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Low resolution electromagnetic tomography (LORETA) is a well-known method for the

solution of the l2-based minimization problem for EEG/MEG source reconstruction.

LORETA with a volume-based source space is widely used and much effort has been

invested in the theory and the application of the method in an experimental context.

However, it is especially interesting to use anatomical prior knowledge and constrain the

LORETA’s solution to the cortical surface. This strongly reduces the number of unknowns

in the inverse approach. Unlike the Laplace operator in the volume case with a rectangular

and regular grid, the mesh is triangulated and highly irregular in the surface case. Thus, it

is not trivial to choose or construct a Laplace operator (termed Laplace-Beltrami operator

when applied to surfaces) that has the desired properties and takes into account the

geometry of the mesh. In this paper, the basic methodology behind cortical LORETA is

discussed and the method is applied for source reconstruction of simulated data using

different Laplace-Beltrami operators in the smoothing term. The results achieved with the

different operators are compared with respect to their accuracy using various measures.

Conclusions about the choice of an appropriate operator are deduced from the results.

Keywords: Algorithms, Brain imaging, Electroencephalography, Magnetoencephalopgraphy, cortical imaging,

surface Laplacian, Brain Mapping

INTRODUCTION

Neuroscience is a fast growing field posing many challenges and requiring expertise in various
different scientific areas (Markram, 2013). In order to be able to satisfy these needs the neuroscience
community is asked to constantly develop new strategies for data analysis, design new experiments,
improve techniques used in the past, identify previous errors and correct them etc. Where
neurophysiological measurements are concerned, at the beginning of the electroencephalographic
(EEG) era (Berger, 1929) scientists and physicians were content with looking merely at the signals
measured on the scalp. However, a few decades later the question on where in the brain these signals
originate gained more relevance (Brazier, 1949; Wilson and Bayley, 1950). This was the time when
source reconstruction of brain activity was born. From then onwards, strategies and methods of
source analysis were rapidly developing and many different approaches came into existence. The
dipole model was improved to use spatio-temporal information (Scherg and von Cramon, 1985),
distributed source models with a linear inverse appeared (Hämäläinen and Ilmoniemi, 1984), their
iterative application was discussed (Gorodnitsky et al., 1995), and later also Bayesian methods for
source reconstruction (Schmidt et al., 1999) were introduced.
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The class of discrete, 3D-distributed, linear inverses contains
a large variety of available methods. One very popular and widely
used method is low resolution electromagnetic tomography
(LORETA) (Pascual-Marqui et al., 1994; Pascual-Marqui, 1999),
or also called “Laplacian weighted Minimum Norm” (Michel
et al., 2004), which uses the Laplace operator for modeling
the source-space correlation of the data. For a critical view on
the capabilities of LORETA the reader can refer to (de Peralta
Menendez and Andino, 2000). Initially, this method was applied
with three-dimensional volume source space without taking into
account the structure of the cerebral cortex. Soon after this,
an improvement of this method was suggested by constraining
the solution to the cortex and using a Laplace operator that
smoothes along the two-dimensional cortical surface instead of
the 3D brains space (Skrandies et al., 1995). This improvement
was suggested earlier for the Minimum norm approach (Dale
and Sereno, 1993) and is considered meaningful, since it is based
on anatomy and helps to reduce the undesired spreading of the
estimated source activity to adjacent gyri or fissures. In the first
actual implementation of cortical LORETA it was suggested to
use a weighted graph Laplace operator (Wagner et al., 1996). No
reason was given for this particular choice of a Laplace operator
and the properties of the Laplace operators were not investigated
in detail.

In this publication, we introduce four different surface-based
Laplace operators which correspond to four different classes of
operators. Laplace operators for surfaces are also termed Laplace-
Beltrami operators and overviews can be found in Reuter et al.
(2009), Dakov and Venkov (2014).

Here, we present results on the unweighted graph Laplacian
(Levy, 2006), the weighted graph Laplacian (Wagner et al., 1996),
the unweighted geometric Laplacian (Pinkall and Polthier, 1993)
and the weighted geometric Laplacian (Meyer et al., 2003) as a
special case for a finite elements discretization of the operator
(Dziuk, 1988). In the following these four operators are compared
with respect to their basic mathematical properties, application
and performance in the source reconstruction with cortical
LORETA.

METHODS

Formulation of the LORETA Solution
Let DǫRn×1 be a matrix containing measured EEG data at n
channels for one time sample, and LǫRn×3m be the lead field
matrix which is the solution of the so-called electromagnetic
forward problem and contains the information about the data
measured at the n channels if there is a unit strength current
dipole at a given position (x, y, z) in the source space. The number
of discrete source positions in the brain is denoted bym. L can be
written in matrix form as:

L =











lT11 lT12
lT21 lT22

· · · lT1m
· · · lT2m

...
...

lTn1 lTn2

...
· · · lTnm











,

where, lij =
(

λxij, λyij, λzij
)T

ǫR3×1 is the lead field for the source
location with coordinates (x, y, z).

