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The auditory steady state evoked response (ASSR) is a robust and frequently utilized
phenomenon in psychophysiological research. It reflects the auditory cortical response
to an amplitude-modulated constant carrier frequency signal. The present report
provides a concrete example of a group analysis of the EEG data from 29 healthy human
participants, recorded during an ASSR paradigm, using the FieldTrip toolbox. First, we
demonstrate sensor-level analysis in the time domain, allowing for a description of the
event-related potentials (ERPs), as well as their statistical evaluation. Second, frequency
analysis is applied to describe the spectral characteristics of the ASSR, followed by
group level statistical analysis in the frequency domain. Third, we show how time-
and frequency-domain analysis approaches can be combined in order to describe
the temporal and spectral development of the ASSR. Finally, we demonstrate source
reconstruction techniques to characterize the primary neural generators of the ASSR.
Throughout, we pay special attention to explaining the design of the analysis pipeline
for single subjects and for the group level analysis. The pipeline presented here can be
adjusted to accommodate other experimental paradigms and may serve as a template
for similar analyses.

Keywords: ASSR, EEG, FieldTrip, group analysis, ERP, beamforming

INTRODUCTION

Multi-subject clinical or cognitive studies that require the group analysis of large amounts of
electrophysiological data may be challenging for the researcher involved, for several reasons. For
instance, although many software packages for electrophysiological analysis have well documented
functionality for individual subject analysis, the possibilities for group analysis are limited,
requiring the researcher to export single subject values into a generic statistical package such as
SPSS. In addition, many EEG system specific software packages (e.g., BrainVision Analyzer and
Neuroscan Scan), as well as many commercially available generic packages (e.g., ASA, BESA,
and Curry), require the user to interact with the data through a graphical user interface (GUI).
Although the GUI allows for easy visualization and interaction with the data, the execution of error
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free, consistent (across subjects), and reproducible analysis
protocols requires the researcher to be meticulous during the
interaction with the GUI. Also, GUI-based software does not
provide an easy way to re-evaluate group-level effects after
making changes to the analysis parameters. Finally, by nature of
the graphical user interface, the researcher’s documentation of the
analysis pipeline is often inadequate for robust reproducibility; in
the best case the pipeline documentation comprises a descriptive
recipe of which buttons to press, but often it only outlines the
general idea of the analysis without sufficient details required to
reproduce it.

Software tools that allow for researcher-data interactions
by means of scripts provide some advantages to purely GUI-
based software, with respect to the ease with which important
aspects of the data analysis protocol can be addressed. Consistent
single-subject analysis is ensured by (re-)using the exact same
sequence of commands across subjects. Pipelines can be easily
rerun, which facilitates the evaluation of parameter choices. Also,
reproducibility of analysis results can be enhanced by publishing
or sharing the scripts. FieldTrip (Oostenveld et al., 2011) is a
well-established open source MATLAB toolbox for script-based
electrophysiological data analysis. FieldTrip does not have a GUI
and requires some programming proficiency from its users in
order to write and evaluate scripts; this may deter researchers
from using it for their data analysis, despite the advantages from
script-based analysis as outlined above.

In this study we demonstrate how to perform group
analysis of electroencephalographic data, from raw EEG to
publishable visualization of results, using FieldTrip. It is primarily
aimed at researchers with (yet) little technical know-how and
demonstrates that such an analysis comprises a relatively limited
amount of computer code to implement a meaningful pipeline.
We provide step-by-step recipes, each of which implements
a conceptual analysis step. The execution time of the whole
sequence of analysis steps (e.g., resulting in Figure 1) is less
than 30 min on a typical computer (MacBook Pro, 2.8 GHz,
16 GB RAM), and the organization of the code allows for
fast re-computation and evaluation of results after changing
some specific parameters. Documentation of the analysis pipeline
is straightforward, since the scripts fully reflect the pipeline,
thus fostering efficient re-evaluation of analysis protocols,
reproducibility of findings and exchange between colleagues and
research groups.

The data used in this study comes from an experiment
that used the auditory steady state evoked response (ASSR),
a robust and replicable phenomenon in psychophysiological
research (Stapells et al., 1984). In a representative application,
the amplitude of a carrier sinusoidal sound wave (e.g., at
500 Hz) is modulated by a periodically varying envelope (e.g., at
40 Hz). This amplitude-modulated (AM) stimulus evokes a clear
40 Hz auditory evoked potential in the electroencephalogram
(EEG) or auditory evoked field in the magnetoencephalogram
(MEG) (Legget et al., 2017). ASSR-paradigms have a widespread
adoption in clinical studies (Korczak et al., 2012; O’Donnell et al.,
2013), in patients with tinnitus (Wienbruch et al., 2006; Schlee
et al., 2008; Diesch et al., 2010; Sereda et al., 2013), schizophrenia
(Spencer et al., 2008; Krishnan et al., 2009; Rass et al., 2012), major

depressive disorder (Chen et al., 2016; Isomura et al., 2016), and
autism (Wilson et al., 2007; Edgar et al., 2016; Rojas et al., 2011).
ASSR-paradigms are also used as a diagnostic tool to estimate
normal and abnormal hearing sensitivity (Korczak et al., 2012). In
cognitive studies, ASSR-paradigms have for example been used to
demonstrate the functional tonotopic organization of the human
auditory cortex (Pantev et al., 1996), and as means of evaluating
the effects of top-down attention on early sensory processes (Ross
et al., 2004; Muller et al., 2009; Weisz et al., 2012).

