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Alzheimer’s disease (AD) could be described into following four stages: healthy control
(HC), early mild cognitive impairment (EMCI), late MCI (LMCI) and AD dementia. The
discriminations between different stages of AD are considerably important issues for
future pre-dementia treatment. However, it is still challenging to identify LMCI from EMCI
because of the subtle changes in imaging which are not noticeable. In addition, there
were relatively few studies to make inferences about the brain dynamic changes in
the cognitive progression from EMCI to LMCI to AD. Inspired by the above problems,
we proposed an advanced approach of evolutionary weighted random support vector
machine cluster (EWRSVMC). Where the predictions of numerous weighted SVM
classifiers are aggregated for improving the generalization performance. We validated
our method in multiple binary classifications using Alzheimer’s Disease Neuroimaging
Initiative dataset. As a result, the encouraging accuracy of 90% for EMCI/LMCI
and 88.89% for LMCI/AD were achieved respectively, demonstrating the excellent
discriminating ability. Furthermore, disease-related brain regions underlying the AD
progression could be found out on the basis of the amount of discriminative information.
The findings of this study provide considerable insight into the neurophysiological
mechanisms in AD development.

Keywords: Alzheimer’s disease progression, functional connectivity, cl
evolutionary weighted random support vector machine cluster
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INTRODUCTION

Alzheimer’s disease (AD) is a devastating neuro-cognitive disorder of the human brain
(Keren-Shaul et al,, 2017; Kodis et al, 2018), which is characterized by the progressive
loss of cognition and memory in elderly adults (Roy et al, 2016). Along with the aging
of global population, the number of individuals suffering from AD will increase (Novak
et al, 2017). It is predicted that there will be more than 100 million elderly people
worldwide affected by AD by 2050 (Cortes-Canteli et al, 2015; Branca and Oddo, 2017).
Therefore, the identification of AD and particularly its transitional phase, namely mild cognitive
impairment (MCI), have received increasingly growing attentions in recent years (Cui et al.,
2018). The individuals diagnosed with MCI could be further subdivided into the early MCI
(EMCI) and late MCI (LMCI) (Lee et al., 2017) and the distinguishing criterions for EMCI
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and LMCI have been previously depicted in Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort (Nuttall et al., 2016). At
present, there is still no therapy to prevent or reverse the AD
pathological process (Forster et al., 2017). It is hence important
to develop a new approach that could identify different stages
of AD to enhance the understanding of AD pathophysiological
progression, which is helpful to the preclinical AD studies.

A great deal of neuroimaging techniques could be utilized
to image human brain function and structure, e.g., diffusion
tensor imaging (DTT), magnetic resonance spectroscopy (MRS),
electroencephalogram (EEG), functional magnetic resonance
imaging (fMRI), and so on (Busato et al., 2016; Thanh Vu
et al., 2017). Due to the advantages of high temporal and spatial
resolutions, fMRI especially resting-state fMRI have gained
increasingly growing popularities in the investigation of the
whole-brain neural connectivity recently (Goense et al., 2016).
As an advanced brain imaging technology, resting-state fMRI has
shown a great potential in providing comprehensive information
to achieve a high level of identification of the neurological
diseases (Phillips, 2012; Rosa et al, 2015). Accordingly,
the application of non-invasive resting-state fMRI is highly
advantageous to unfold the complexity of brain connectivity
network and examine the brain dynamic changes from EMCI to
LMCI to AD.

Machine learning (ML) technologies were extensively used
in automatic pattern recognition based on imaging data (dos
Santos Siqueira et al., 2014; Moradi et al., 2015; Wang et al,
2018; Zeng et al., 2018). In existing literature, there has been a
widespread interest to utilize ML methods to classify different
stages of AD. Nozadi et al. (2018) employed a random forest
(RF) algorithm based on the whole-brain approach to achieve
the accuracies of 72.5 and 81.7% for 164 EMCI versus 189 LMCI
and 189 LMCI versus 99 AD respectively. Goryawala et al. (2015)
reported the accuracies of 73.6 and 90.1% for 114 EMCI versus 91
LMCI and 91 LMCI versus 55 AD using the linear discriminant
analysis (LDA). Jie et al. (2018) utilized the multi-kernel SVM and
displayed a high accuracy of 78.8% classifying 56 EMCI from 43
LMCI. It is noteworthy that the discrimination between EMCI
and LMCI is more challenging in comparison to LMCI and AD.