The problem of EEG source reconstruction using the l2-norm
can be formulated as follows:

Find the source current density distribution JǫR3m×1 which
satisfies the following condition:

min
{

‖L · J − D‖22 + αJT ·W · J
}

. (1)

Here WǫR3m×3m is the weighting matrix in the regularization
term and can be chosen according to the assumed properties of
the true solution. If W is the identity matrix then we have the
original minimum norm solution derived by Hämäläinen and
Ilmoniemi (1984), if W is a diagonal matrix containing depth
weights then the depth-weighted minimum norm is provided. In
the case of LORETA the matrixW is defined as a combination of
the diagonal depth weighting and the discrete Laplace operator.
The definition ofW due to Pascual-Marqui (1999) is given by:

W = (�BTB�)⊗ I3 (2)

where I3 ∈ R
3×3 is the 3× 3 identity matrix,⊗ is the Kronecker

product (Laub, 2005), �ǫRm×m is a diagonal weighting matrix
(Pascual-Marqui, 1999) defined as

�jj =

√

√

√

√

n
∑

i=1

lTij lij, for j = 1 · · ·m (3)

and B ∈ R
m×m is the stiffness matrix of the discrete Laplace

operator (Skrandies et al., 1995) defined as

1g
(

pi
)

=
6

d2





(

6+
∑

j∈N(i) 1
)

12
∑

j∈N(i) 1

∑

j∈N(i)

g
(

pj
)

− g
(

pi
)



 . (4)

Here d is the distance between two neighboring grid points, g
(

pi
)

is the value of a function g defined on a regular 3D grid at the
point pi from that grid. N(i) is the set of indices corresponding to
the direct neighbors of pi. B is described below in more detail.

The regularization parameter α > 0 represents the balance
between minimizing the residual norm and minimizing the
regularization term.

Given the above definitions the solution of the problem (1) is
given by:

Ĵ = T · D, (5)

where T ∈ R
3m×n is called the linear inverse operator and can be

calculated as:

T = W−1LT
[

LW−1LT + αIn

]−1
(6)

for a square invertible matrix W (Hansen, 1998). The parameter
α is the same as in equation (1). The equation (6) is similar to
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the LORETA solution for volume source space given in Pascual-
Marqui (1999). The exact equation for LORETA is

T = W−1LT · pinv
(

LW−1LT , βµ

)

, (7)

where pinv is the pseudoinverse (Björck, 1996) of the matrix
LW−1LT with tolerance βµ, i.e. setting all singular values of the
matrix LW−1LT less than the tolerance to zero. This resembles
the truncated singular value decomposition introduced to source
analysis in Wolters et al. (1999).

Here β is an alternative parameter to α with values also in the
interval (0 1]. The parameter µ is the largest singular value of the
matrix LW−1LT .

LORETA With Cortical Constraint
The next step is to develop a solution for LORETA on the
cerebral cortex, i.e. not for a volume source space but for a two-
dimensional surface in the 3D space. First of all, the Laplace
operator used before has to be changed to be able to operate on
the surface. Suggestions for such Laplace operators were already
described in the literature (Skrandies et al., 1995; Wagner et al.,
1996). However, in these publications it is not taken into account
that a large number of discretizations of the Laplace operator
exists on two-dimensional surfaces, with different properties
(Wardetzky et al., 2007; Belkin et al., 2008) and, consequently,
yielding different results as smoothing operators (Desbrun et al.,
1999).

In this publication, four classes of Laplace-Beltrami operators
are considered: unweighted graph Laplacians, weighted graph
Laplacians, geometric Laplacians without area weights, and
geometric Laplacians with area weights.

Let S be the continuous cortical surface (2D-manifold) in R
3.

Its discrete form is then

M =
{

piǫR
3| piǫS,∀i = 1, · · · ,m

}

(8)

The general form of the discrete Laplace-Beltrami operator
applied to a function f onM can be written as:

1f
(

pi
)

=
1

di

∑

j∈N(i)

wij

[

f
(

pi
)

− f
(

pj
)]

(9)

where pi is the i-th node of M, f
(

pi
)

is the value of the function
f at the node pi, wij is the weight of the connection between the
nodes pi and pj, di is the area weight assigned to the node pi and
N(i) is the set of indices corresponding to the direct (also called
“1-ring”) neighbors of pi.

The stiffness maxtrix B contains the coefficients of the Laplace
operator to be applied to the values f(pi). Example for a simple
closed mesh with four points p1,..,p4 which are all neighbors of
one another:

i = 1, N (1) = (2, 3, 4) :

1f
(

p1
)

=
1

d1

∑

j∈(2,3.4)

w1j
[

f
(

p1
)

− f
(

pj
)]

=
w12 + w13 + w14

d1
f
(

p1
)

−
w12

d1
f
(

p2
)

−
w13

d1
f
(

p3
)

−
w14

d1
f
(

p4
)

With analogous equations for f(p2), f(p3), and f(p4), one ends up
with









1f
(

p1
)

1f
(

p2
)

1f
(

p3
)

1f
(

p4
)









= B









f
(

p1
)

f
(

p2
)

f
(

p3
)

f
(

p4
)









, where B

=











w12+w13+w14
d1

−w12
d1

−w13
d1

−w14
d1

−w21
d2

w21+w23+w24
d2

−w23
d2

−w24
d2

−w31
d3

−w32
d3

w31+w32+w34
d3

−w34
d3

−w41
d4

−w42
d4

−w43
d4

w41+w42+w43
d4











All Laplace-Beltrami operators in this publication can be
introduced on the basis of equation (9).

