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Recent work has highlighted that multi-voxel pattern analysis (MVPA) can be severely
biased when BOLD response estimation involves systematic imbalance in model
regressor correlations. This problem occurs in situations where trial types of interest
are temporally dependent and the associated BOLD activity overlaps. For example, in
learning paradigms early and late learning stage trials are inherently ordered. It has
been shown empirically that MVPAs assessing consecutive learning stages can be
substantially biased especially when stages are closely spaced. Here, we propose a
simple technique that ensures zero bias in item-specific multi-voxel activation patterns
for consecutive learning stages with stage being defined by the incremental number
of individual item occurrences. For the simpler problem, when MVPA is computed
irrespective of learning stage over all item occurrences within a trial sequence, our
results confirm that a sufficiently large, randomly selected subset of all possible trial
sequence permutations ensures convergence to zero bias – but only when different trial
sequences are generated for different subjects. However, this does not help to solve
the harder problem to obtain bias-free results for learning-related activation patterns
regarding consecutive learning stages. Randomization over all item occurrences fails
to ensure zero bias when the full trial sequence is retrospectively divided into item
occurrences confined to early and late learning stages. To ensure bias-free MVPA of
consecutive learning stages, trial-sequence randomization needs to be done separately
for each consecutive learning stage.

Keywords: MVPA, pattern similarity, classifier, rapid learning, instruction-based learning, RITL

INTRODUCTION

Multi-voxel pattern analysis (MVPA) has been used to assess whether patterns of BOLD activation
across multiple voxels contain content-specific information that cannot be recovered as reliably
from individual voxels or from regional mean activations across adjacent voxels (Haxby et al., 2001,
2014; Kriegeskorte et al., 2008; Haynes, 2015). Content-specificity can refer to individual learning
items, stimuli, categories, or any other type of discriminable entities.

Recent studies have highlighted the fact that MVPA results can be severely distorted when
trial-related BOLD response estimates are based on regression models with systematic, even small,
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imbalances in the structure of regressor correlations (Mohr
et al., 2014; Mumford et al., 2014; Visser et al., 2016). The
biggest challenge is faced by experimental procedures in which
trial types are inevitably occurring in a fixed order and the
corresponding BOLD responses overlap in time (Mumford et al.,
2014). For instance, this is the case in learning paradigms
where early learning trials necessarily precede later learning
trials. Under such conditions it has indeed been shown that
MVPA results can be strongly distorted especially when stages
are closely spaced (Mohr et al., 2014; Visser et al., 2016).
If different trial types of interest can be randomly ordered,
distortion due to imbalanced regressor correlations might be
less of a concern (Mumford et al., 2014). But even then,
regressor correlations might still be residually imbalanced due
to imperfect sampling of all possible trial type transitions
and even small biases might accumulate substantially over
subjects.

In the present paper, we propose a simple control technique
that enables us to determine unbiased item-specific multi-voxel
activation patterns separately for consecutive learning stages with
stage being defined by the incremental number of individual item
occurrences. For instance, items occurring the first and second
time constitute the early learning stage and items occurring
the third and fourth time constitute the late learning stage.
Item-specific effects were defined according to the classical
rationale (Haxby et al., 2001) that re-occurrences of the same
item should produce more similar activation patterns (i.e.,
voxel vectors correlate more strongly) than occurrences of two
different items (see Figure 1A for a schematic visualization).
Thereby it can be tested if a certain brain region is sensitive to
item-specific information. Since item-specific pattern similarities
were computed across separate measurement runs in the
original Haxby study, distortions are not expected there (cf.,
Mumford et al., 2014). However, study designs such as the
one examined in the present paper are different with regard
to two crucial aspects due to the nature of the research
question at hand. First, pattern similarities are computed for
trial types that are closely spaced and therefore are inevitably
intermixed within the same measurement run. Second, these
different trial types are sequentially structured. This is the
case for all learning processes involving a high learning rate
where learning proceeds across few item repetitions. The
assessment of slow learning processes is less critical, as learning
stages can easily be segregated into separate measurement
runs.

The aim of the present paper is to demonstrate that
systematic bias can be avoided even under rapid learning
conditions, but only when trial sequences are constructed in
a way that respects two prerequisites. To derive these two
prerequisites, we distinguish between two problems. The first,
simpler problem concerns bias-free MVPA for closely spaced
trials within runs irrespective of (learning-related) sequential
trial structure. The second, harder problem concerns bias-free
MVPA under consideration of sequential trial structure, that is,
when stimulus-specific activation patterns need to be determined
separately for consecutive learning stages in order to characterize
learning-related changes.

GENERAL METHODOLOGY

In a first step, we explore how improper trial sequence
construction leads to imbalances in the temporal structure of
individual item occurrences. In case of rapid learning designs
with strong overlap between BOLD responses, such imbalances
are expected to directly translate into imbalances in regressor
correlations which have been identified as a root cause of
biased MVPA (Mumford et al., 2014). To this end we used a
minimalistic toy model which solely considered the lag (i.e., the
absolute temporal distance) between (re-)occurrences of same
and different stimulus exemplars across a trial sequence.

In a second step, we examined whether the toy model-based
predictions regarding proper trials sequence construction would
hold under more realistic conditions involving single-trial
regression on noisy data. To this end, we performed more
elaborate simulations using synthetic fMRI data with realistic
fMRI noise added and regression-based single-trial HRF
modeling.

In a final third step, we report empirical results to demonstrate
the absence of systematic bias in real data when trial sequences
are constructed appropriately as suggested by the toy model and
the simulations.