In order to improve the classification performances especially
of EMCI and LMCI, and enhance the understanding of
neuropathology in the AD progression, a new method of
evolutionary weighted random SVM cluster (EWRSVMC) was
presented in this paper to diagnose different stages of AD.
The EWRSVMC combined multiple weighted SVM classifiers to
make the final decision, which was believed to be considerably
stable and robust compared to other individual classifiers such
as artificial neural network and decision tree. In addition, the
EWRSVMC employed a method of evolution to guide feature
selection to explore the optimal feature set for better classification
performance. We performed the experiment 1 for EMCI/LMCI
classification and the experiment 2 for LMCI/AD classification,
yielding high accuracies of 90 and 88.89% respectively using
this new framework. Furthermore, the disease-related brain
regions were ranked according to the corresponding optimal
features’ frequencies and the top-ranked brain regions could
be found out. On the one hand, several high-frequency brain

regions [e.g., superior temporal gyrus (STG.R), insula (INS.L)
and middle temporal gyrus (MTG.L)] are presented in the
two groups of experiments at the same time, which suggested
that these brain regions play crucial roles in the progression
of AD. On the other hand, some brain areas displayed high
frequencies only in one group of experiment [e.g., superior
frontal gyrus (SFGmed.L) and olfactory cortex (OLF.R) in the
experiment 1, and parahippocampal gyrus (PHG.L) and posterior
cingulate gyrus (PCG.L) in the experiment 2], which facilitated
to understand differences in disease progression. These findings
are in agreement with the claims of the previous studies on
AD (Douaud et al, 2013; Xiang et al, 2013; Zhu et al,
2014) and provide a novel perspective to AD progression’s
neurophysiological mechanisms.

MATERIALS AND METHODS
Subjects

The neuroimaging data we utilized in this study came from the
ADNI cohort' (Morris et al., 2014). We collected the resting-
state fMRI data of 105 participants, which contained 42 EMCI
patients (18 male, average age 72.34 years), 38 LMCI patients
(23 male, average age 72.99 years) and 25 AD subjects (12 male,
average age 74.59 years). Every participant had clinical dementia
rating (CDR) scores and mini-mental state examination (MMSE)
scores to ensure that the data was homologous. Chi-squared
test was utilized for gender comparisons and two-sample ¢-test
was utilized for age, MMSE and CDR comparisons. The detailed
demographic information for the patient cohorts was listed in
Table 1.

All participants were asked to lie still in a Siemens
TRIO 3 Tesla machine using the same scanning parameters
as follows: 64 x 64 acquisition matrix; flip angle = 80°%
echo time (TE) / repetition time (TR) =30/3000 ms; pixel spacing
Y/pixel spacing X = 3.3/3.3mm; 140 image volumes; 48 axial
slices; 3.313 mm slice thickness with no gap. During the scan, all
participants should close eyes but keep awake with thinking of
nothings (Liu et al., 2018).

Data Preprocessing
The same image preprocessing for EMCI, LMCI and AD
patients was performed by utilizing the Data Processing

Uhttp://adni.loni.usc.edu/

TABLE 1 | Demographic information.

Variable EMCI LMCI AD P-value
(Mean + SD)

Male/Female 18/24 23/15 12/13 0.112/0.33°
Age 72.34 +£6.87 72.99 £7.79 74594+ 7.03  0.692/0.41°
MMSE 28.10 + 1.57 2711 +£2.44 21.24 +3.44  0.03%/0.00°
CDR 0.45 £ 0.22 0.54 +£0.14 0.92 £+ 0.31 0.042/0.00°

aThe P-value of the comparison between the EMCI and LMCI. ® The P-value of the
comparison between the LMCI and AD.
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Assistant for Resting State fMRI (DPARSF) toolbox (Dan
et al., 2017). Briefly, the data was preprocessed in nine steps:
converting the data into NIFTI format; exclusion of the
first 10 volumes; slice-timing correction; realignment for head
movement compensation; normalization; smoothing (utilizing
a Gaussian kernel); removing linear trend; temporal band-pass
filtering; 9) regressing out the nuisance signals.