We provide step-by-step analysis for group level analysis,
using the open source MATLAB toolbox FieldTrip. All scripts
and data are available at https://doi.org/11633/di.dccn.DSC_
3015000.00_810 to allow readers to reproduce the analyses in
details. The first part will be focused on analysis in the time
domain and focuses on the group-level characteristics of the
stimulus-onset related ERP. In the second part, we will analyze
the ERPs in the frequency domain, quantifying the steady-state
response. We conclude the analysis pipeline by applying a spatial
filtering algorithm to the time and frequency domain data in
order to identify the cortical generators of the auditory evoked
response.

MATERIALS AND METHODS

Participants
Twenty-nine healthy individuals (11 female) participated in
the study. The mean age was 28 years, ranging from 21 to
36 years. All participants gave written informed consent in
accordance with the declaration of Helsinki. The study design
and protocol were approved by the local Ethics Committee
of the University of Konstanz. Inclusion criteria were: normal
intellectual abilities, no history of psychiatric or neurological
disorders with loss of consciousness and no substance abuse.
Prior to experiment participants were screened with the Mini
International Neuropsychiatric Interview (Sheehan et al., 1998).
All but two participants were right handed as confirmed by the
Edinburgh Handedness Inventory (Oldfield, 1971). Following
participation, all subjects were compensated with 20 Euros.

Stimuli and Experimental Task
Stimuli were similar to previous reports (Muller et al., 2009).
We used a composite signal consisting of 500 Hz carrier sine
wave modulated by a 40 Hz sinusoidal signal. This composite
signal was presented with a sampling rate of 44.100 Hz and a
modulation depth of 100%. At stimulus onset and offset we used
a 50 ms fade in and fade out period, in order to avoid these
to be audible as a clicking noise. A total of 120 epochs of 2 s
were acquired with a 1 s inter-trial interval (ITI). All stimuli
were applied via headphones to the left ear only, thus engaging
predominantly right auditory cortical areas.

Data Acquisition
EEG was acquired while the subjects were seated in an
acoustically shielded room, using a high-density, 256-channel
EGI system with a HydroCel Geodesic Sensor Net (Electrical
Geodesics, Inc., Eugene, OR, United States). Data was filtered
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FIGURE 1 | Time-domain analysis. (A) Grand average of the ASSR across multiple electrodes. (B) ASSR averaged across central electrodes. Time is depicted on
the abscissa and amplitude on the ordinate. (C) Scalp topography of the N1 top (170–230 ms) and P2 bottom (250–300) components of the grand averaged ASSR.
(D) Difference between pre and post-stimulus activity across multiple electrodes expressed as units of t-values. Shaded areas at electrode clusters reflect time
clusters motivating the rejection of the null hypothesis. (E) Time course of the difference between pre and post-stimulus activity expressed in units of t-values. Gray
areas highlight the time clusters of significant condition differences. Time is depicted on the x-axis and difference strength on the y-axis. (F) Similar to (C), but in units
of t-values.

with 0.1 Hz high-pass and 400 Hz low-pass hardware filters and
sampled at 1 KHz. The vertex (Cz) electrode served as reference
during data recording. In line with EGI acquisition guidelines, the
electrode impedances were kept below 30 k�. All of the reported
analyses were performed on a MacBook Pro with a 2.8 GHz
processor, 16 GB 1600 MHz DDR3 RAM and using MATLAB
version 2017b (MathWorks, Natick, MA, United States).

Data Epoching and General
Preprocessing
In general, an analysis pipeline implemented using the FieldTrip
toolbox consists of a sequence of calls to specific functions
from the toolbox. Each of these functions reflect a conceptual
analysis step and produce as an output a data object. The
input to these functions is always a so-called configuration (cfg)
structure, which specifies the options and algorithmic parameters
used by the function, and usually the data is passed as second
input argument. Here, the first step of our analysis pipeline

consisted of the specification of occurrence of epochs-of-interest
(trials) in the raw data file, based on the timing information of
the stimulus onset triggers that were recorded along with the
continuous data. This first step was followed by the reading
in of the epochs-of-interest, followed by the application of a
bandpass filter and rereferencing to the average reference. In
FieldTrip, the extraction of the epochs is achieved with a call
to the ft_definetrial function. Reading the data from disk and
basic preprocessing is achieved with a call to the function
ft_preprocessing.