Both, the toy model and the simulations were based on
different types of trial sequences which were constructed
according to the same basic principles. Trial sequences involved
different stimuli that could each occur multiple times. To
perform item-specific MVPA for a distinct learning stage at
least two exemplars per stimulus (i.e., stimulus occurrences) are
needed. Hence, the shortest possible learning stage comprised
two different stimuli each occurring twice. This minimalistic case
was used for illustration purposes in Figure 1A to highlight
the rationale behind MVPA based on item-specific pattern
similarities. Also the toy model started out with this minimalistic
case as illustrated in Figure 1B. More complex cases could
involve more than one learning stage and more than two different
stimuli (e.g., two stimuli each occurring four times as depicted in
Figure 1C).

Both, the toy model and the simulations were used to address
both the simpler problem and the harder problem outlined above.
Regarding the simpler problem, we assessed the relationship
between bias and the temporal structure of full trial sequences
irrespective of learning stage. Regarding the harder problem, we
assessed the relationship between bias and temporal structure
of partial sequences that resulted from the division of full
trial sequences into temporally ordered subsections comprised
of early and late learning stage trials, respectively. This latter
scenario is of particular interest as it has been shown earlier to be
prone to bias when trying to determine differences in activation
patterns between successive learning stages (cf., Mohr et al., 2014;
Visser et al., 2016). Generally, learning stages were defined by
non-overlapping pairs of consecutive stimulus occurrences. The
term ‘non-overlapping’ means that the early learning stage was
based on stimulus occurrences 1 and 2 whereas the late learning
stage was based on stimulus occurrences 3 and 4.

Readers who are not particularly interested in the question
how imbalances in the temporal structure of individual
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FIGURE 1 | (A) Schematic depiction of how item-specific multi-voxel pattern similarity is computed based on the exemplary sequence of two different stimuli each
occurring twice. The matrices on the right hand side depict activation pattern correlations for all stimulus combinations. Orange matrix cells denote pattern
correlations between same stimuli whereas violet cells denote pattern correlations between different stimuli. Note that sub-diagonal matrix elements are identical with
super-diagonal matrix elements and are therefore omitted. Significantly greater mean pattern correlations in orange cells than in violet cells indicate that an activation

(Continued)
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FIGURE 1 | Continued
pattern contains stimulus-specific information. That is, significant pattern similarity is detected. (B) Schematic illustration of basic principles based on a toy model
involving a set of 2 different stimuli each occurring twice with a constant 1 s stimulus onset asynchrony. Matrices depict absolute stimulus onset differences for all
stimulus combinations separately for each possible stimulus sequence permutation. Orange cells denote absolute onset distances between same stimuli whereas
violet cells denote absolute onset distances between different stimuli. Stimulus onset differences are used as a proxy (inverse approximation) for regressor
correlations. While mean onset differences are different for orange and violet cells for each individual stimulus sequence, on average across all sequence
permutations, they are exactly zero (for a formal proof see Appendix A). This suggests that on average across sequence permutations, activation pattern
correlations are unconfounded with imbalances in onset distances, or regressor correlations for that matter. Hence, no bias in stimulus-specific pattern similarity is
expected. (C) Schematic illustration highlighting the finding that pattern similarities are biased when subsets of trials are systematically selected (‘partial sequences’)
within otherwise well-randomized sequences. For learning paradigms this implicates that stimulus sequences need to be generated independently for consecutive
learning stages.

item occurrences emerge in the first place, might proceed
directly to the simulation section and skip the toy model
section.

TOY MODEL

Materials and Methods (Toy Model)
Each toy model variant was simply and solely defined by
the set of trial sequences that could be constructed given
a certain number of different stimuli and given a certain
number of occurrences per stimulus. For simplicity, the stimulus-
onset-asynchrony (SOA) was fixed at 1 s for all toy model
variants. The trial sequences were then assessed regarding
absolute onset distances between (re-)occurrences of same and
different stimuli. As illustrated in Figure 1A for the case
of real experimental (or synthetic) BOLD activation data,
stimulus-specific pattern similarities are defined by the mean
difference between pattern correlations for re-occurrences of the
same stimulus (orange matrix fields) and pattern correlations for
occurrences of different stimuli (violet matrix fields). According
to Mumford et al. (2014), the mean difference in pattern
correlations will be biased if the mean difference between the
corresponding regressor correlations is non-zero. Due to BOLD
response overlap in case of closely spaced trials, regressor
correlation should be a function of trial onset distance. Hence,
according to the toy model, unbiased MVPA can be expected
if mean onset distances are equal for same and different
stimuli.

Results (Toy Model)
Full Sequences Irrespective of Learning Stage
(Simpler Problem)
Figure 1B (rightmost example) depicts the structure of trial onset
distances for the same exemplary stimulus sequence S1-S1-S2-S2
that was used in Figure 1A to illustrate the general principles
of stimulus-specific pattern similarity. It turns out that mean
onset distances are unequal for same stimulus combinations
and for different stimulus combinations. Hence, it is expected
that stimulus-specific pattern similarity computed for real or
synthetic BOLD data are strongly distorted for this exemplary
sequence. Figure 1B (leftmost and middle examples) also shows
that different stimulus sequences imply differently structured
onset distances for same and different stimulus combinations,
which are also all none-zero. Fortunately, on average across all

possible sequences (according to equation 1, exactly 6 unique
4-trial sequences are possible for our toy model) the mean onset
difference between same stimulus combinations and different
stimulus combinations is exactly zero. Hence, on average across
all possible sequences, no distortion of stimulus-specific pattern
similarity should be expected – at least according to the simplified
toy model. This observation tentatively suggests a first crucial
requirement for unbiased MVPA results, namely that all possible
stimulus sequences need to be realized equally often. Appendix A
provides a formal proof that this conclusion holds for trial
sequences comprising any number of different stimuli and any
number of occurrences per stimulus.