Functional Connectivity Features

The brain is a dynamic system constructed by large-scale complex
networks comprised of the connections between different brain
regions (Braun et al., 2015). In this paper, we employ a popular
automated anatomical labeling template (Rolls et al., 2015) to
divide the cerebrum into 90 brain areas (45 for left and right
hemisphere respectively). A representative resting-state fMRI
signal for each brain region is generated by averaging the time
series of voxels within each of 90 brain regions. The Pearson
correlation coefficient between the representative signals of each
pair of the brain regions is computed and treated as a proxy
of functional connectivity (FC) (Noble et al., 2017). As a result,
a total of 4005 (80 x 90/2) FCs are obtained for each subject
and served as predictor features for the proposed EWRSVMC
algorithm, which is considered to be a promising approach.

The Evolutionary Weighted Random SVM

Cluster

EWRSVMC Design

Machine learning techniques are widely used for pattern
recognition (Zeng et al., 2017), among which the SVM model has
received increasing popularities in the analysis of neurological
disease based on the high-dimensional imaging data recently.
Nevertheless, utilizing the single SVM classifier is too challenging
to achieve excellent diagnostic performance due to the noise
of brain imaging data. Bi et al. (2018) put forward a random
SVM cluster (RSVMC) in which multiple SVM classifiers are
combined for a final decision-making, which outperforms an
individual SVM classifier. But, it could not be ignored that the
diagnostic power of each individual classifier in the ensemble
classifier may be greatly differential from others. The previous
method of RSVMC ignores the fact that the individual SVM
classifier with relatively high training error is likely to perform
wrong voting on the new samples, which is likely to degrade the
discriminative ability. Accordingly, there still remains room for
the improvement with respect to the RSVMC method.

This paper presents a novel algorithm of EWRSVMC with two
successive steps, i.e., the construction and evolution of weighted
ensemble of SVMs respectively. First, in order to reduce the
influence of the weak classifiers on the voting, the classification
accuracy of each SVM classifier is calculated using the validation
set, which is regarded as a proxy of weight of every SVM classifier.
The output of EWRSVMC is a weighted average of the outputs of
multiple SVMs, which could further reduce classification error
rate. Second, in order to select out the most discriminative
features from a large-scale feature vector, the method of evolution
is introduced to dynamically eliminate the redundant features for
further improving final classification performance. The idea of

our proposed architecture is showed in Figure 1, where each row
and column corresponds to a subject and feature respectively in
the left data matrixes.

We  suppose X = {x1,..X,...xXn} € RN>d 35 the
connectivity features vectors where N and d are the numbers
of all subjects and features. y; € {+1, —1} is the response class
label representing two different states (e.g., EMCL or LMCI). The
construction of the weighted random SVM cluster is performed
using the following steps:

(1) Stepl: The available dataset X is divided into two data
subset, i.e., a “training and validation” set and a test set
respectively.

(2) Step2: Then, the training subset and feature subset are
respectively obtained by randomly selecting partial samples
from above “training and validation” set and partial features
from total features to build an individual SVM model.

(3) Step3: The remaining validation subset is utilized for the
estimation of diagnostic accuracy W; of I-th SVM, which
is considered as a proxy of weight of the SVM.

Tcorrect
1

W= T (1)

where T{"*" denotes the number of validation samples
correctly classified by I-th SVM classifier, T}, represents the
number of validation samples.

(4) Step4: The step 2 to step 4 are repeated for n times to build
a weighted ensemble of n SVM classifiers.

Following the above steps, a weighted ensemble of multiple
SVM classifiers could be constructed and then an approach of
evolution is applied to the ensemble classifier to guide feature
selection.