The unweighted graph Laplacian (UW GrL) (Levy, 2006) is
the simplest one. It takes into account only the adjacency of the
nodes and not the geometry of the mesh (Figure 1a):

wij =







1 if pi and pj are
directly connected

0 otherwise
di = 1

(10)

The weighted graph Laplacian (W GrL) defined in (Wagner
et al., 1996) is similar to the unweighted graph Laplacian but
with different weights for the different connections (Figure 1b).
In order to represent it in the general form (9) we define the
corresponding weights as

wij =
1

dist(pi ,pj)
di =

∑

j∈N(i) dist
(

pi, pj
) (11)

where, dist
(

pi, pj
)

is the distance between the nodes pi and pj. The
geometric Laplacian without area weights (UW GeL) (Pinkall
and Polthier, 1993) takes into account not only the connectivity
between the nodes but also the geometry of themesh by including
the cotangents of the angles into the weights wij:

wij =
cot(αij)+cot(βij)

2
di = 1

(12)

where αij and βij denote the two angles opposite to the edge (i,
j)(Figure 1c). The geometric Laplacian with mixed area weights
(W GeL) (Meyer et al., 2003) takes into account not only the
angles but also the areas of the triangles in the mesh (Figure 1d):

wij =
cot(αij)+cot(βij)

2
di = Amixed

(13)

Due to (Meyer et al., 2003) the area Amixed is defined as the
Voronoi area if the triangle is not obtuse and in the case of an
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FIGURE 1 | Illustration of the mode of functioning for: (a) the unweighted graph Laplacian, (b) the weighted graph Laplacian, (c) the unweighted geometric Laplacian,

(d) the geometric Laplacian with mixed area weights.

obtuse triangle the area connected with the midpoint of the edge
opposite to the obtuse angle. Amixed can be calculated with the
following algorithm written in pseudocode:

Amixed = 0
For each triangle T from the 1-ring neighborhood of pi do:
If T is non-obtuse

Amixed+ = Voronoi region of pi in T

Else
If the angle of T at pi is obtuse

Amixed+ = area(T)/2
Else

Amixed+ = area(T)/4
(14)

The Voronoi region of pi in T is the set of points in T such that
the distance to pi is not greater than the distance to any other two
nodes forming the triangle T.

There are many other possible choices for the area around
the nodes, however, Amixed is identified as the best-choice finite-
volume region corresponding to the infinitesimal neighborhood
on a continuous surface patch (Meyer et al., 2003). The areas of
the triangles were calculated with a stabilized Heron’s formula
(Kahan, 2014) in order to avoid problems for needle-like
triangles.

In the following, the operators described by equations
(10–13) will be compared with respect to their performance
as regularization term for cortical LORETA. Beforehand, it is
appropriate to look at some important properties of the Laplace
operator (Chung, 1996).

1) The Laplace operator is diagonally dominant
2) The Laplace operator is positive-semidefinite (all eigenvalues

are non-negative)
3) There is exactly one eigenvalue which is equal to zero.
4) The Laplacian matrix is singular.

Since the Laplacian matrix is singular it cannot be used directly
in equation (7) for calculating the inverse operator T. In order
to be able to use the Laplace operator into (7) the matrix BTB
is replaced by its approximation BTB + σ Im. In that case the
weighting matrixW obtains a new form

Wcortical =
[

�
(

BTB+ σ Im

)

�
]

⊗ I3. (15)

The parameter σ is in the interval (0 η
2 ], where η is the largest

singular value of the matrix BTB.
In order to demonstrate the effect of the parameter σ on

the LORETA solution the equation (7) was modified such that
depth weighting was not used and only the effect of the Laplacian
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could be observed. The unweighted minimum norm solution
and the unweighted LORETA solution for different σ ’s were
calculated for a simulated bilateral activation of auditory cortex,
and compared for the graph Laplacian. A simplified form of the
cortex was used for a better visualization of the smoothing effect.

For σ =
η
2 the solution with Laplace showed high similarity

to the solution without Laplace. This means that the effect of
the Laplace operator attenuates for large σ . For σ approaching
zero the smoothness of the solution increases, until finally both
auditory sources are fused together in the frontal area (Figure 2).
This means that the impact of the Laplace operator becomes
stronger for smaller values of σ .

Intuitively, this behavior can be explained as follows: when
we add large values to the diagonal of the Laplace matrix
the diagonal elements become very large compared to the off-
diagonal elements and the matrix behaves similar to a diagonal
matrix. A diagonal matrix acts merely as a scaling matrix and
does not affect the neighboring nodes.

The problem remains how to determine the optimal value for
the parameter σ . Until now the knowledge was derived that for
too large values of σ the solution with Laplacian “converges” to
the solution without Laplacian because of the attenuated effect of
the operator and for too small values the smoothing effect is very
strong, resulting in a solutionwhich does notmatch themeasured
data very well. Consequently, the optimal value should be a trade-
off between these two extremes. For that reason twomeasures are
used for estimating the optimal value: the goodness of fit (GOF)
and the similarity to the solution without Laplace. The GOF is
defined as in Hämäläinen et al. (1993)

GOF = 100 · (1− RV) (16)

where, RV is the residual variance and is given by

RV =

∑n
i=1

(

bi − b̂i

)2

∑n
i=1 b

2
i

, (17)

here b1, · · · , bn are the measured data at n channels and
b̂1, · · · , b̂n are the data reconstructed by the linear solver (with
or without Laplacian). If GOF = 100%, the model explains the
data perfectly, whereas GOF = 0% means that the model does
not match the data at all. The similarity between solutions is
calculated using the same equation as for the residual variance
with the only difference that b1, · · · , bmare the normed source
power values (i.e. ǫ[0 1]) for m source space points calculated
without using a Laplacian and b̂1, · · · , b̂mare the corresponding
values calculated with a Laplacian. A value of 0% would mean
that the solutions are identical. Values larger than 100% are also
possible.