Number of unique stimulus sequences =
(nk)!

(k!)n (1)

with n = number of different stimuli and k = number of
occurrences of each stimulus.

The number of possible sequences is exploding when more
than 2 stimuli with more than 2 occurrences are involved (and
even more so when the SOA is additionally varied). For instance,
the still relatively simple case of 4 stimuli each occurring 3 times
already implicates 369,600 unique 12-trial sequences according
to equation 1 (see Table 1 right column). In case of 4 stimuli
each occurring 4 times incredible 63,063,000 unique 16-trial
sequences are possible. Evaluation of mean onset distances for
a few exemplary cases is depicted in Table 1 to demonstrate
that zero bias generalizes to more complex sequences if all
unique sequence permutations are realized (for a formal proof
see Appendix A). However, already in these still relatively
simple cases, there are way too many permutations to be all
realized in a realistic experiment. Approximation via random
sampling from the full set of permutations should be a viable
solution if the number of random samples is sufficiently large
according to the ‘law of large numbers’ in probability theory.
As a tutorial exercise and to give an intuitive impression of
zero bias approximation vie random sampling, Table 1 and
Figure 2 also depict the results of random sampling simulations.
Table 1 shows that zero bias is almost perfectly approximated
by random sampling when 5000 subjects are simulated with 30
randomly selected sequences per subject. This relatively large
sample size should ensure reasonable power to detect even
small biases. Figure 2 depicts the results for more realistic
scenarios of 5 and 10 sequences per subject and sample sizes
varying between N = 10 and N = 500 subjects. Again, zero
bias is approximated well, unsurprisingly with smaller error
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TABLE 1 | Mean onset distances in seconds for different types of sequences in the toy model; Random sampling was based on 5000 different sets of 30 randomly
selected sequences.

4-trial sequence (2 stimuli, 2 times) 8-trial sequence (2 stimuli, 4 times) 12-trial sequence (4 stimuli, 3 times)

Full permutation Random sampling Full permutation Random sampling Full permutation Random sampling

# unique sequences 6 6 70 70 369,600 369,600

Mean distance Same [CI] 1.667 [n.a.] 1.668 [1.666 1.670] 3.000 [n.a.] 3.001 [2.999 3.003] 4.333 [n.a.] 4.334 [4.330 4.337]

Mean distance Diff [CI] 1.667 [n.a.] 1.666 [1.665 1.667] 3.000 [n.a.] 2.999 [2.998 3.001] 4.333 [n.a.] 4.333 [4.333 4.334]

Same-Diff [CI] 0.000 [n.a.] 0.002 [−0.002.006] 0.000 [n.a.] 0.002 [−0.002.005] 0.000 [n.a.] 1.67e−4 [−0.004.004]

Same, same stimuli; Diff, different stimuli; CI, 95% confidence interval; n.a., not applicable.

FIGURE 2 | Mean onset distances in seconds for different numbers of randomly selected 8-trial sequences in the toy model (2 stimuli each occurring 4 times).
Same, same stimuli; Diff, different stimuli; Error bars represent the 95% confidence interval.

margin for greater N and greater number of sequences per
subject.

Partial Sequences for Consecutive Learning Stages
(Harder Problem)
Importantly, the preceding toy model examples have not yet
addressed the harder problem, which is, to disentangle without
bias multi-voxel activation patterns associated with sequentially
structured trial types. This problem can be illustrated using the
same type of 8-trial sequences used earlier involving 2 stimuli
each occurring 4 times (see Table 1 middle column). Instead
of computing MVPAs across all 4 stimulus occurrences (i.e.,
neglecting temporal structure), MVPAs can be computed for
the same 8-trial sequences by separately assessing and then
comparing the early learning stage (stimulus occurrences 1 and
2) and the late learning stage (stimulus occurrences 3 and 4).
Clearly, early and late stage trials are sequentially ordered and
due to overlapping BOLD responses, it might be difficult to

disentangle stage-specific multi-voxel patterns in real or synthetic
BOLD data. Indeed, as summarized in Table 2, our toy model
suggests that MVPA results obtained for each individual learning
stage will be biased (same-different onset distances > 0) even
though the overall 8-trial sequences were fully permuted (or
generated via random sampling).

But how can we explain that MVPA based on 4-trial sequences
including two occurrences of 2 stimuli produces zero bias (see
Table 1 left column) whereas MVPA based on the first two
occurrences of 2 stimuli as part of longer 8-trial sequences does
produce bias (Table 2)? A closer inspection reveals that 8-trial
sequences suffer from ‘intrusions’ of stimuli occurring the third
or fourth time while other stimuli have not yet occurred twice.
This causes an imbalance in onset distances compared to 4-trial
sequences: specifically, this implies a smaller increase in the mean
distance between same stimuli (from 1.67 to 1.80 s) than the
mean distance between different stimuli (from 1.67 to 2.11 s).
In other words, bias will be inevitable if only the first two
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TABLE 2 | Mean onset distances for different types of 8-trial sequences in the toy model.

8-trial sequence (2 stimuli, 4 times) evaluated
occurrences: 1 and 2

8-trial sequence (2 stimuli, 4 times) evaluated
occurrences: 3 and 4

Full permutation Random sampling Full permutation Random sampling

# unique sequences 70 70 70 70

Mean distance Same [CI] 1.800 [n.a.] 1.799 [1.796 1.802] 1.800 [n.a.] 1.801 [1.799 1.804]

Mean distance Diff [CI] 2.114 [n.a.] 2.115 [2.111 2.118] 2.114 [n.a.] 2.113 [2.110 2.117]

Same-Diff [CI] −0.314 [n.a.] −0.316 [−0.321 −0.310] −0.314 [n.a.] −0.313 [−0.318 −0.308]

Same, same stimuli; Diff, different stimuli; CI, 95% confidence interval; n.a., not applicable.

occurrences of each stimulus are considered while the third and
fourth occurrences are omitted during the MVPA.