1121+ d
% SVM SVM , SVM ,,
N \
evolution
di<d
1fe-ldi l
1
2 SVM SVM , SVM ,
N .
‘ evolution
dk < dk-1
1 - dk
1
2 SVM SVM , SVM ,
N
FIGURE 1 | The idea of our proposed EWVRSVMC.
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Specifically, the SVM classifiers whose classification accuracies
are lower than 0.5 are first picked out from the weighted random
SVM cluster and considered as weak classifiers. Similarly, the
remaining SVM classifiers are regarded as strong classifiers due
to the good performance. Then the features selected by these
weak classifiers are found out and the weights corresponding to
the common features are accumulated. The total weight of each
feature in weak classifiers is denoted asTwj:

p
Ty = 2, @

where p is the number of weak classifiers; w;; represents the
weight of the j-th feature corresponding to I-th weak classifier.
Next, we remove the features whose total weight Tw; exceeds
a certain threshold g, because these features play crucial roles
in the weak classifiers and are likely to make few contributions
to the excellent performance of the overall system. As a result,
we obtain the remaining features with lower total weights in
the weak classifiers and all the features determined by the
strong classifiers as an evolutionary feature set, leading to the
reduced dimensionality of total feature space. Finally, the above-
obtained evolutionary feature set is employed to rebuild a
weighted random SVM cluster for the further reduction of feature
dimensionality. This procedure is repeated iteratively until it
reaches the times of evolutions we set. The optimal EWRSVMC
with the highest accuracy during the evolution process could

be found out and the features determined by this optimal
EWRSVMC are considered as the optimal feature set. The feature
selection procedure of the EWRSVMC is exhibited in Figure 2.

The Evaluation of the EWRSVMC

The EWRSVMC perform a weighted average of the outputs
of multiple SVM classifiers, which could predict the class label
of each new testing sample. To be specific, a new sample is
firstly input into a EWRSVMC system and each individual
SVM classifier performs a weighted vote in accordance with its
accuracy dealing with the validation samples. Then the weighted
voting values belonging to the same predicted label are added up.
Lastly, the label having the highest voting value represents new
sample’s final predicted label.

In this paper, we employ the three metrics, i.e., accuracy,
sensitivity and specificity to estimate our proposed EWRSVMC’s
final performances. The diagnostic accuracy A, stands for a
fraction of correctly identified samples (Schroder et al., 2015):

TP+ TN

= 3
TP+ FP+ FN + TN 3

c

where TP, FB, FN, and TN respectively represents the number of

true positives, false positives, false negatives and true negatives.
Sensitivity (S,) stands for a proportion of actual positive

samples which are correctly identified (Mondal and Pai, 2014):

(Evolutionary Weighted Random SVM Cluste%

Retraining

evolutionary
weighted
random SVM

W <= 0.5?\‘ No

Retained features

cluster

Yes

)4
Tw; = Z Wi
=1

No

Useless features

FIGURE 2 | Feature selection procedure of the EVNRSVMC.
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Sp = —2 )

TP + FN
Specificity (S,) stands for a proportion of actual negative
samples which are correctly identified (Kumar and Helenprabha,

2017):
TN

Sy = ———— 5
P~ TN+ FP ®)

The Application of the EWRSVMC

In the current study, we conducted multiple binary classifications,
including EMCI vs. LMCI and LMCI vs. AD to confirm the
performance of our proposed EWRSVMC using 4005 FCs as the
raw features. In addition to optimizing the classification accuracy
as with most existing studies, we also paid great attentions to
exploring and analyzing the alterations of the brain in patients
with different cognitive stages of AD. Accordingly, another sub-
procedure for the exploration of the disease-related brain regions
using the optimal features set was carried out. First, we detected
the brain regions which are relevant to the optimal features in
the EWRSVMC with the highest classification accuracy. Then,
disease-related brain regions were sorted in a descending mode,
which is consistent with their occurrence frequencies. The higher
the frequencies are, the greater the abnormal degrees of the brain
regions are.