In order to derive an optimal value for σ a data set was
simulated with 2 bilateral auditory sources and noise from a real
EEG measurement such that the signal-to-noise ratio (SNR) was
20. For that data set both measures (GOF and similarity) were
calculated for different σ and different α values. The results were
plotted as graphs with the x-axis denoting the values for σ and
the y-axis denoting either GOF or the similarity to the solution

FIGURE 2 | Smoothing effect of the surface Laplacian. The top-most row and

the second row show the simulated auditory sources together with a butterfly

plot of the signal created at the sensors, the third row shows the unweighted

minimum-norm solution, the fourth row the cortical LORETA solution for σ =

65, the fifth row for σ = 6.7e-2, the sixth for σ = 6.7e-3, and the bottom-most

row shows the cortical LORETA solution for σ = 2.1e-3.

without Laplacian. For each α value one line with different color
was added (Figure 3A).

From Figure 3A one can choose an interval for the values of
σ in which the trade-off between similarity and GOF is satisfied.
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FIGURE 3 | Results for the similarity to the solution without Laplacian (left) and the GOF (right) for the graph Laplacian applied on the simplified cortical form over

(A) the whole range of σ (top row), (B) σ in the interval [10−2 10−1] (bottom row). The curves computed for different α values are denoted by different colors.

At the left it is apparent that for σ > 1 the effect of the Laplacian
becomes weaker and the solution is similar (deviation < 5%) to
that without Laplacian. In the right figure one can see that in
order to get a solution with GOF ≥ 90% the value of σ should
not be smaller than 10−². The only value which satisfies the
conditions GOF ≥ 90% and deviation to the solution without
Laplacian ≥ 10% is σ = 0.04. Since the values in the first
calculation were exponentially sampled now a subinterval [10−2

10−1] is chosen with linear sampling. Figure 3B shows the results
after recalculating both measures for the smaller interval.

Here, the values [0.07, 0.06, 0.05, 0.04, 0.03] were identified to
satisfy the required conditions. The mean value of that interval
was taken for further calculations, i.e., σ = 0.05. For that
value the GOF is larger than 90% for all α and the deviation
from the solution without Laplacian is larger than 17%. The
cortical LORETA result for the optimal value is shown in
Figure 4 together with the corresponding solution without a
Laplacian for a simulated data set with two bilateral auditory
sources.

In Figure 4 one can see that the cortical LORETA solution
is not more widely distributed than the solution without a
Laplacian. Furthermore, the regions with maximal activity are

shifted toward the simulated activity regions which are shown at
the top of the figure.

This procedure was repeated for all four Laplace operators and
for three different types of cortical meshes.

Anatomical MRI Data
The procedure for determining the optimal value for σ was
applied for three types of cortical meshes (Figure 5): a simplified
cortical mesh with 750 nodes, a more realistic cortical form with
3,709 nodes resulting from a non-linear co-registration of 10
individual MRI data sets, and an individual cortical mesh with
3,973 nodes.

The simplified cortical surface was extracted from an averaged
MRI created based on 50 T1-weighted MRIs linearly aligned
in Talairach space. An initial, coarse triangular cortical surface
was manually deformed to fit to the inner bone surface
and finally shrunk by a small amount to approximate the
cortex.

For the averaged MRI resulting from the non-linearly co-
registered data sets and for the individual MRI data set T1-
weighted structural magnetic resonance images (MRI) were
obtained from 10 participants using a Philips Gyroscan 1.5 T
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FIGURE 4 | Visual comparison of the simulated auditory sources (top), the depth weighted minimum-norm solution (center) and the cortical LORETA solution (bottom)

for the optimal value of σ.

FIGURE 5 | Three different cortical meshes were used for determining the optimal value for σ : (A) the most simple form with 750 nodes, (B) averaged cortex form

with 3,709 nodes, and (C) individual cortex form with 3,973 nodes.

magnetic resonance imaging system (Philips Medical Systems,
Gyroscan ACS-T). The resolution of the MRIs was 256 × 256
× 200 voxels, with 200 slices covering the left-to-right direction
(Jordanov et al., 2010).

The non-linearly averaged cortex and the individual cortex
were automatically segmented using the BESA MRI 2.0
software (BESA GmbH, Gräfelfing, Germany). Based on the

provided T1-weighted MRI, first a voxel-based classification
was performed (Zhang et al., 2001). Next, an implicit surface
representation of the white matter-gray matter interface was
reconstructed from the classification result. The implicit surface
was finally slightly inflated to approximate the cortical surface in
the middle of the gray matter layer (Chan and Vese, 2001; Lanfer,
2014).
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Simulated Data
For the comparison between the different Laplace operators with
respect to various performance measures 1,000 cortical sources
were simulated (here, the realistic cortex with 3,709 nodes was
used), however, colocalization with nodes of the cortical mesh
used for the calculation of the leadfields was prevented in order
to avoid an inverse crime. In that way 1,000 simulations without
noise were generated for 1,000 different source locations. In every
simulated data set only one source was active. For all simulations
a 4 shell ellipsoidal head model as implemented in the software
package BESA Research 6.1 (Berg and Scherg, 1994) was used.

Leadfields were computed for a sensor configuration
comprising 127 electrodes on a dense grid in an equidistant
layout as defined by the geodesic sensor net (Tucker, 1993).

