feature embedding,” in Proceedings of

the 22nd ACM International Conference on Multimedia - MM ’14 (New York,

NY. ACM Press), 675–678.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al.

(2017). “In-datacenter performance analysis of a tensor processing unit,”

in Proceedings of the 44th Annual International Symposium on Computer

Architecture, ISCA ’17 (New York, NY: ACM), 1–12.

Jupp, D. L. B. (1978). Approximation to data by splines with free knots. SIAM J.

Numerical Anal. 15, 328–343. doi: 10.1137/0715022

Kornbaum, H. F., and Enderle, J. (1995). GENESIS as a neural network modeling

tool for saccadic eye movements. Biomed. Sci. Instrument. 31, 19–24.

L’Ecuyer, P., and Panneton, F. (2005). “Fast random number generators based on

linear recurrences modulo 2: overview and comparison,” in Proceedings of the

Winter Simulation Conference (IEEE), 110–119.

Lin,M.H., Carlsson, J. G., Ge, D., Shi, J., and Tsai, J. F. (2013). A review of piecewise

linearization methods.Math. Probl. Eng. 2013:8. doi: 10.1155/2013/101376

Lukoševičius, M., and Jaeger, H. (2009). Reservoir computing approaches

to recurrent neural network training. Comput. Sci. Rev. 3, 127–149.

doi: 10.1016/j.cosrev.2009.03.005

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Maass, W. (2011). “Liquid state machines: motivation, theory, and applications,” in

Computability in Context: Computation and Logic in the Real World, eds B. S.

Cooper and A. Sorbi (London, UK: Imperial College Press), 275–296.

Mahajan, D., Park, J., Amaro, E., Sharma, H., Yazdanbakhsh, A., Kim, J. K., et al.

(2016). “TABLA: a unified template-based framework for accelerating statistical

machine learning,” in 2016 IEEE International Symposium on High Performance

Computer Architecture (HPCA) (IEEE), 14–26.

Matsumoto, M. (1998). Simple cellular automata as pseudorandom m-sequence

generators for built-in self-test. ACM Trans. Model. Comput. Simulat. 8, 31–42.

doi: 10.1145/272991.273007

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Minkovich, K., Thibeault, C. M., O’Brien, M. J., Nogin, A., Youngkwan

Cho, and Srinivasa, N. (2014). HRLSim: a high performance

spiking neural network simulator for GPGPU clusters. IEEE Trans.

Frontiers in Neuroscience | www.frontiersin.org 16 October 2018 | Volume 12 | Article 698

https://doi.org/10.3389/fnins.2013.00215
https://doi.org/10.1109/TBCAS.2016.2618351
https://doi.org/10.1049/ip-cds:20030607
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.3389/fnins.2014.00412
https://doi.org/10.1162/089976603321192059
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.3389/fnins.2015.00516
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1016/S0010-4655(99)00233-7
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.1385/NI:2:4:417
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1109/TCAD.2016.2618866
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1137/0715022
https://doi.org/10.1155/2013/101376
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1145/272991.273007
https://doi.org/10.1126/science.1254642
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Akbarzadeh-Sherbaf et al. FPGA Architecture for Spiking Neural Networks

Neural Netw. Learn. Syst. 25, 316–331. doi: 10.1109/TNNLS.2013.

2276056

Miyata, S., and Shen, X. (2005). Free-knot splines and adaptive knot. J. Japan

Statist. Soc. 35, 3–10. doi: 10.14490/jjss.35.303

Navabi, Z. (2011). Digital System Test and Testable Design: Using HDL Models

and Architectures, 1st Edn. New York, NY: Springer.

Osorio, R. (2016). “Pipelined FPGA implementation of numerical integration

of the Hodgkin-Huxley model,” in 2016 IEEE 27th International Conference

on Application-specific Systems, Architectures and Processors (ASAP) (IEEE),

202–206.

Ouyang, J., Lin, S., Qi, W., Wang, Y., Yu, B., and Jiang, S. (2014).“SDA: Software-

defined accelerator for large-scale DNN systems,” in 2014 IEEE Hot Chips 26

Symposium (HCS) (Cupertino, CA: IEEE), 1–23.

Pani, D., Meloni, P., Tuveri, G., Palumbo, F., Massobrio, P., and Raffo, L. (2017).

An FPGA platform for real-time simulation of spiking neuronal networks.

Front. Neurosci. 11:90. doi: 10.3389/fnins.2017.00090

Parhami, B. (2010). Computer Arithmetic : Algorithms and Hardware Designs, 2nd

Edn. Oxford series in electrical and computer engineering. Oxford University

Press .

Pecevski, D. (2009). PCSIM: a parallel simulation environment for neural

circuits fully integrated with Python. Front. Neuroinformat. 3:11.

doi: 10.3389/neuro.11.011.2009

Petit, C., Standaert, F.-X., Pereira, O., Malkin, T. G., and Yung, M. (2008). “A block

cipher based pseudo random number generator secure against side-channel key

recovery,” in Proceedings of the 2008 ACM symposium on Information, computer

and communications security - ASIACCS ’08 (New York, NY: ACM Press), 56 .

Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., and Millner, S.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modeling,” in Proceedings of 2010 IEEE International Symposium on Circuits

and Systems (Paris: IEEE), 1947–1950.

Seide, F., and Agarwal, A. (2016). “CNTK: microsoft’s open-Source deep-learning

toolkit,” in Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining - KDD ’16 (New York, NY: ACM Press),

2135–2135.