Experiment Design

In this paper, we conducted the experiment 1 for EMCI vs.
LMCI classification and the experiment 2 for LMCI vs. AD
classification. Each group of experiment could be mainly divided
into four parts:

(1) Division of data sets. A 3:1 ratio is set to divide entire
resting-state data set into the “training and validation” set for
training the EWRSVMC and the test set for examining the
generalization ability of the overall system. Furthermore, a 2:1
ratio is set to subdivide the “training and validation” set into the
training set for training the SVM classifier and the validation set
for obtaining the weight corresponding to the SVM classifier.

(2) Building an ERWSVMC. Firstly, we randomly select
+/4005 = 62 features from all 4005 features based on the training
set to build a radial basis function (RBF) kernel SVM classifier.
The kernel bandwidth ¢ and penalty parameter C for each SVM
model are primarily set as 3 and Inf respectively. The number of
initial base classifiers is set to 500 to get the weighted ensemble
of SVMs. Then, we make the ensemble classifier evolves for 50
times. In each evolution, we find out the features selected by
the weak classifiers and remove the features whose total weight
Twj exceeding the certain threshold g = 7. As a result, the
EWRSVMCs with different evolution times are obtained.

(3) Finding out the optimal subset of features. We compute the
diagnostic accuracies of the EWRSVMCs with different evolution
times. The features selected by the optimal EWRSVMC having
the lowest diagnostic error rate form the optimal features subset.

(4) Exploring the abnormal brain regions. We seek out
the features with high discriminative ability in the optimal
EWRSVMC, and then investigate the corresponding disease-
related brain regions associated with these features.

RESULTS

The Experiment 1

We investigated the performance of classification between
EMCI and LMCI in the experiment 1. According to Section
“Experiment Design,” we conducted 50 evolutions for the
EWRSVMC. Consequently, the EWRSVMC yielded a maximum
accuracy of 90% in the 32nd evolution (as shown in Figure 3),
which suggested that 32 was the optimal times of evolutions.
Meanwhile, a sensitivity of 90.9% and a specificity of 88.89%
were achieved based on the optimal feature set. The experiment
results showed that the novel framework could significantly
enhance diagnostic performance for EMCI/LMCI classification
in compared with some other existing algorithms.

Feature selection was a crucial stage in our EWRSVMC
algorithm classifying LMCI from EMCI and the process was
shown in Figure 4. On the one hand, the number of removed
features increased rapidly and exceeded 100 after two evolutions.
Then it became gradually stable and fluctuated around 120. On
the other hand, the number of remained features showed a trend
of linear decline. There were 248 features left after completing
the 32nd evolution, which constituted the optimal feature set
and were utilized for subsequent study on the exploration of
disease-related brain regions.

By counting the high-frequency FCs, we could detect the
most discriminative brain regions which were ranked in the
Table 2. The brain regions exceeding the frequency of 10
comprise inferior temporal gyrus (ITG.R), temporal pole: middle
temporal gyrus (TPOmid.L), temporal pole: superior temporal
gyrus (TPOsup.R), middle temporal gyrus (MTG.L) and insula
(INS.L). As seen from Table 2, some sub-regions of the temporal
lobe showed higher frequencies compared to other regions,
indicating the temporal lobe made an essential contribution
to the evolution from EMCI to LMCI. The locations of brain
regions were mapped in Figure 5 and the size of the red node

Finding the optimal times of evolutions

o e VW
X:32

0.8!- Y: 0.9
07
06 -
05/-
04 -
03-

0.2}

The accuracy of the EWRSVMC

0.1}

0 5 10 15 20 25 30 35 40 45 50
The times of evolutions

FIGURE 3 | Finding the optimal times of evolutions in the experiment 1.
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The number of removed features
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140 - -
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10/-
100 -
90|-
80|-
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FIGURE 4 | The number of features after each evolution in the experiment 1.

The number of features after the evolutions

60 '
0

T T T 14000
®  The number of removed features
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-3000

12000

- 1000

The number of remained features

r r r r r -0
10 15 20 25 30 35

The times of evolutions

TABLE 2 | The frequencies of the most discriminative brain regions in the

experiment 1.