Interim Conclusion (Toy Model)
The simplified toy model tentatively suggests two important
prerequisite for unbiased MVPA. First, regarding the simpler
problem, full permutation of all trial sequences or approximation
via random sampling ensures – on average – zero bias even
though each individual sequence is associated with bias. Second,
regarding the harder problem, the construction of partial
sequences by systematic omission of trials occurring in specific
sub-sections of otherwise well-randomized full sequences is
prohibited when specifying the pattern correlation matrix (or the
onset distance matrix, for that matter). For our learning example,
this implies that bias can be avoided when 4-trial sequences
covering the early learning phase and 4-trial sequences covering
the late phase are generated separately and independently and be
concatenated afterward. This insight is highlighted schematically
in Figure1C.

Clearly, the toy model can only deliver tentative conclusions
and it remains open whether these hold under more
realistic assumptions. For instance, it is unclear whether
trial onset distance is really a fully valid proxy for regressor
correlation, especially given the non-symmetrical shape of the
standard hemodynamic response function (HRF) and given
auto-correlated fMRI data. In a second step, we therefore
examined the behavior of more realistic simulations involving
trial sequences with variable SOAs which were transformed
into synthetic BOLD activation data with added real fMRI
noise. Furthermore, regular HRF modeling was used to estimate
single-trial BOLD responses which were then submitted to
MVPA.

SIMULATIONS BASED ON SYNTHETIC
BOLD ACTIVATION DATA

Materials and Methods (Simulations)
General Task
We simulated a rapid learning task in which 4 different stimuli
occurred multiple times within a trial sequence. For each
pseudo-subject we generated 30 such trial sequences (i.e., 30
unique learning blocks) and simulated a total of 5,000 subjects.
This relatively large sample size should ensure reasonable power

to detect even small biases under the null-effect simulation. Each
of these 150,000 trial sequences was generated independently.
The stimulus-onset-asynchrony (SOA) was randomly chosen
from an equal distribution of 4 different intervals (2, 3, 4, and 5 s).

8-Trial Sequences With 4 Stimuli Each Occurring
2 Times (Simpler Problem)
In the first family of simulations we examined 8-trial sequences
tackling the simpler problem. For each trial, one out of 4 different
stimuli was selected randomly from a pre-specified set of 2
occurrences per stimulus. If an item was selected from this set
it was not replaced. Since each stimulus occurred just twice, only
a single learning stage was defined in this simulation.

16-Trial Sequences With 4 Stimuli Each Occurring
4 Times (Harder Problem)
In the second family of simulations we examined 16-trial
sequences tackling the harder problem. For each trial, one out of
4 different stimuli was selected randomly from a pre-specified set
of 4 occurrences per stimulus. If an item was selected from this
set it was not replaced.

Synthetic Data Generation
For each trial we created a synthetic BOLD activation time
course which was initially sampled at a ‘microtime’ resolution
of TR/16 s as is the default value in the SPM software package.
The trial-specific synthetic BOLD responses were obtained by
convolving the respective stimulus onset ‘stick’ functions with a
canonical event-related BOLD response model using SPM default
values. Stimulus-specific multi-voxel activation patterns were
generated by creating 4 random number vectors (one for each
stimulus) of length 100 (i.e., simulating 100 voxels) which were
then multiplied with the respective trial-specific synthetic BOLD
responses. To imprint systematic stimulus-specific activation
patterns, the same 4 random number vectors were used for each
occurrence of the four specific stimuli with Gaussian random
noise added to account for the fact that in reality we cannot expect
exactly the same pattern to be induced by a re-occurring stimulus.
Importantly, we also created synthetic multi-voxel data without
imprinting systematic stimulus-specific activation patterns. To
this end we generated novel random number vectors for each
occurrence of the four specific stimuli. In this case, we should not
be able detect significant stimulus-specific activation patterns in
our simulation – unless the analysis is biased. Hence, in order to
detect bias, this null-effect simulation is most crucial.
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For each simulated voxel, the sum over all synthetic
trial-specific BOLD responses determined the overall BOLD time
course for a given trial sequence which was then resampled at
TR = 2 s.

Finally, to simulate realistic fMRI noise, we used actually
measured BOLD data sampled at TR = 2 from one of the
subjects participating in the study described later in this paper.
Instead of using the preprocessed time series data we used
unsmoothed residual time series that were created by regressing
out task-related activation with a standard high-pass filter of
1/128 Hz using SPM12. For each simulated trial-sequence, fMRI
noise time series were newly specified within a randomly chosen
time window of the same length as the synthetic time courses
from a 100-voxel sphere at a randomly chosen center coordinate.

Modeling – Single Trial Estimation
Due to the nature of the task and due to the specific
analysis aims, stimulus-specific pattern similarities needed to
be based on single-trial estimates. Single-trial activation was
modeled using both, the least-squares-all (LSA) approach and
the least-squares-single (LSS) approach (Mumford et al., 2012,
2014). The LSA model included regressors for each trial (i.e.,
8 regressors for the 8-trial sequences and 16 regressors for the
16-trial sequences), plus a constant. By contrast, an individual
LSS model included one regressor for a specific trial and another
regressor modeling all other trials, plus a constant. To obtain
single-trial estimates for each trial, different LSS models had to be
estimated. While LSS modeling is computationally much more
time consuming, it has been argued to produce more reliable
results (Mumford et al., 2012, 2014). LSA and LSS regressors were
created by convolving stick functions with the canonical HRF
analogously to the generation of the synthetic BOLD time courses
(but without adding noise).