Ft_definetrial is a function that extracts the event structure
from a raw data file, for instance by reading a digital trigger
channel, or by extracting timestamps of relevant events or
annotations from the metadata. Next, the event structure is
interpreted to define the onsets and offsets of epochs-of-interest.
This requires the specification of the event values of interest,
which in this specific dataset are the triggers ‘DIN3’ and ‘DIN5.’
Also, the cfg needs to contain information with respect to the
length of the requested epochs, defined in seconds. In this case,

Frontiers in Neuroscience | www.frontiersin.org 3 October 2018 | Volume 12 | Article 711

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00711 October 5, 2018 Time: 19:9 # 4

Popov et al. Group Analysis in FieldTrip

we specified cfg.trialdef.prestim= 1; and cfg.trialdef.poststim= 3,
i.e., 1 s before and 3 s after stimulus onset, to allow for a sufficient
length for artifact-free digital filtering. Subsequently, using the
epoch definition as obtained from ft_definetrial, the function
ft_preprocessing was used to read in the data from a specified set
of channels, apply offline re-referencing to the average reference,
and a digital bandpass filter. The relevant options specified were:
(1) cfg.channel = egi256customlay.label, for the channel selection
(egi256customlay is a MATLAB structure, the label field contains
a list with the names of all EEG channels), (2) cfg.reref = ‘yes,’
together with cfg.refchannel = ‘all’ for the rereferencing, and (3)
cfg.bpfilter = ‘yes’; cfg.bpfreq = [1 48]; cfg.bpfilttype = ‘firws,’ for
the filtering [a filter type of firws uses a windowed-sinc finite
impulse response filter (Widmann et al., 2015)]. These analysis
steps are documented in the analysis script ASSR_timedomain.m
from line 1 to line 53. The required time to run this step was
19 min.

Computation of Event-Related Potentials
and of the Group Average
To compute the event-related potentials (ERPs) per subject, the
epoched time series is averaged with the ft_timelockanalysis
function. The grand mean ERP is obtained by including all
individual subjects’ ERP data structures as an input argument to
the ft_timelockgrandaverage function. In addition to computing
an average ERP, these functions allow for the selection
of specific latency windows and/or subsets of channels for
subsequent analysis. Here, we used cfg.latency = [−0.5 2];
and cfg.channel = [‘all’ ‘-E30’ ‘-E192’]; to do a selection of
the latency window, and to discard 2 bad electrodes. The
computation of individual ERPs and the grand mean ERP
took 8 min and is documented in ASSR_timedomain.m lines
58–84.

Visualization of the Group Average ERP
FieldTrip contains several functions to visualize the
spatiotemporal structure of EEG data. Here, we demonstrate
the use of ft_multiplotER, ft_singleplotER, and ft_topoplotER,
which display ERP-data, as a set of ERP time courses on
a channel layout, an average time course across a set of
specified channels, and a spatial topography in a specified
latency window, respectively. This set of functions allows
for interactive exploration of the data by making iterative
selections (by dragging a square in the figure panel) of subsets
of channels or latency windows for displaying time courses and
topographies.

These functions require a layout of a 2-dimensional projection
of the electrode positions on the computer screen. Most EEG
recording systems do not represent electrode positions in the
subjects’ data files; a generic way to deal with this is to specify a
template layout in the cfg.layout field. The prerequisite here is that
the electrode names in the layout file match the electrode names
in the data structure’s channel-field. For these data, we have
created a custom layout ‘egi256customlay.mat,’ which excludes
the neck and cheek electrodes from the electrode array. Further
information about the construction and design of custom layouts

can be found in the layout tutorial and information about
the available template layouts can be found in the template
documentation1.

The call to the ft_multiplotER function will produce the
illustration in Figure 1A (in ASSR_timedomain.m, lines 90–
95). The auditory event related potential over fronto-central
electrodes can be visualized using the function ft_singleplotER
with the additional configuration options specifying the desired
channels in cfg.channel and controlling the ordinate range
between −1 and 1 mV in cfg.ylim. The color of the line is
specified with cfg.graphcolor and the linewidth is controlled with
cfg.linewidth (in ASSR_timedomain.m, lines 96–104). It is often
useful to illustrate the level of variation across participants. This
can be achieved by specifying cfg.keepindividual = ‘yes’; during
the call to ft_timelockgrandaverage. The activity of one or a
group of electrodes can be selected and averaged using the
function ft_selectdata and the configuration options cfg.channel
and cfg.avgoverchan. Finally, using the MATLAB functions ‘patch’
and ‘line’ an averaged response together with its corresponding
standard deviation can be visualized. This is illustrated in
Figure 1B (in ‘ASSR_timedomain.m,’ lines 117–141).

A topographic illustration of the data is provided using the
function ft_topoplotER focusing of the N100 (170 to 230 ms
post-stimulus onset) and P200 (250 to 300 ms post-stimulus
onset) components. The latency specification is provided by
the configuration option cfg.xlim. The other configuration
options pertain to the particular illustration style and depend
on the taste of the user. Typing ‘help ft_topoplotER’ in
the MATLAB command window gives a detailed overview
of the various configuration alternatives. Lines 144–168 in
ASSR_timedomain.m reproduce Figure 1C.