Frequency Brain region

15 ITG.R

14 TPOmid.L

12 TPOsup.R MTG.L
iR INS.L

10 SFGmed.L PAL.R
9 OLFRITG.L

FIGURE 5 | The locations of abnormal brain regions in the experiment 1.

represented the degree of abnormality of the corresponding brain

regions.

the EWRSVMC reported the highest accuracy of 88.89% in the
34nd evolution (please see Figure 6), which indicated that 34
was the optimal times of evolutions in LMCI/AD classification.
At the same time, the optimal EWRSVMC achieved 85.71%
sensitivity and 90.9% specificity. The encouraging performances
demonstrated the potential of our new framework for the
diagnosis of AD dementia.

The process of feature selection in LMCI/AD classification was
plotted in Figure 7. The number of removed features showed
an overall upward trend, while the number of remained features
exhibited a trend of linear decline. There were 293 features left
after finishing the 34th evolution, which formed the optimal
feature set for the further analysis of progression from LMCI
to AD.

We were able to explore the most discriminative brain
regions by counting the high-frequency FCs. The disease-related

Finding the optimal times of evolutions

The accuracy of the EWRSVMC

09 -

0.8 -

0.7 -

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1

B— y
X:34 l_\_N\/

Y:0.8889

10 15 20 25 30 35 40 45 50
The times of evolutions

FIGURE 6 | Finding the optimal times of evolutions in the experiment 2.
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-|3000

. . -/2000
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The number of remained features

.

. . - . .
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The Experiment 2
The classification of patients with LMCI and AD was carried out
in the experiment 2. Similarly, 50 evolutions were performed and

FIGURE 7 | The numbers of features after each evolution in the experiment 2.
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brain regions in LMCI/AD classification were ranked in the
Table 3 and the ones exceeding the frequency of 10 were listed
as follows: superior temporal gyrus (STG.R), parahippocampal
gyrus (PHG.L), middle frontal gyrus, orbital part (ORBmid.R),
calcarine fissure and surrounding cortex (CAL.R), insula (INS.L),
temporal pole: middle temporal gyrus (TPOmid.R), and posterior
cingulate gyrus (PCG.L). Similarly, some subregions of the
temporal lobe and insula showed higher frequencies than other
brain regions, suggesting the temporal lobe and insula made
greater contributions to the evolution of AD. Figure 8 described
the locations of brain regions.

DISCUSSION

Classification Effect

In this paper, we propose an advanced framework of EWRSVMC
based on resting-state fMRI data to accurately classify different
stages of AD. Resting-state fMRI is an effective tool for exploring
the dynamical changes in human brain because of the high
temporal and spatial resolutions (Lee M.H. et al., 2016). In
addition, to the best of our knowledge, no investigation is
available about the EWRSVMC in AD studies using brain
imaging data. The EWRSVMC is able to efficiently perform
EMCI/LMCI and LMCI/AD classifications with the high
accuracies of 90 and 88.89%, sensitivities of 90.9 and 85.71%,
specificities of 88.89 and 90.9% respectively. The results of two

TABLE 3 | The frequencies of the most discriminative brain regions in the
experiment 2.

Frequency Brain region
14 STG.R
13 PHG.L
12 ORBmiId.R
11 CAL.R INS.L TPOmid.R PCG.L
10 ACG.R FFG.L TPOsup.L MTG.L
L . R
/& 4
P J '“pf'. s
AN PR \-

'y .’ - ) > ! \,x o= \
'L\. "'t,.l; ._"_ & ‘.'s ..“'/ ,;

FIGURE 8 | The locations of brain regions in the experiment 2.

groups of experiments demonstrate the availability of novel
EWRSVMC algorithm for early detection of AD and the potential
of resting-state fMRI for identification of the transition from
EMCI to LMCI to AD.