Pattern Similarity
Stimulus-specific pattern similarity was computed as depicted
in Figure 1A based on single-trial estimates for the simulated
100 voxels. Mean correlations for different stimuli (violet in
Figure 1A) were subtracted from mean correlations for same
stimuli (orange in Figure 1A). If this difference is significantly
larger than zero, a stimulus-specific activation pattern is
detected. In case of the null-effect simulation with no systematic
stimulus-specific activation pattern being imprinted, a significant

effect would imply biased results. Results of one-sample t-tests
are reported. Note that signed-rank tests yielded qualitatively the
same results.

Results (Simulation)
8-Trial Sequences With 4 Stimuli Each Occurring
2 Times (Simpler Problem)
Table 3 and Figure 3 summarize the simulation results for
8-trial sequences involving 2 occurrences of each of 4 different
stimuli. As predicted by the toy model, there was no significant
bias for the null-effect simulation, neither regarding regressor
correlations nor regarding pattern similarities. This was true
for LSA and LSS single trial modeling. The simulations with
imprinted systematic stimulus-specific pattern show that LSA
and LSS have comparable power to detect an effect if present.

16-Trial Sequences With 4 Stimuli Each Occurring
4 Times (Harder Problem)
Table 4 and Figure 3 summarize the simulation results for
16-trial sequences involving 4 occurrences of each of 4 different
stimuli. As predicted by the toy model, there was no significant
bias for the null-effect simulation if all 4 occurrences were
included in the computations (‘overall evaluation’). This was
true for both regressor correlations and pattern similarities and
for both LSA and LSS single trial modeling. However, also
as predicted by the toy model, the simulation results were
strongly biased if only the first 2 occurrences were included
(‘early stage evaluation’). This was true both for regressor
correlations and pattern similarities and for both LSA and LSS
single trial modeling. Again, the simulations with imprinted
systematic stimulus-specific pattern confirm that LSA and LSS
have comparable power to detect an effect if present.

The Importance of Proper Trial Sequence
Randomization
In the toy model section, we have already highlighted the fact
that the number of unique stimulus sequences is increasing
non-linearly according to equation 1. For instance, there are
already 2520 unique sequences based on 4 stimuli, each occurring
twice. This number is increasing dramatically when variable
SOAs are additionally considered (e.g., 4 SOA levels implies
6,350,400 unique 8-trial sequences). This was the reason why the

TABLE 3 | Results for different types of simulations all based on 8-trial sequences including 4 stimuli each occurring twice.

8 trial sequences

Single-trial modeling Truth: systematic stimulus-specific pattern
exists in data

Truth: null-effect (i.e., no systematic
stimulus-specific pattern in data)

Regressor correlation Pattern similarity Regressor correlation Pattern similarity

LSA m = 9e−05 m = 0.181 m = −8e−05 m = −0.0001

t = 0.48; p = 0.63 t = 533.79; p << 0.0001 t = −0.44; p = 0.66 t = −0.41; p = 0.68

LSS m = 0.0002 m = 0.189 M = −5e−05 M = 0.0002

t = 0.92; p = 0.36 t = 499.90; p << 0.0001 t = −0.27; p = 0.79 t = 0.42; p = 0.67

m, mean.
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FIGURE 3 | Results of three different simulations all performed without systematic stimulus-specific multi-voxel patterns (null-effect simulation) and based on LSS
modeling. Histograms on the left hand side represent the distribution of mean regressor correlation differences between same stimuli and different stimuli.
Histograms on the right hand side represent the distribution of mean pattern correlation differences between same stimuli and different stimuli (i.e., stimulus-specific
pattern similarities). The red vertical line represents the expected zero mean.
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TABLE 4 | Results for different types of simulations all based on 16-trial sequences including 4 stimuli each occurring four times.

16 trial sequences

Single-trial modeling Truth: systematic stimulus-specific pattern
exists in data

Truth: null-effect (i.e., no systematic
stimulus-specific pattern in data)

Regressor correlation Pattern similarity Regressor correlation Pattern similarity

Overall evaluation LSA m = −2e−05 m = 0.056 m = −5e−05 m = 4e−05

(occurrences 1 to 4) t = −0.35; p = 0.73 t = 354.90; p << 0.0001 t = −0.96; p = 0.34 t = 0.28; p = 0.78

LSS m = 7e−05 m = 0.062 m = 2e−05 m = 4e−05

t = 1.41; p = 0.16 t = 369.85; p << 0.0001 t = 0.32; p = 0.75 t = 0.22; p = 0.83

Early stage evaluation LSA m = 0.004 m = 0.065 m = 0.004 m = 0.007

(occurrences 1 and 2) t = 25.18; p << 0.0001 t = 163.22; p << 0.0001 t = 26.15; p << 0.0001 t = 16.70; p << 0.0001

LSS m = 0.004 m = 0.079 m = 0.004 m = 0.016

t = 25.28; p << 0.0001 t = 190.50; p << 0.0001 t = 24.39; p << 0.0001 t = 38.51; p << 0.0001

m, mean.

simulations performed above were based on approximation via
random sampling from the full set of permutations.

As we did for the toy model (see Table 1 and Figure 2),
we also evaluated under more realistic conditions, whether this
procedure is still a viable option for smaller (and more realistic)
sample sizes like N = 10 or N = 50 instead of N = 5000. For each
subject, differently sized sets of randomly selected sequences were
used (number of sequences per set: 1, 11, 21, 31, and 131, 231, 331,
431, 531, 631, 731, 831, 931). We tested two different scenarios
based on the 150,000 8-trial sequences (4 stimuli each occurring
2 twice) generated in the previously completed simulations.