Statistical Evaluation of Stimulus Onset
Evoked Activity
In FieldTrip, statistical decisions can be done using non-
parametric statistical tests using spatiotemporal clustering to
address the family-wise error rate (Maris and Oostenveld, 2007).
The general idea is that real neurophysiological effects have
specific structure in the spatiotemporal data matrix, which can
be exploited in order to maximize statistical sensitivity. Due to
the temporal and spatial structure in the EEG signal, neighboring
time-points and electrodes are likely to reflect the same neural
phenomena; aggregating these spatiotemporal neighbors into
clusters pools the evidence for an effect being present. The
spatiotemporal clustering is combined with a permutation
framework to generate a distribution of expected cluster-based
test statistics under the null-hypothesis of exchangeability of the
data across conditions or experimental groups. In this way, a
large number of statistical evaluations, which is custom in a mass
univariate context, is reduced to just a single statistical evaluation,
thus elegantly providing control for the family-wise error rate.
Cluster-based statistical testing provides a powerful approach to
EEG and MEG data. We recommend this detailed overview with
accessible examples for further reading2.

1http://www.fieldtriptoolbox.org/tutorial/layout
2http://www.fieldtriptoolbox.org/tutorial/cluster_permutation_timelock
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In order to be able to form clusters across the spatial
dimension, a so-called neighborhood structure needs to be
created. This structure contains information about the spatial
distribution of the electrodes, and which electrodes are
considered to be neighbors. For this purpose, we use the function
ft_prepare_neighbours and store the output in a variable called
‘neighbors’ (in ASSR_timedomain.m, lines 174–181). In many
EEG setups the exact geometrical information about the 3-D
spatial distribution of the electrodes is not directly available
from the data. To address this, FieldTrip’s template directory
contains a collection of common electrode geometries. Here we
read in the standard 3D template file of EGI’s 256 electrode net,
using the function ft_read_sens; the position of all electrodes
is subsequently used to determine the spatial neighbors of each
electrode.

In a typical experimental context, statistical inference is done
on a contrast between experimental conditions or groups. To
illustrate a group-level statistical evaluation in the data presented
here, where we just have a single condition, we will compare
the early post-stimulus-induced signals with the pre-stimulus
baseline window, where the length of the windows is matched.
To this end, we first split the single participant ERP data
into 2 data structures, representing the baseline and the post-
stimulus onset segments, respectively. This can be achieved
with the function ft_selectdata, where the cfg.latency option
specifies the latency window of the data that is to be cut out
from the longer segments. The length of the data in both
‘conditions’ is kept equal, i.e., 500 ms to facilitate subsequent
comparison (in ASSR_timedomain.m, lines 184–193). This step
in our pipeline results in two variables ‘act’ and ‘bl,’ which
are arrays that contain the single participant ERP data for the
selected time segments. The statistical evaluation is performed
by calling the function ft_timelockstatistics, using a somewhat
elaborate configuration in order to specify the exact details
of the statistical evaluation procedure. For instance, it is also
possible to perform regular parametric mass-univariate statistical
inference, or to specify other multiple comparison correction
schemes. Here, in order to apply non-parametric permutation
based inference, we need to specify cfg.method = ‘montecarlo.’
As a consequence, the function will provide a Monte Carlo
approximation of the randomization distribution for a chosen
test statistic, which is specified to be a dependent samples
T-statistics (cfg.statistic = ‘ft_statfun_depsamplesT’). In order
to exploit the spatiotemporal clustering scheme for multiple
comparisons correction, we specify cfg.correctm = ‘cluster.’
Once it is decided to use the clustering scheme for multiple
comparison correction, a channel neighborhood structure needs
to be provided, as indicated above, in the cfg.neighbours field.
The sample specific T-statistic, 1000 samples of which as
defined by cfg.numrandomization = 1000; are produced and
form the randomization distribution of the test statistic. The
probability of falsely rejecting the null hypothesis is defined by
cfg.alpha = 0.025; corresponding to a false alarm rate of 0.05
divided by 2 in a two-sided test.

The final important piece of information that needs to be
provided, is cfg.design, which is a FieldTrip style ‘design matrix’
that specifies how the individual input data objects relate to

the experimental subjects and conditions. The code for the
statistical evaluation is documented in ASSR_timedomain.m lines
197 to 222.

To visualize the output of the statistical evaluation, we can use
the same functionality as for the visualization of the grand average
ERP, as described above. With ft_multiplotER, in combination
with cfg.parameter = ‘stat’ we can obtain a figure that displays
the test-statistic as a function of time and electrode, in this case it
shows t-values. We can also specify a cfg.maskparameter, which is
the fieldname of the numeric data in the input structure that can
be used to highlight specific spatiotemporal features in the data.
In this case we used the ‘mask’-field, which highlights the time
points that constitute the cluster of spatiotemporally contiguous
data points, on the basis of which the null hypothesis is rejected.
Lines 225 to 232 in ASSR_timedomain.m reproduces Figure 1D.

Using the function ft_singleplotER the time-course of
condition differences can be illustrated for the set of
fronto-central electrodes described above. Lines 235–249 in
ASSR_timedomain.m generate the illustration in Figure 1E.