The ML techniques have received increasingly growing
attentions recently in imaging data (Zeng et al, 2014; Wang
et al.,, 2017), and have been shown to be a reliable method to
diagnose different cognitive stages of AD using neuroimaging
data. Jiang et al. (2014) achieved a high accuracy around 80%
for 56 EMCI versus 44 LMCI combining a sparse learning with
the SVM classifier. Prasad et al. (2015) reported the accuracy of
63.4% for 74 EMCI vs. 38 LMCI using the SVM classifier with
the feature set of the fiber network measures (FIN) and the flow
network measures (FLN). Mahjoub et al. (2018) combined the
proposed deep similarity network architectures with the single
SVM classifier utilizing the cross-validation method to classify
41 AD from 36 LMCI with a classification accuracy peaking at
77.92%.

The majority of ML methods had the slightly lower
classification performances especially classifying EMCI from
LMCI because of image noise and small-sample size of
data. In addition, a great deal of studies have paid more
attention to the classification but rarely explored disease-related
brain regions underlying the AD evolution. To address these
issues, a new framework of EWRSVMC using the FCs as
the raw features was presented in this paper. The output of
EWRSVMC is a weighted average of the outputs of SVMs,
which could further reduce classification error rate compared
to some previous methodologies. Additionally, Due to the
high dimensionality of feature space, the complexity of the
algorithm is likely to be increased and the performance of model
estimation is degraded. Accordingly, a method of evolution
is employed to dynamically eliminate the redundant features
and the features in the optimal EWRSVMC are regarded as
the optimal features. Moreover, disease-related brain regions
could be found out by identifying these features with high
discriminative ability, which provides new insights in the
pathology of AD.

The issue of overfitting is a major concern in the training
process of our EWRSMC algorithm and more details about it
are discussed here. In order to building an individual SVM
classifier in EWRSVMC, the training set was randomly chosen
out from the all experimental dataset and 62 FCs was randomly
chosen out from total 4005 FCs as input features. Because
of the randomness of samples and features, each SVM base
classifier is greatly different from others, which could reduce the
effects of overfitting. Furthermore, the EWRSVMC shows a good
classification performance in the test set, suggesting a low risk of
overfitting phenomenon.

In our proposed EWRSVMC, two hyperparameters, namely
the penalty parameter C and the kernel bandwidth o, need
to be determined. Initially, we set parameter C and o to
Inf and 3 to train the individual RBF-SVM classifier. For
comparison, we tested different values for C and o and found no
considerable changes in terms of the classification performances
of the EWRSVMC, suggesting that the proposed EWRSVMC is
considerably robust and universal.
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Analysis of Higher-Frequency Brain
Regions

In this part, we mainly discussed about four abnormal brain
regions, i.e., temporal lobe, insula, superior frontal gyrus, and
parahippocampal gyrus respectively.

The Temporal Lobe

Some subregions of the temporal lobe had relatively greater
frequencies in both EMCI/LMCI and LMCI/AD classifications,
indicating that the temporal lobe is likely to play a crucial role in
AD progression. The temporal lobe is situated beneath the lateral
sulcus on both hemispheres of the human cerebrum (Kiernan,
2012), which is known to be associated with visual memory,
language comprehension, emotion association and executive
function (Riley et al., 2010; Bell et al., 2011).

Several previous studies have reported the abnormal temporal
lobe in AD progression. Younes et al. (2014) found that the
volume of medial temporal lobe structures were relevant to
time of progress from MCI to AD. Davatzikos et al. (2011)
observed the positive baseline Spatial Pattern of Abnormalities
for Recognition of Early AD in temporal lobe in patients
with MCI who progressed to AD dementia. Stein et al
(2010) observed the temporal lobe volume differences in brain
MRI scans of AD patients, MCI patients and healthy elderly
participants. Douaud et al. (2013) found that the cerebral
atrophy in medial temporal lobe was vulnerable to the AD
progression. Blasko et al. (2008) reported the changes of
medial temporal lobe atrophy (MTA) through the evolution
from cognitive health to MCI and to AD in a prospective
cohort of subjects aged 75 years. The discovery of abnormal
temporal lobe may help to improve the understanding of AD
progression.