Shackleford, B., Tanaka, M., Carter, R. J., and Snider, G. (2002). “FPGA

implementation of neighborhood-of-four cellular automata random number

generators,” in Proceedings of the 2002 ACM/SIGDA Tenth International

Symposium on Field-programmable Gate Arrays - FPGA ‘02 (New York, NY:

ACM Press), 106.

Smaragdos, G., Isaza, S., van Eijk, M. F., Sourdis, I., and Strydis, C. (2014).

“FPGA-based biophysically-meaningful modeling of olivocerebellar neurons,”

in Proceedings of the 2014 ACM/SIGDA International Symposium on Field-

programmable Gate Arrays-FPGA ‘14 (New York, NY: ACM Press), 89–98.

Soleimani, H., Ahmadi, A., and Bavandpour, M. (2012). Biologically inspired

spiking neurons: piecewise linear models and digital implementation. IEEE

Trans. Circ. Syst. I 59, 2991–3004. doi: 10.1109/TCSI.2012.2206463

Stimberg, M., Goodman, D. F. M., Benichoux, V., and Brette, R. (2014). Equation-

oriented specification of neural models for simulations. Front. Neuroinform.

8:6. doi: 10.3389/fninf.2014.00006

Tommiska, M. T. (2003). Efficient digital implementation of the sigmoid function

for reprogrammable logic. IEE Proc. Comput. Digit. Techn. 150, 403–411.

doi: 10.1049/ip-cdt:20030965

Uhlhaas, P., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolić, D., and

Singer, W. (2009). Neural synchrony in cortical networks: history, concept and

current status. Front. Integr. Neurosci. 3:17. doi: 10.3389/neuro.07.017.2009

Yaghini Bonabi, S., Asgharian, H., Safari, S., Nili Ahmadabadi, M,. et al. (2014).

FPGA implementation of a biological neural network based on the Hodgkin-

Huxley Neuron Model . Front. Neurosci. 8:379. doi: 10.3389/fnins.2014.00379

Yang, S., Deng, B., Li, H., Liu, C., Wang, J., Yu, H., et al. (2018). FPGA

implementation of hippocampal spiking network and its real-time simulation

on dynamical neuromodulation of oscillations. Neurocomputing 282, 262–276.

doi: 10.1016/j.neucom.2017.12.031

Yang, S., Wei, X., Wang, J., Deng, B., Liu, C., Yu, H., et al. (2017). Efficient

hardware implementation of the subthalamic nucleus–external globus pallidus

oscillation system and its dynamics investigation. Neural Netw. 94, 220–238.

doi: 10.1016/j.neunet.2017.07.012

Yu, H., Wang, J., Deng, B., Wei, X., Wong, Y. K., Chan, W. L., et al. (2011).

Chaotic phase synchronization in small-world networks of bursting neurons.

Chaos 21:013127. doi: 10.1063/1.3565027

Yu, H., Wang, J., Du, J., Deng, B., Wei, X., and Liu, C. (2013). Effects of time

delay and random rewiring on the stochastic resonance in excitable small-

world neuronal networks. Phys. Rev. E 87:052917. doi: 10.1103/PhysRevE.87.

052917

Zhang, Y., Mcgeehan, J. P., Regan, E. M., Kelly, S., and Nunez-Yanez, J. L. (2013).

Biophysically accurate foating point neuroprocessors for reconfigurable logic.

IEEE Trans. Comput. 62, 599–608. doi: 10.1109/TC.2011.257

Zheng, N., and Mazumder, P. (2018). Learning in memristor crossbar-

based spiking neural networks through modulation of weight-dependent

spike-timing-dependent plasticity. IEEE Trans. Nanotechnol. 17, 520–532.

doi: 10.1109/TNANO.2018.2821131

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Akbarzadeh-Sherbaf, Abdoli, Safari and Vahabie. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 October 2018 | Volume 12 | Article 698

https://doi.org/10.1109/TNNLS.2013.2276056
https://doi.org/10.14490/jjss.35.303
https://doi.org/10.3389/fnins.2017.00090
https://doi.org/10.3389/neuro.11.011.2009
https://doi.org/10.1109/TCSI.2012.2206463
https://doi.org/10.3389/fninf.2014.00006
https://doi.org/10.1049/ip-cdt:20030965
https://doi.org/10.3389/neuro.07.017.2009
https://doi.org/10.3389/fnins.2014.00379
https://doi.org/10.1016/j.neucom.2017.12.031
https://doi.org/10.1016/j.neunet.2017.07.012
https://doi.org/10.1063/1.3565027
https://doi.org/10.1103/PhysRevE.87.052917
https://doi.org/10.1109/TC.2011.257
https://doi.org/10.1109/TNANO.2018.2821131
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	A Scalable FPGA Architecture for Randomly Connected Networks of Hodgkin-Huxley Neurons
	1. Introduction
	2. Materials and Methods
	2.1. Neuron and Network Model
	2.2. Number System Representation
	2.3. Hardware Platform Constraints
	2.4. Piecewise Linear Approximation
	2.5. FPGA Implementation of a Single Neuron
	2.6. Proposed Pipeline Network Architecture
	2.6.1. Memory Banks (Neuron State Memory)
	2.6.2. Update Synaptic Conductance Unit
	2.6.2.1. Spike vector
	2.6.2.2. Permutation vector
	2.6.2.3. Approximate counters

	2.6.3. Deep Pipelining

	3. Results
	4. Discussion and Conclusion
	Author Contributions
	Supplementary Material
	References