In the first scenario, the same set of random sequences was
re-used for each subject. We included this scenario despite
common knowledge to instead use different randomization for
different subjects in general. The aim was to emphasize the
importance of using different randomizations specifically in the
context of MVPA (Mumford et al., 2014) where even small
biases are known to have big impact compared to conventional
univariate analyses. To this end, we randomly selected sets
of 8-trial sequences and, importantly, re-used the same set of
sequences across all 10 or 50 simulated subjects. In the second
scenario, we examined the more reasonable case where different
sets of sequences were randomly selected for each subject. To
this end, we randomly selected sets of 8-trial sequences with a
novel set of randomly selected sequences for each of 10 or 50
subjects.

For both scenarios, for each sequence in a set we took
the estimates of stimulus-specific pattern similarities from the
previously completed null-effect simulations and added random
Gaussian noise (with zero mean and SD equal to the SD across
all 150,000 estimated pattern similarities divided by 10). Random
noise was generated independently for each subject. Random
noise was added to account for the fact that even though a
fixed set of trial sequences would translate into a constant
potential bias in each subject’s estimated pattern similarities,
these pattern similarities would still vary across subjects due
to random noise in the subject-specific synthetic data itself. To
enable statistical evaluation, the whole procedure was iterated
1000 times (each with a different random selection of sequences

per set size). A t-test was performed for each iteration and for
each set size. The resulting 1000 p-values were than assessed
regarding above-chance likelihood of p < 0.05. Hence, given a
distribution of 1000 p-values, 50 p-values should be < 0.05 by
chance. Accordingly, Figure 4 depicts p-values as a function of
p-value rank. That is, for unbiased results, all p-values associated
with rank 50 and greater, should be greater than 0.05. This
representation of results clearly shows that significant bias was
present for all set sizes when a fixed set of randomly selected
sequences was re-used for all 10 or all 50 subjects (left column).
In contrast, when unique sets of randomly selected sequences
were used for each subject, bias was not detectable (right
column). Thus, it seems safe to conclude that stimulus-specific
activation patterns can be assessed without bias, if sequences are
generated randomly within and, importantly, also across subjects.
Otherwise, the sensitivity of MVPA for even small biases implies a
great danger for bias accumulation when the same randomization
is re-used for all subjects (accordingly, the bias becomes even
larger for larger N).

REAL DATA EXAMPLE

Materials and Methods (Real Data)
Participants
The sample consisted of 24 participants (12 female, 12 male; mean
age: 24.4 years, range 20–33 years). All participants were right-
handed, neurologically healthy had normal or corrected vision
including normal color vision. The experimental protocol was
approved by the Ethics Committee of the Technische Universität
Dresden and conformed to the World Medical Association’s
Declaration of Helsinki. All participants gave written informed
consent before taking part in the experiment and were paid
8 Euros per h for their participation or received course credit.

Task
The experimental task had roughly the same general structure
as the simulated task. Each subject was asked to work
through 36 learning blocks each composed of an initial
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FIGURE 4 | Plot of p(t)-values as a function of p-value rank. For unbiased results, all p-values associated with rank 50 and greater, are expected greater than 0.05.
Different lines represent different sequence set sizes (1, 11, 21, 31, and 131, 231, 331, 431, 531, 631, 731, 831, 931).
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instruction phase and a subsequent 16-trial implementation
phase. MVPA was exclusively applied to the implementation
phase. Each block involved a unique set of 4 different 2-
syllable German nouns. During the implementation phase
each noun was presented 4 times and required a button
press response consistently with one out of three right
hand fingers. Prior to the start of a novel trial sequence,
subjects completed the instruction phase in which they were
informed about the correct responses to be executed later on
during the implementation phase. The start of the impending
instruction phase was announced by the German word for
“Memorize” (“Einprägen”) displayed in red for 2 s, immediately
followed by the presentation of the first instructed noun.
Each 16-trial implementation phase was announced by the
German word for ‘Implement’ (‘Ausführen’) displayed in green
for 2 s.

As suggested by the simulation results, each 16-trial sequence
was composed of two independently generated 8-trial sequences,
each comprising two occurrences of each of the four nouns.
Thereby we wanted to ensure that pattern similarities could be
estimated without bias separately for the early learning phase
(occurrences 1 and 2) and for the late learning phase (occurrences
3 and 4). There was no performance feedback after individual
trials. The SOA varied randomly between 2 and 4 s in 0.5 s steps.
The SOA interval was inserted before the start of a new trial to
ensure that there was also random jitter between the end of the
instruction phase and the beginning of the first implementation
trial. After a variable delay of 2 or 4 s relative to the end of the
last trial, the Implementation phase ended with a display of the
mean performance accuracy computed across the preceding 16
trials.

The start of the instruction phase announcement was delayed
by a variable delay of 2 or 4 s relative to the start of a
new measurement run or relative to the end of the preceding
implementation phase. During instruction, the 4 nouns were
presented in rapid succession framed by two vertical lines to
the left and to the right of the word. If a noun was closer
to the left vertical bar, this indicated an index finger response.
If a noun was closer to the right vertical bar, this indicated
a ring finger response. If a noun was equally close to both
vertical bars, this indicated a middle finger response. During
instruction, response execution was not allowed yet. We only
recruited right-handed subjects who were asked to use the right
hand fingers for responding. Note that the instruction phase was
not part of the MVPA.

There were two difficulty conditions which only differed
in the number of instructed nouns, but not in the number
of actually implemented nouns. In the difficult condition, 10
nouns were instructed and each word was display for 1 s. In
the easy condition, 4 nouns were instructed and each word
was displayed for 2 s. In either case, 4 nouns were presented
during the 16-trial implementation phase. There was an equal
number of 18 blocks per difficulty condition. For the purpose
of the present paper, easy and difficult blocks were lumped
together.