Measures for the Comparison
The measures used for the comparison were localization error,
source depth, depth shift, number of local maxima, residual
variance and computation time. For the estimation of the
localization error and of the depth shift two different approaches
were applied. The first approach was to take the mesh node with
the maximal amplitude (MA) as the location of the estimated
activity and the second approach was to take the center of mass
(COM) as the location of the estimated activity. In both cases the
image resulting from the source reconstruction was prepared in
such a way that all active nodes with activity below 50% of the
maximal activity were set to zero. In that way it was ensured
that only the nodes with significant contribution to the source
reconstruction were used for the comparison (Lin et al., 2006).

The localization error was defined as the distance between
the estimated and the simulated source location (Lin et al., 2006;
Lucka et al., 2012). Smaller values for the localization error mean
better solution. The source depth was defined as the distance
between the source (simulated or estimated) and the nearest
sensor. A solution was considered good if the depth of the
estimated source was approximately the same as the depth of the
simulated source. The depth shift was defined as the difference
between the depth of the simulated source and the depth of the
estimated source (Lin et al., 2006; Lucka et al., 2012). Positive
values for the depth shift mean that the simulated source was
deeper than the estimated one.

The number of local maxima was investigated to provide an
estimate of how many false positives were found in the estimated
solution. A local maximum was defined as a mesh node which
had larger amplitude than all of its direct neighbor nodes.

For the statistical comparison of the measures one-way
ANOVA was applied as implemented in MATLAB and
Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick,
Massachusetts, United States. For the pairwise comparison of the
measures in a post hoc statistical step, Tukey’s ‘Honest Significant
Difference’ method was used as implemented in R (R Core Team,
2015).

Identifying an Appropriate α Value
After the optimal value for the parameter σ was determined it
was necessary to look for an appropriate α value to be used for
the calculations. There are many automatic procedures for doing

that, e.g., the L-curve. However, these procedures do not always
yield the “best” value. Therefore, another procedure was used
here.

The first step was to determine the α value for data without
noise. Since in equation (7) the pseudo-inverse is used instead of
the inverse, α is not a continuous quantity and can only change
with the singular values of the given matrix. For that reason
an additional parameter is introduced which determines how
many singular values should be set to 0 for the inversion. This
parameter, called SVD cutoff index (SCI), can have only integer
values between 1 and the number of total singular values. If the
value is 1 then only the last (smallest) singular value is set to zero,
if e.g., the value is 10 then the ten smallest singular values are
set to zero. After the SCI is chosen the corresponding SVD cutoff
value (SCV) is chosen to be between the singular value with index
SCI and the one with index SCI+1. The value for the parameter
α can be calculated as the ratio:

α =
SCV

Largest Singular Value
(18)

The procedure of determining the optimal α value is to calculate
the estimation once with and once without Laplacian for many
different SCIs and then to take the index with the best results with
respect to localization error and number of local maxima.

RESULTS

The first step in the analysis of the different Laplace-Beltrami
operators was to determine their optimal values for σ . This was
done by the procedure described in the section “LORETA with
cortical constraint.” The results are shown in Table 1.

In the case of individual cortex, for two of the values for α

(0.01, 0.005) there were no acceptable σ values for any of the
weighted graph Laplacian, unweighted geometric Laplacian and
weighted geometric Laplacian. Therefore, the maximal α value
used in these cases was 0.0025. The values in Table 1 for σ were
used for further calculations.

In the following, the optimal value for α in the case of data
without noise and for the case of the realistic cortex with 3,709
nodes was determined. The source estimations were calculated
with and without Laplacian for one randomly selected dataset
from the simulated data without noise for SCIs 1, 20, 40, 60, 80,
and 100. For every SCI the localization error (point with max.
amplitude) and number of local maxima were calculated. The
results are shown in Table 2.

TABLE 1 | Optimal values for σ .

UW GrL W GrL UW GeL W GeL

Simplified cortex

(750 nodes)

0.05 1.1E-7 0.0095 1.5E-6

Realistic cortex

(3709 nodes)

0.025 1.5E-7 0.0065 3.5E-6

Individual cortex

(3973 nodes)

0.055 2.2E-7 0.003 3.0E-6
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From Table 2 one can see that the localization error and the
number of local maxima for both using no Laplacian and for
unweighted graph Laplacian, are best for the smallest SCI, in
that case 1. Consequently, the α-value for the further calculation
was chosen to be 9.9e-13 for the operator without Laplacian and
7.5e-15 for the operator with the unweighted graph Laplacian.

It was assumed that the behavior of the inverse operator with
the remaining Laplacians would be similar to those shown in
Table 2. Therefore, for all Laplacians only the smallest singular
value was set to zero. This resulted in the following α values: αNoL
= 9.9E-13, αUW GrL = 7.5E-15, αW GrL = 5.2E-15, αUW GeL =

6.5E-15, αW GeL = 6.3E-15. These values were used for further
calculations.

The first measure investigated for the accuracy of LORETA
with different Laplace operators was the correlation of the
estimated source depth with the simulated source depth.
This correlation was computed for two different approaches:
once the center of mass (COM) was taken as the point
for the estimated source, and once the grid point with
the maximal amplitude (MA) was taken. The correlation
coefficients for the different Laplace operators are depicted in
Table 3.

The comparison of the regression slopes of the source depth
by the mean of one-way analysis of covariance (ANCOVA)
resulted in statistically significant differences in both cases:
COM (F(4, 4990) = 6.637, p < 0.0001), and MA (F(4, 4990)
= 53.52, p < 0.0001). The p-values obtained for the pairwise
comparison of the slopes are shown in Table 4. Figures 6, 7
visualize the data together with the corresponding regression
lines.