The Insula

The insula had a relatively higher frequency than other brain
regions in both EMCI/LMCI and LMCI/AD classifications as
well, indicating that the insula may make a great contribution
in the progression of AD. The insula is a crucial hub of the
human brain networks and is folded deep in the floor of lateral
sulcus (Cauda et al., 2011). It is reported that the human insula
is involved in perception, motor control, general cognition and
self-awareness (Kang et al., 2011; Chang et al., 2013).

The insula abnormality was reported in numerous previous
literatures in AD pathology. Xie et al. (2012) found out
the altered functional integration of the insula networks in
AD development. Zhu et al. (2014) observed the significantly
greater gray matter volume loss in the bilateral insula in the
progression of conversion from HC to MCI to AD with a
linear trend. Sojkova et al. (2008) reported the longitudinal
alterations in regional cerebral blood flow which involved insula
and superior temporal regions in AD progression. Hafkemeijer
et al. (2012) mentioned that the patients diagnosed with AD
exhibited extensive decreases in gray matter volume in insula
and temporal lobe. Patel et al. (2013) reported that the default
mode network (DMN) regions, e.g., insula and superior temporal
gyrus, were significantly affected by AD pathology. The discovery

of the insula abnormality may help to illuminate the underlying
neuromechanism of AD disorder.

The Superior Frontal Gyrus

The superior frontal gyrus possessed a relatively higher
frequency compared to other brain regions in the EMCI/LMCI
classification, suggesting that the superior frontal gyrus made
an important contribution to the evolution from EMCI to
LMCI. The superior frontal gyrus (SFG) is situated at the
frontal lobe’ superior part and makes up about one third of
the prefrontal cortex of the human brain (Li et al., 2013). It
has been reported that the superior frontal gyrus is associated
with motor functions and cognitive control especially execution
within working memory (Chiao et al., 2009; Van den Stock et al,,
2011).

We have reviewed a great deal of previous literature about
EMCI and LMCI, and found that there were relatively few
studies to make inferences about the brain dynamic differences
in the cognitive process from EMCI to LMCI. Accordingly, the
discovery of abnormal superior frontal gyrus could be clinically
helpful for early detection of AD evolution at MCI stage. Lee E.S.
etal. (2016) showed the decreased FC in the right superior frontal
gurus in patients with LMCI compared with EMCI, which was
agreement with our finding.

The Parahippocampal Gyrus

The parahippocampal gyrus obtained a higher frequency in 90
brain regions in the LMCI/AD classification, indicating that the
parahippocampal gyrus acted a crucial part in the evolution from
LMCI to AD. The parahippocampal gyrus is a part of the limbic
system (Enatsu et al., 2015; Arnone et al., 2016), which is involved
in the memory encoding and retrieval (Puri et al., 2012; Monti
etal., 2018).

Several previous studies have reported the parahippocampal
gyrus abnormality in AD pathology. Liang et al. (2014) found
out the altered amplitude of low-frequency fluctuations in
right parahippocampal gyrus from LMCI and AD. Xiang et al.
(2013) reported that AD patients showed less activity than MCI
patients in the right parahippocampal gyrus during a visual
memory task. Yetkin et al. (2006) mentioned that the AD
group had less activation in bilateral parahippocampal gyri than
the MCI group in a memory-encoding task. Echavarri et al.
(2011) found out the significant differences of volumes of the
parahippocampal gyrus between the groups with the following
order: AD < aMCI < healthy. The discovery of parahippocampal
gyrus abnormality may provide assistant for clinical diagnosis of
early AD.

Limitations

The current study is limited by the following two factors. Firstly,
we utilized one modality, ie., RS-fMRI for multiple binary
classifications. Nevertheless, there exist other modalities
[e.g., cerebrospinal fluid (CSF) and positron emission
tomography (PET)] which may also contain commentary
information for better classification performance. Secondly, it
is crucial to visualize the learned decision process for better
understanding the classification approach and gaining clinical
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insights. However, as with most previous AD classification
algorithms, the visualization of the learned decision process in
our proposed EWRSVMC is not informative, which is still a
limitation which is expected to be addressed in the future.
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