Data Acquisition
The 36 learning blocks were realized in three consecutive
measurement runs each comprising 12 learning blocks. Each
run lasted approximately 13 min. Easy and difficult learning
blocks were pseudo-randomized such that the same number
of 6 blocks per condition was realized. Also, the random
delay before the start of each novel instruction phase and
the delay before performance feedback was pseudo-randomized
such that each SOA level occurred equally often (3 times)
for each difficulty condition. MRI data were acquired on a
Siemens 3T whole body Trio System (Erlangen, Germany)
with a 32 channel head coil. Ear plugs dampened scanner
noise. After the experimental session structural images were
acquired using a T1-weighted sequence (TR = 1900 ms,
TE = 2.26 ms, TI = 900 ms, flip = 9◦) with a resolution of
1 mm × 1 mm × 1 mm. Functional images were acquired
using a gradient echo planar sequence (TR = 2000 ms,
TE = 30 ms, flip angle = 80◦). Each volume contained 32
slices that were measured in ascending order. The voxel size
was 4 mm × 4mm × 4 mm (gap: 20%). In addition, field
maps were acquired with the same spatial resolution as the
functional images in order to correct for inhomogeneity in the
static magnetic field (TR = 352 ms, short TE = 5.32 ms, long
TE = 7.78 ms, flip angle = 40◦). The experiment was controlled
by E-Prime 2.0.

Preprocessing
The fMRI data were analyzed using SPM12 running on MATLAB
R2016a. First, the functional images were slice time corrected,
spatially realigned and unwarped using the acquired field maps.
Each participant’s structural image was co-registered to the
mean functional image and segmented. Spatial normalization
to MNI space was performed by applying the deformation
fields generated by the segmentation process to the functional

TABLE 5 | Pattern similarity results based on real data.

Early (1 and 2) Late (3 and 4) Middle (2 and 3)

Pattern
similarity

t p(t) Pattern
similarity

t p(t) Pattern
similarity

t p(t)

White matter [Mean over all voxels] 0.002 0.44 0.67 0.001 0.26 0.80 − 0.0310 − 5.61 1.04e−05

Left motor cortex [MNI: −36 −25 50] 0.033 5.37 9.36e−06 0.024 3.58 7.93e−04 − 0.01 − 1.25 0.12

Right motor cortex [MNI: 36 −25 50] 0.001 0.12 0.45 0.005 0.78 0.23 − 0.035 − 3.39 0.001

Left post. LPFC [MNI: −33 11 35] 0.019 2.09 0.024 0.022 3.05 0.003 − 0.036 − 3.59 0.001

Left ant. LPFC [MNI: −39 35 5] 0.020 4.63 5.88e−05 0.004 0.48 0.32 − 0.035 − 3.66 0.001
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images (resolution: 3 mm × 3 mm × 3 mm). Images were not
additionally smoothed.

Modeling
Standard General Linear Model (GLM) analysis was performed
within the SPM12 framework including the standard 1/128 Hz
high-pass filter. BOLD activations during the 16-trial
implementation phase were modeled analogously to the
simulations by using single trial regressors for each of the 3
measurement runs obtained by convolution with the SPM-
default HRF (16∗12 = 184 single trial regressors per run).
Since the simulations did not show any systematic differences
between LSS and LSA modeling we used the LSS model which
has previously been reported to be more powerful (Mumford
et al., 2012, 2014). In addition, we included regressors for the
instruction phase and for the performance feedback at the
end of each implementation phase. To appropriately capture
BOLD activation during the instruction phase, spanning either
12 s (easy condition) or 14 s (difficult condition), we used
Fourier basis set regressors including 20 different sine-wave
regressors spanning 44 s which were time-locked to the onset
of the start of the instruction phase. Using a Fourier basis set
has the advantage to flexibly model any BOLD response shape
associated with the extended instruction phase without making
prior shape assumptions. Advantage over FIR modeling is that
a Fourier basis set can easily operate at micro-time resolution
(SPM default TR/16) whereas FIR cannot (Henson and Friston,
2007). Performance feedback was modeled with a standard
event-related HRF function time-locked to the onset of the
feedback screen.

MVPA
Multi-voxel pattern analysis was based on single-trial beta
estimates analogously to the simulations. As described in the
simulations section, stimulus-specific multi-voxel activation
patterns were determined by subtracting mean pattern
correlations between beta estimates for different learning
items from mean pattern correlations between beta estimates
of re-occurrences of same learning item. As in the simulations,
we did this separately for the early learning stage (occurrences 1
and 2) and the late learning stage (occurrences 3 and 4). These
pattern similarity values were projected to each voxel by use of
the searchlight approach (Kriegeskorte et al., 2006) which was
implemented using the CosmoMVPA toolbox (Oosterhof et al.,
2016). Spherical searchlights with 3 voxel radius were used.

Two types of MVPA were performed. A first MVPA was
geared toward detecting bias if present. We therefore assessed
pattern similarities in white matter were no significant effect was
expected in case of bias-free MVPA. To this end, we computed
voxel-wise searchlight MVPAs for each subjects’ individually
segmented white matter volumes. The mean over all voxel-wise
pattern similarity values within white matter was then computed
for each subject and assessed via two-tailed one sample t-tests.
A second MVPA aimed at demonstrating significant pattern
similarity effects in meaningful brain regions. For instance, as
different nouns were consistently associated with different right
hand finger response, significant pattern similarity effects should

be expected in the left motor cortex but not in the right motor
cortex.