There was no statistically significant difference between the
slopes of the different Laplace operators. However, it emerged

TABLE 2 | Table for determining the optimal value for α in the case of data with no

noise and for the realistic cortex with 3,709 nodes.

SCI: 1 20 40 60 80 100

SCV: NoL 3.5E-9 9.4E-6 1.2E-4 3.5E-4 8.7E-4 1.8E-3

Alpha: NoL 9.9E-13 2.7E-9 3.4E-8 1.0E-7 2.5E-7 5.2E-7

Localization error

(MA): NoL

14.7 15.0 15.4 15.7 15.8 16.1

Number of local

maxima: NoL

5.4 5.6 5.7 5.9 6.2 6.3

SCV UW GrL 1.1E-9 3.4E-6 4.1E-5 1.6E-4 4.6E-4 1.3E-3

Alpha UW GrL 7.5E-15 2.4E-11 2.9E-10 1.2E-9 3.3E-9 8.8E-9

Localization error

(MA): UW GrL

11.4 11.5 11.7 12.0 12.3 12.7

Number of local

maxima: UW GrL

4.5 4.7 4.8 4.8 4.9 4.9

TABLE 3 | Correlation coefficients for the connection between the depth of the

simulated sources and the depth of the estimated sources.

NoL UW GrL W GrL UW GeL W GeL

COM 0.8658 0.9051 0.895 0.9057 0.8989

MA 0.7295 0.8131 0.8066 0.7945 0.782

TABLE 4 | P-values for the pairwise comparison of the slopes for the source

depth.

Comparison Slopes comparison (COM) Slopes comparison (MA)

NoL vs. UW GrL 4.4e-05 0.00

NoL vs. W GrL 0.002 0.00

NoL vs. UW GeL 8.3e-06 0.00

NoL vs. W GeL 0.0004 0.00

UW GrL vs. W GrL 0.33 0.89

UW GrL vs. UW GeL 0.69 0.16

UW GrL vs. W GeL 0.58 0.10

W GrL vs. UW GeL 0.17 0.13

W GrL vs. W GeL 0.67 0.08

UW GeL vs. W GeL 0.34 0.82

that the slopes for the source depth correlation in the case of
reconstruction without Laplacian were statistically different from
the slopes in the cases with Laplacian (Table 4).

In order to statistically investigate the different Laplace
operators with respect to the depth bias the mean values of the
depth shifts were compared (Figures 8A,B).

For the depth shift there was a statistically significant
difference between the results using different Laplace operators
and no Laplace at all as determined by one-way ANOVA for
both COM[F(4,4995) = 282.52, p < 0.0001] (Figure 8A) and
MA [F(4,4995) = 101.74, p < 0.0001] (Figure 8B). A Tukey
post-hoc test revealed that the source estimations without
Laplacian showed significantly larger depth shift than the source
estimations with all other Laplacians (p < 0.0001) (Table 5,
columns 4 and 5). Between the Laplace operators only the
depth shift with the unweighted graph Laplacian was significantly
different from the one with the weighted Laplace operator in the
case of COM (p = 0.009); all other pairwise comparisons did
not yield significant differences (Table 5, column 4). In the case
of MA the difference was significant only between the weighted
graph Laplacian and the unweighted geometric Laplacian (p =

0.002) (Table 5, column 5).
The comparison of the localization error yielded also

statistically significant results for both COM [F(4,4995) = 39.57,
p < 0.0001] (Figure 8C) and MA [F(4,4995) = 36.1, p < 0.0001]
(Figure 8D). The post hoc test revealed a difference only between
the source reconstructions without Laplacian and the source
reconstructions with all Laplacians used (p < 0.0001) (Table 5
columns 2 and 3).

Another measure was the number of the local maxima as an
indicator for false positives in the solution. Again the comparison
manifested statistically significant results [F(4, 4995) = 233.37,
p < 0.0001] (Figure 9A). Additionally, all but one of the
pairwise comparisons were significant too (Table 5 column 6).
The exception was the comparison of the weighted graph and
weighted geometric Laplacians (p = 0.95). These two operators
manifested a smaller number of local maxima than any other
Laplace operators.

For the residual variance also a statistically significant
difference was manifested [F(4, 4995) = 1083.76, p = 0.0]
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FIGURE 6 | Correlation of the estimated source depth (center of mass) with the simulated source depth. Green shows minimum-norm, blue depicts LORETA. The

plots show: top left, unweighted graph Laplacian; top right, weighted graph Laplacian; bottom left, unweighted geometric Laplacian; bottom right, weighted

geometric Laplacian.

(Figure 9B). The solution without Laplacian yielded the lowest
residual variance compared to the solutions with Laplace
operator. The weighted geometric Laplacian revealed the lowest
residual variance of the Laplacians.

The last measure used for the comparison between the
Laplace operators was the computation time in Matlab. The
computation time investigated considered only the Laplace
operator steps, not the computation time for the inverse operator
or for the final solution. The main trend was that the graph
Laplacians were calculated faster than the geometric Laplacians
(Figure 10).