Finally, a topographic representation of the observed effect
is visualized in the same manner as the topography of the
N1 and P2 components, yet instead of scalp distribution of
amplitude differences, a scalp distribution of condition difference
expressed in t-values is shown in Figure 1F and lines 252–
275 in ASSR_timedomain.m. The entire statistical evaluation and
visualization of the outcome took 1 min and 45 s.

Frequency Domain Analysis
Frequency analysis was performed on the individual ERP data
and is documented in the analysis script ‘ASSR_freqdomain.m.’
This part of the pipeline aims to quantify the electrophysiological
response to the actual steady-state stimulation. To this end, the
trial-averaged ERP is spectrally decomposed, while focusing on a
post-stimulus onset latency window, after the stimulus transients
have subsided. This approach, i.e., performing a spectral analysis
on trial-averaged time courses, is only optimal in situations where
the phase of the carrier wave signal is identical across trials. If this
is not the case, trial-based averaging in the time domain leads
to cancelation effects, and thus to suboptimal estimates of the
steady-state response if the spectral analysis is performed on these
averages. As an alternative, inter-trial coherence (ITC) can be also
computed. Individual ERP’s are loaded and data of equal length
(1 sec) during baseline and post-stimulus onset was extracted
(lines 34 to 39 in ASSR_freqdomain.m).

Subsequently, for each individual and condition (‘bl’
and ‘act’) power spectra were computed, based on fast
Fourier transformation (FFT) of the segmented data after
the application of a Hanning taper. This was done using
the function ft_freqanalysis, with cfg.method = ‘mtmfft,’ and
cfg.taper = ‘hanning.’ Frequencies of interest can be defined
by the configuration option cfg.foilim and were specified in the
range from 0 to 45 Hz (in ASSR_freqdomain.m, lines 42–48).
A detailed overview of the various spectral decomposition
methods, the rationale behind them as well as their application is
documented in an online tutorial3.

3http://www.fieldtriptoolbox.org/tutorial/timefrequencyanalysis
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Following spectral decomposition, a grand averaged frequency
domain activity per condition was computed using the function
ft_freqgrandaverage.

Visualization of the grand averaged spectra can be illustrated
with the function ft_mulitplotER, much in the same way as for
the time domain data. Lines 60 to 66 in ASSR_freqdomain.m
reproduce the illustration in Figure 2A. Ft_singleplotER can be
used to visualize the spectrum, averaged across sets of electrodes.
Note that in contrast to the time domain illustration above,
two input arguments are used. In this way, the spectral content
of the data during the baseline and the stimulation activity
can be visualized in a single figure (Figure 2B, lines 69–78 in
ASSR_freqdomain.m). The total duration of frequency analysis
is 30 s.

Statistical Evaluation of Frequency
Domain Data
Statistical evaluation of the difference in spectral power between
conditions can be examined using the function ft_freqstatistics.
The configuration options remain largely the same, as compared
to the time domain comparison described above. Because the
research question pertains to a particular frequency (i.e., 40 Hz
response) the statistical evaluation is constrained to a ±1 Hz
around this frequency by the configuration options cfg.frequency
and cfg.avgoverfreq. For didactical reasons we constrain the
threshold of cfg.clusteralpha.

The outcome of the statistical evaluation can again be
illustrated with the function ft_topoplotER. The electrodes
contributing to the spatial cluster on the basis of which significant
condition differences were found can be visualized by the option
cfg.highlight in combination with cfg.highlightchannel. These
channels were defined using the binary mask provided in the
structure ‘statfreq.’ Lines 93 to 138 in ‘ASSR_freqdomain.m’
reproduce Figure 2C. Duration of statistical evaluation of
frequency domain data is 16 s.

Time-Frequency Domain Analyses
In a typical application, spectral analysis techniques are used
to obtain a time-frequency representation (TFR) of the signals.

In FieldTrip, this decomposition is done with the function
ft_freqanalysis, specifying one of the supported time-frequency
decomposition algorithms in cfg.method. Here, we demonstrate
this functionality in the analysis script ‘ASSR_timefreqdomain,’
using the method ‘mtmconvol,’ which implements a sliding
window FFT. A window of 500 ms was used that slid over the
data with increments of 50 ms. The desired output of this analysis
was spectral power thus cfg.output = ‘pow,’ using convolution
in the frequency domain specified by cfg.method = ‘mtmconvol.’
The frequency bins of interest are defined by cfg.foi and the time
points of interest by the option cfg.toi. The length of the time
window per frequency of interest is defined by cfg.t_ftimwin.
Here, we used as input signals the individual trial-averaged ERPs.
Note that in typical applications where the induced activity
is time-locked but not phase-locked to the onset of an event,
single trial data should be entered in the analysis. Following
grand averaging using the ft_freqgrandaverage the output can
be visualized using the function ft_multiplotTFR. Lines 24–64 in
ASSR_timefreqdomain.m reproduce Figure 3A and require 140 s
computing time.

The average of the time-frequency representation of
power (TFR) over the fronto-central electrodes can be
illustrated using the function ft_singleplotTFR lines 68–75
in ASSR_timefreqdomain.m.