Results (Real Data)
Regarding white-matter MVPA, t-tests for both the early
learning stage (occurrences 1 and 2) and the late learning
stage (occurrences 3 and 4) were non-significant (Table 5 and
Figure 5). This suggests the absence of significant bias at least of
a size that could have been detected with given statistical power.
By contrast, when MVPA was based on occurrences 2 and 3
results turned out to be strongly and significantly biased. This
was expected based on the simulations as trial sequences were
properly randomized only for within the early and within late
learning stages.

The whole-brain searchlight analysis of pattern similarities
revealed several significant clusters in meaningful regions. Two
regions were identified based on a one-tailed global conjunction
t-test across early and late learning stage similarity estimates.
This included the left motor cortex (MNI −39 35 5; t2,46 = 3.14;
p(t) < 2.18e−06) and the left posterior lateral PFC (MNI −33
11 35; t2,46 = 2.38; p(t) < 1.17e−04). For comparison, Table 5
and Figure 5 also include the null-results for the homolog
right motor cortex. Note that statistics reported in Table 5
refer to standard one-tailed t-tests applied to pattern similarities
regarding each learning stage considered alone (i.e., not in
conjunction). Additionally, the left anterior lateral PFC was
identified based on a one-tailed t-test specifically for the early
learning stage (MNI−39 35 5; t1,23 = 4.63; p(t) < 5.88e−05).

In summary, these finding suggest that MVPA based on
properly generated random trial sequences ensures protection
from bias-induced false positives and at the same time enables
us to detect true effects if present.

DISCUSSION

Previous work has highlighted that MVPA can be severely biased
due to even small imbalances in regressor correlations (Mohr
et al., 2014; Mumford et al., 2014; Visser et al., 2016). This
contrast with conventional univariate analyses where regressor
correlation is known to be less of a concern, even for extreme
cases with fixed temporal order of closely spaced within-trial
events (Ollinger et al., 2001; Serences, 2004; Ruge et al., 2009).
This benign behavior in the univariate case is due to the fact
that regressor correlation increases beta estimate variance but
preserves the mean (Mumford et al., 2015).

The potentially devastating MVPA-specific problem can be
easily avoided when the experimental paradigm allows for a
complete separation of BOLD activity induced by the contrasted
trial types either across runs (e. g., Haxby et al., 2001; Li
et al., 2009) or across-subjects (Mohr et al., 2015). The results
presented in the present paper demonstrate that MVPA bias can
also be avoided in situations where the contrasted trial types
are temporally dependent and even when BOLD responses are
overlapping. Importantly, this only holds if two pre-requisites are
met.
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FIGURE 5 | Pattern similarity results based on real data; error bars represent 90% confidence interval. (A) T-maps representing early stage (red) and late stage
(green) pattern similarities and their overlap (yellow), each thresholded at t > 2.0 for visualization. (B) Searchlight pattern similarity results averaged across all white
matter voxels.
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First, activation patterns can be assessed without bias if trial
sequences are generated randomly within and, importantly, also
across subjects. This confirms earlier conclusions by Mumford
et al. (2014) and highlights the sensitivity of MVPA for even small
biases accumulating over subjects when the same randomization
is re-used for all subjects (note that the problem grows with
increasing N).

Second, substantial MVPA bias can occur when partial
sequences are constructed based on specific subsets of trials which
are systematically selected within otherwise well-randomized
full sequences. In the learning example presented here, this
implies that zero bias for consecutive learning stages can be
ensured by generating separate random trial sequences for
each stage. Importantly, this is true even in the presence of
overlap between early and late stage BOLD activity which is
inevitable for rapid learning processes where learning stages
occur within the same measurement run. While certain task
constraints might intrinsically imply obedience to this principle
(e.g., Kahnt et al., 2011) other studies might have run into trouble
due to sub-optimal trial sequence construction. The present
results urge for an explicit consideration of proper trial sequence
construction.

Clearly item-specific MVPA depends on reliable estimates
of single-trial BOLD activation. Our simulations implemented
different variants of single-trial GLMs using either the LSS or
the LSA methods proposed earlier (Mumford et al., 2012; Turner
et al., 2012). These two approaches did reveal quite similar results
in the present case. Nevertheless, recent papers have suggested
advantages and disadvantages of either approach depending on
a number of additional design parameters (Abdulrahman and
Henson, 2016; Zeithamova et al., 2017). It might be a worthwhile
aim for future research to examine the implications of certain
design parameter choices and certain regularization procedures
(Mumford et al., 2012) on single trial estimation efficiency and its
ramifications on learning-related MVPA.

CONCLUSION

In conclusion, the feasibility of MVPA in the context
of temporally dependent trial types can be viewed more
optimistically than previously thought (Mohr et al., 2014; Visser

et al., 2016). In fact, our example demonstrates that the existence
of sequential dependencies does not per se exclude bias-free
MVPA even when trials are not separated across different runs.
Hence, MVPA can be employed for the investigation of rapid
learning processes and it is not restricted to paradigms where
slowly evolving learning stages naturally occur in well-separated
runs (e.g., Li et al., 2009). Moreover, it becomes feasible to
compute learning stage-specific correlations between pattern
similarity measures and subsequent behavioral measures of
learning success as an extension of previous successful, yet
stage-unspecific, applications of this general approach (e.g.,
Xue et al., 2010; Atir-Sharon et al., 2015). Clearly, within the
broader context of learning, the present conclusions might not
always be directly applicable. In particular, this holds for learning
processes that cannot easily be defined by the number of stimulus
occurrences. For instance, if learning stage is defined by some
behaviorally derived parameter, this cannot be considered already
during the construction of trial sequences prior to the start of the
experiment. Whether MVPA bias could be controlled via adaptive
on-line sequence construction would require in depth analysis of
the specific experimental setting.
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