DISCUSSION

The aim of this study was to introduce the source localization
method LORETA with a cortical constraint and identify an
appropriate Laplace-Beltrami operator for optimizing the source
reconstruction. The operators in this study were chosen in such a
way that they represent an entire family of operators, have sparse
structure and operate on a triangular mesh. These operators
comprised the unweighted graph Laplacian, the weighted graph
Laplacian, the unweighted geometric Laplacian and the weighted
geometric Laplacian. The selected operators were investigated
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FIGURE 7 | Correlation of the estimated source depth (point of max amplitude) with the simulated source depth. Green shows minimum-norm, blue depicts LORETA.

The plots show: top left, unweighted graph Laplacian; top right, weighted graph Laplacian; bottom left, unweighted geometric Laplacian; bottom right, weighted

geometric Laplacian.

with respect to different measures, namely localization error,
depth shift, number of local maxima, residual variance and
computation time. The optimal solution of the current problem
would be the one which minimizes the investigated measures.

For the measures involving location of estimated activity two
approaches were followed: using the center of mass (COM)
as an estimated source activity location, or using the mesh
point with the maximal activity (MA). These two approaches
are both common for simulation studies and both have their

advantages and drawbacks. The mesh node with the maximal
amplitude seems to be more intuitive from the view of the
experimental scientist who visually identifies the location of
the estimated activity by means of a color map. The idea of
using the center of mass follows the line of thought that the
solution gained with an l2-norm based linear inverse solver
is very smooth and widely distributed, and thus, taking only
the maximum of this solution does not take into account the
distributed nature of the solution. Since these two approaches
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FIGURE 8 | Comparison of the depth shift [top row (A,B)] and the localization error [bottom row (C,D)] for all four Laplace operators and without a Laplacian

(left-most). The red lines on each box mark the median, the blue boxes denote the 25th and 75th percentiles, the dashed lines extend to the most extreme data points

not considering outliers; red crosses denote the outliers. The values beside the captions on the x-axis are the mean values in millimeter. (A) depth shift (center of

mass), (B) depth shift (point of max amplitude), (C) localization error (center of mass), (D) localization error (point of max amplitude).

yielded different values for the performance measures in this
study, both of them were included in order to produce results
comparable with other publications using only one of these
approaches.

One major property of the minimum norm solution without
a Laplacian is that it has a bias toward superficial sources
(Skrandies et al., 1995; Lin et al., 2006). It was shown that even
the usage of an additional depth weighting term in the linear
operator was not always successful in compensating for that bias,
and suggested that also the Laplace operator can contribute to
the correction of that bias (Skrandies et al., 1995). Therefore,
the depth of the estimated sources was investigated in order to
be able to detect if there is an advantage in using the Laplace
operator with respect to the depth bias. The measures used in
this study for the investigation of the depth bias influence were
the correlation of the simulated sources depth with the estimated
sources depth, as well as the depth shift. It was manifested
that using the Laplacian in the inverse operator improved the
correlation of depth between simulated and estimated sources,

thus confirming previous findings in the literature about the
3D Laplacian (Skrandies et al., 1995; Pascual-Marqui, 1999) to
be valid also for the cortical case. However, there was not a
significant difference between the various operators. A similar
result was observed also for the depth shift where all solutions
using the Laplace operator performed significantly better than
the solution without Laplace, however, none of the operators was
superior to the others.

Contrary to our expectations to find significant differences in
the performance of cortical LORETA with respect to the different
Laplace-Beltrami operators, no operator emerged to be superior
to the others. One possible reason for that behavior could be,
that the triangular meshes used for discrete representation of the
cortical surfaces were rather regular (or “not irregular enough”),
even in the case of individual cortices, and applying operators
with weights aimed to correct for irregularity of the meshes did
not significantly improve the solution. Another possibility for
the missing differences could be the relatively low resolution
of the l2-norm solution of the inverse problem. Testing the
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TABLE 5 | Post-hoc p-values for the comparison of all measures using Tukey’s honestly significant difference criterion. All comparisons with p-value <0.05 are

considered significant.

Comparisons Localization error (COM) Localization error (MA) Depth shift (COM) Depth shift (MA) Number of local maxima Residual

variance

NoL vs. UW GrL <1E-7 <1E-7 <1E-7 <1E-7 <1E-7 <1E-7

NoL vs. W GrL <1E-7 <1E-7 <1E-7 <1E-7 <1E-7 <1E-7

NoL vs. UW GeL <1E-7 <1E-7 <1E-7 <1E-7 <1E-7 <1E-7

NoL vs. W GeL <1E-7 <1E-7 <1E-7 <1E-7 <1E-7 <1E-7

UW GrL vs. W GrL 0.1261160 0.9980268 0.0093079 0.1947429 <1E-7 <1E-7

UW GrL vs. UW GeL 0.9999201 0.3710556 0.9197429 0.5541308 <1E-7 <1E-7

UW GrL vs. W GeL 0.8204365 0.6748003 0.1897860 0.9968678 <1E-7 <1E-7

W GrL vs. UW GeL 0.1707762 0.5654501 0.1043073 0.0022440 0.0000018 <1E-7

W GrL vs. W GeL 0.6982818 0.8474643 0.8045523 0.3657272 0.9464850 <1E-7

UW GeL vs. W GeL 0.8830171 0.9893484 0.6669225 0.3390203 0.0000728 <1E-7

performance of the source activity estimation using an iterative
method like CLARA (Jordanov et al., 2014; Beniczky et al., 2016)
could provide a different insight into the source reconstruction
capabilities using a Laplace-Beltrami-operator.

A standard measure for the performance of a source
estimation method is the localization error. The main question
to be answered was how reliable is the result. Again, for this
measure, the results did not indicate one Laplacian which
performed better than all others, however, using a Laplacian was
again shown to be advantageous for the source estimation.