Statistical Evaluation of Time-Frequency
Data
Similar to time and frequency domain data, statistical evaluation
of time-frequency data can be achieved by the function
ft_freqstatistics. This is documented in lines 91–155 in
ASSR_timefreqdomain.m and is computed within 57 s.

Reconstruction of Evoked Potentials and
the Steady-State Response With
Beamforming
Time Domain Beamforming
Source reconstruction of neuronal activity can be performed
using various algorithmic approaches. FieldTrip contains

FIGURE 2 | Frequency domain analysis. (A) Grand average power spectrum for the pre- (black) and post-stimulus (red) ASSR across multiple electrodes. (B) Grand
average power spectrum averaged across central electrodes. Line color identical to (A). (C) Scalp topography of the condition difference in 40 Hz power expressed
in units of t-values. Electrode clusters on the basis of which the null hypothesis was rejected are highlighted with asterisks.
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FIGURE 3 | Time-frequency analysis. (A) Grand averaged time-frequency representation of power (TFR) across multiple electrodes. (B) TFR averaged across central
electrodes. Time is depicted on the x and frequency on the y axis. Warm colors reflect increase of oscillatory power. (C) TFR of the difference between pre and
post-stimulus activity. Axis are identical to (B); warm colors correspond to an increase and cold colors to a decrease in power during post-relative to pre-stimulus.
The observed time-frequency cluster on the basis of which the null hypothesis is rejected is highlighted by the black line.

functionality for parametric dipole modeling (using the function
ft_dipolefitting), distributed source modeling (minimum-
norm estimation), and beamformers (using the function
ft_sourceanalysis). Here, we demonstrate source reconstruction
with beamformers. First, we used a linearly constrained
minimum variance (LCMV) beamformer (Van Veen et al., 1997),
to reconstruct the ERP at the cortical level. Beamformer methods
use the data covariance matrix and forward models that are
specific to the locations-of-interest to construct spatial filters
optimized for these locations. Beamformers are often applied by
scanning the whole brain, computing the spatial filter for each
location. Ideally, forward models are computed using volume
conduction models based on individual participants’ anatomical
information, yet this information is often not available for
participants to EEG studies. In that case, forward models can
be computed using template volume conduction models, in
combination with a specification of the electrode positions,
coregistered to the conduction model. Here, the forward model
was calculated using a realistically shaped three-layer boundary-
element volume conduction model, on a 3-dimensional grid of
dipole locations with equidistant spacing of 8 mm.

The procedures are documented in the analysis script
‘ASSR_lcmv.m.’ This analysis in source space is focused on the
stimulus onset response, and particularly the N1 latency window
from 170 to 230 ms post-stimulus onset (see above). First, the
leadfield, the volume conduction model of the head (i.e., the
headmodel), as well as the position of the electrodes are loaded
into memory and visualized (lines 28–40, in ‘ASSR_lcmv.m’).
Subsequently, for each subject the epoched data is loaded
where the preparation of the sensor-level data largely follows
the same recipe as the ERP analysis. The most important
difference with the earlier procedure is that the source analysis
requires an estimate of the sensor covariance matrix of the
epoched (yet unaveraged) data. Bad electrodes are excluded
using ft_selectdata and the data is bandpass filtered between
1 and 40 Hz using ft_preprocessing. The data covariance is
estimated using the function ft_timelockanalysis (lines 63–67
in ‘ASSR_lcmv.m’). The data consists of fewer channels than
the precomputed leadfield. The section in ASSR_lcmv.m (lines

71–80) prunes the leadfields as pre channels present in the
data.

Source analysis is performed using the function
ft_sourceanalysis. The desired reconstruction method is
defined by the option cfg.method = ‘lcmv’; in combination
with a specification of the electrodes (cfg.channel), leadfield
(cfg.grid) and headmodel (cfg.headmodel). Additional options,
specific to the lcmv method, can be defined by cfg.lcmv.xxx.
Here, we included the preservation of the spatial filters in the
output structure (cfg.lcmv.keepfilter), a fixed dipole orientation
(cfg.lcmv.fixedori), weights normalization accounting for
the center of the head bias (cfg.lcmv.weightnorm) together
with (cfg.lcmv.projectnoise), and regularization parameter
(cfg.lcmv.lambda). This is documented in ‘ASSR_lcmv.m’ lines
83–110.

A more detailed description of source analysis strategies and
their implementation can be found in a series of online tutorials4.
The total duration of source analysis in the time–domain is
16 min.

To visualize the outcome of the source analysis, the individual
source reconstructions are loaded and averaged across subjects,
to obtain the grand-average of brain activity during the N1
latency window (Figure 4 top row). This is done by the function
ft_sourcegrandaverage and the result can be interpolated
onto a template anatomical MRI using ft_sourceinterpolate
(lines 127–135, in ASSR_lcmv.m). A volumetric atlas according
to Automated Anatomical Labeling (AAL) scheme (Tzourio-
Mazoyer et al., 2002) can be read with the function ft_read_atlas
(line 138 in ASSR_lcmv.m). Finally, the interpolated grand-
average is visualized using the function ft_sourceplot, where
the anatomical information about activity at a given location is
specified by the cfg.atlas= aal; option. In addition, a thresholding
mask is created to highlight 98% of maximum activity. This
mask is applied during the plotting if the cfg.maskparameter
option has been specified (lines 139–148 in ASSR_lcmv.m).
The computational time of grand averaging and visualization is
2 min.

4http://www.fieldtriptoolbox.org/tutorial#source_reconstruction
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FIGURE 4 | Source reconstruction. Top- Coronal, transversal and axial slices of reconstructed N1 activity in neurological convention. The blue cross hairs correspond
to the maximal activation within the right Heschl’s gyrus. Bottom- same as top but utilizing dynamic imaging of coherent sources (DICS) as source reconstruction
method. Color code represents the increase in coherence with a surrogate 40 Hz signal during the post-stimulation period as compared to the pre-stimulus baseline.

Frequency Domain Beamforming
Rather then focusing on a particular latency, it is also possible to
reconstruct activity for a given frequency of interest. The utilized
stimulation frequency of 40 Hz appears an appropriate target
for frequency domain beamforming. Here, we demonstrate the
use of Dynamic Imaging of Coherent Sources (DICS) (Gross
et al., 2001), and source reconstruct the cortical response that
is phase-locked to the 40 Hz modulation signal by means of
the coherence coefficient. In the current context of steady-
state auditory stimulation, this procedure turns out to be a
bit more involved than a straightforward sequence of FieldTrip
functions in their standard application, and requires some
additional manipulations to the data to work. The reason for
this is that steady-state auditory stimulation induces a high
SNR signal that leads to (near) simultaneous (i.e., zero-lag
correlated) activation in bilateral auditory areas. Consequently,
traditional beamformers (which scan the brain using a single
equivalent current dipole as the underlying source model) will
fail to yield reliable results, because of the violation of the
underlying assumption that for any source-of-interest there are
no other temporally correlated sources. To address this issue,
more sophisticated beamformer source models can be used
(Dalal et al., 2008; Schoffelen and Gross, 2009). In this case, we
implemented the beamformer to scan through the brain volume,
and reconstruct the activity of pairs of dipoles, where left/right
symmetric dipole pairs were used as a source model.

The procedures are documented in the analysis script
‘ASSR_dics.m’ and are largely similar to the ones described
above. The symmetric dipole source model is created on
lines 41–50 in ASSR_dics.m. FieldTrip allows for the creation

of symmetric dipole-pair source models in the function
ft_prepare_sourcemodel, but in the current example we bypass
this functionality, because we are working with precomputed
leadfields. Alternatively, in the example script we create
compound leadfields directly, by concatenating for each grid
position, the corresponding dipole’s forward model, with the
forward model in the opposite hemisphere. In addition, we create
a ‘dummy’ signal that represents the 40 Hz modulation signal,
which is needed for the coherence computation. The frequency
domain beamformer relies on the cross-spectral density matrics.
This is calculated for pre and post-stimulus onset data, as well
as both data segments together (lines 87–95 in ‘ASSR_dics.m’).
The latter approach is required for the computation of ‘common’
spatial filters than can be subsequently applied to the pre-
and post-stimulus data separately. This effectively minimizes
the possibility of condition differences leading to biased filter
estimates. Source analysis is applied from lines 111–136 in
ASSR_dics.m. One thing to note is that the common spatial
filters, computed using the ‘dics’-method, are applied to the
individual conditions with the ‘pcc’-method [an acronym for
Partial and Canonical Correlation (Schoffelen and Gross, 2009)].
This change of method is needed because we used dipole pairs as
source models. Although the ‘dics’ and ‘pcc’ methods implement
the exact same mathematical algorithm for the computation
of the beamformer spatial filters, the methods differ in their
flexibility with which the source reconstructed data can be
represented. The data representation of the ‘dics’ methods sticks
closely to the description in the original paper (Gross et al., 2001).
In the present example, where we express the functional data as
a grid point specific coherence coefficient, this would result in
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each point estimate to reflect the modulation signal phase-locked
activity of two dipoles at once, which is difficult to interpret. The
‘pcc’ method allows for more fine-grained post-processing of the
source reconstructed activities. More specifically, here it is used
to separate at each grid point the ‘scanning dipole’-of-interest’s
from the ‘suppression dipole’-of-no-interest’s activity, before the
computation of the coherence coefficient between the scanning
dipole and the modulation signal.

The source analysis outcome is illustrated in Figure 4 bottom
row. Instead of visualizing N1 source power, the largest coherence
value with a surrogate 40 Hz signal during the ASSR stimulation
period (1–2 s) relative to pre-stimulation baseline (−10) is
illustrated. For comparison purposes the hairlines are kept at
the same coordinates for both source visualizations (e.g., N1 and
40 Hz coherence). Loading, grand averaging and visualization are
performed on lines 166–197 in ASSR_dics.m and require 17 s to
compute.