A completely different approach for the comparison of the
solutions was to explore the number of false positives in the
estimations. It was known that the simulations contained only
one active source and it was expected that the estimated solutions
contained also only one source. For the investigation of this
assumption, the number of local maxima was considered to be an
appropriate measure. In all cases the number of estimated source
locations was higher than the number of simulated sources.
Again the application of a Laplace operator yielded less local
maxima than in the case without Laplace. This finding can
be explained by the smoothing effect of the Laplacian, which
leads to a reduction of high-frequency spatial components in the
reconstructed source activity.

With respect to this measure, two of the Laplace operators
manifested a significantly smaller number of local maxima than
the other Laplacians. These were the weighted graph and the
weighted geometric Laplacians.

The operator which best minimized the residual variance was
the weighted geometric Laplacian. However, it performed not
as well with regard to this measure as the case without Laplace
operator. The solution without Laplacian was expected to yield
lower residual variance than the solutions with Laplacian, since
LORETA minimizes not only the norm of the solution and
the difference between the modeled and the measured data but
also strives for a smooth cortical solution. This is an additional
condition which has to be fulfilled and this is done at the cost of
increased residual variance.

The last measure used for the comparison was the
computation time. The main finding here was that the graph
Laplacians are calculated faster than the geometric Laplacians.

The fastest operator was the unweighted graph Laplacian and
the slowest one was the weighted geometric Laplacian. The
maximal computation time was less than 4 s for the used meshes,
consequently, it was not considered as a crucial measure for the
choice of the operator. However, if in the future considerably
finer grids are used the computation time is going to be an
important factor for the decision.

Regarding all measures investigated in this simulation study,
one can conclude that it is generally preferable to use a Laplacian
in the linear inverse operator. Methods with Laplacian yielded
better results for all used measures except for the residual
variance. The identification of one best Laplace operator turned
out to be nontrivial, since there was no operator which performed
considerably superior to all others. However, two of the operators
(weighted graph Laplacian and weighted geometric Laplacian)
manifested a smaller amount of false positives than the others,
which was considered as an advantage and, consequently, these
two operators can be identified as the best candidates for
LORETA with cortical constraint.

Limitations of the Current Study and Future
Direction
Although this study was designed to be complete and self-
contained, it was not possible to take into account all possibly
relevant aspects. Since there are many different discretizations
of the Laplace operator, it was not possible to investigate
all of them. For further types of Laplace-Beltrami operators
please refer e.g., to Reuter et al. (2009), Dakov and Venkov
(2014). The measures used for the comparison of the operators
were applied only for simulated data without noise. Additional
investigation of the operators’ behavior in the presence of
different signal-to-noise ratios would be an interesting topic
of further studies. An application of cortical LORETA on
measured EEG or MEG data and a comparison study with
other, more recent localization methods, would be meaningful
after the best operator has been determined. However, this is
out of the scope of the current study and worth of future
investigation.

Frontiers in Neuroscience | www.frontiersin.org 13 October 2018 | Volume 12 | Article 746

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Iordanov et al. Cortical LORETA

FIGURE 9 | Number of local maxima (A) and residual variance (B) for LORETA with the different operator types. The red lines on each box mark the median, the blue

boxes denote the 25th and 75th percentiles, the dashed lines extend to the most extreme data points not considering outliers; red crosses denote the outliers.

(A) Number of local maxima for all four Laplace operators and minimum-norm (without Laplacian, left-most). The values beside the captions on the x-axis are the

mean number of local maxima. (B) Residual variance for all solutions with and without Laplace operator. The solution without Laplace (left-most) yielded the lowest

residual value. The values beside the captions on the x-axis are the corresponding mean residual variances.

FIGURE 10 | Computation time for the four Laplace operators and three different cortical meshes. The standard cortex contained 750 nodes, the MNI cortex

contained 3,709 nodes, and the individual cortex contained 3,973 nodes.

Additionally, it is important to mention that there exists an
alternative formulation of the linear inverse operator T:

T2 =
[

LTL+ αW
]−1

LT

which is equivalent to the operator given by equation (6)
(Hansen, 1998). The difference between T given by equation (6)
and T2 is that T2 can be calculated also for a singular matrix W.
In the case of cortical LORETA the discrete Laplace operator is

always singular. Consequently, the factor αwould fulfill two tasks
simultaneously:

1) The balance between minimizing the residual norm and
minimizing the regularization term and

2) Correcting the rank of the matrix to be inverted.

If we choose a value for α, which is more appropriate for task
1), e.g., 0.005, then this value would be far too high for correcting
the rank of the Laplace operator. Consequently, the effect of using
the Laplacian would be extremely reduced, resulting in a solution
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more similar to Minimum norm than to LORETA. If, on the
other hand, we choose α in such a way that it is more appropriate
for correcting the rank of the Laplacian, e.g., 1e-7, then the
Laplacian’s rank is going to be corrected but the balance between
minimizing the residual norm, andminimizing the regularization
term, is not going to be optimal. α and σ depend on different
data (σ is dependent on the mesh, whereas α is dependent on the
functional data - EEG), thus it cannot be guaranteed that a value
for α which is appropriate for both purposes always exists. These
considerations led to our idea to introduce the additional factor
σ . Furthermore, we use σ only for the discrete Laplacian instead
of for the entire matrix W, since all other matrices participating
in the calculation ofW are regular; changing their singular values
using σ would distort the solution.
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