Data Access
The complete dataset, including raw and preprocessed data,
as well as all analysis scripts are published and available
for download on https://doi.org/11633/di.dccn.DSC_3015000.
00_810.

RESULTS

Analysis in the time-domain revealed a reliable mid-latency
ERP components (N1/P2) followed by steady evoked activity
(Figures 1A,B). The scalp topography of the N1/P2 components
shows an extremum at central electrodes, which reversed
its polarity between the N1 and P2 component. Both are
commonly observed and frequently reported manifestation of
evoked activity in the EEG, elicited by the onset of an auditory
stimulus.

There was significant difference between pre- and post-
stimulus brain activity (Figures 1D–F), as confirmed by the
cluster-based permutation procedure controlling for multiple
comparisons across the spatial (i.e., electrodes) and temporal
dimensions. Besides plotting the raw effect size in mV, the scalp
topography of the N1 and P2 effect size can be visualized as
t-values. This allows the strength of the observed effect to be
transferred to and expressed as a Cohen’s d of 1.85 for t-values
of 55. Furthermore, time and electrode clusters are visualized
reflecting the latencies/electrodes on the basis of which the null
hypothesis pertaining to the exchangeability of the pre and post-
stimulus data is rejected (Figures 1D,E).

Analysis in the frequency domain revealed a prominent
40 Hz peak in the spectrum of the ERP, in accordance with the
stimulation frequency (Figures 2A,B). Statistical evaluation in
the frequency domain confirmed a significant difference in 40 Hz
response (Figure 2C) with similar effect size as compared to the
time domain evaluation.

Combined time and frequency analysis confirmed the steady
increase in 40 Hz power, lasting throughout the entire stimulation

5Cohen’s d is calculated using the formula d = (t∗2)/(sqrt(df)).

interval (Figure 3). There was a significant difference in 40 Hz
power between pre and post-stimulus activation (Figure 3C)
when controlling for multiple comparisons across the time,
frequency and space dimensions.

Finally, source space analysis confirmed the primary
generators of the N1 auditory evoked response in the right
auditory cortex. This is in line with the experimental condition of
left-ear stimulation, reflecting a stronger contra lateral auditory
cortex response.

DISCUSSION

In the present work we build up and document a FieldTrip-based
analysis pipeline, starting from single subject and continuing with
various types of group-level analyses. To this end, we analyzed
EEG data, which was recorded during a common paradigm, the
auditory stead state evoked response (ASSR).

The time-domain analysis at the electrode level focused
on various aspects of descriptive data evaluation, in time
and space (Figures 1A–C). This was followed by an
inferential statistical procedure, within the framework of a
non-parametric permutation test that controls the family-
wise error rate using clusters (Figures 1D–F), where we
evaluated the N1/P2 components in the ERP, relative to a
pre-stimulus baseline. Next, a frequency domain analysis
revealed a reliable 40 Hz ASSR response (Figures 2A,B),
which was significantly increased with respect to baseline
(Figure 2C). Combining time and frequency domains it is also
possible to demonstrate how the spectral aspects of the data
evolve over time (Figure 3). In the example experimental
manipulation and dataset these analyses are somewhat
redundant, but we included them here for completeness.
Typically, the analysis strategy is predominantly motivated
by the research question at hand. Thus, in the present
case it would suffice to reject the null hypothesis of the
exchangeability of the brain responses during pre and post-
stimulus periods. However, frequency-domain analyses are
inappropriate for the evaluation of mid latencies evoked
potentials, as are time-domain analyses when spectral changes
over time are anticipated. Here we demonstrated analysis
strategies addressing both temporal and spectral aspects of the
data.

It should be noted that the statistical control using
the probability distribution of a cluster-based test statistic,
obtained with a randomization approach does not allow strong
statistically motivated inferences about specific temporal, spectral
or spatial properties of the data. This inferential procedure
tests a null hypothesis of exchangeability of the data, and
not a null hypothesis about some specific temporal, spectral
or spatial parameter of the data. Instead, these temporal,
spectral or spatial properties can be described on the basis
of prior knowledge and/or after statistical evaluation using
visual inspection of the observed difference in the data.
Furthermore, source analysis can be used to estimate the
difference in the distribution of the underlying neural generators
(Figure 4).
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In summary, group analyses in time frequency, electrode and
source space are readily accessible using the MATLAB-based
FieldTrip toolbox. All of the reported analyses are available
in various other experimental contexts and are documented
on the wiki. Detailed information about getting started with
the toolbox is documented here: http://www.fieldtriptoolbox.
org/getting_started. Extensive treatment and preprocessing of
time domain data can be found here http://www.fieldtriptoolbox.
org/tutorial#preprocessing and plethora of frequency and time
frequency analyses on scalp level are documented6. Decisions
under uncertainty in the context of psychophysiological research
are covered in several dedicated statistic tutorials http://www.
fieldtriptoolbox.org/tutorial#statistics. Preparation and analysis
steps during source reconstruction are addressed in extensive
detail (see text footnote 4).

6 http://www.fieldtriptoolbox.org/tutorial#sensor-level_analyses
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