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Objective: To date, many brain-machine interface (BMI) studies have developed

decoding algorithms for neuroprostheses that provide users with precise control of upper

arm reaches with some limited grasping capabilities. However, comparatively few have

focused on quantifying the performance of precise finger control. Here we expand upon

this work by investigating online control of individual finger groups.

Approach: We have developed a novel training manipulandum for non-human primate

(NHP) studies to isolate the movements of two specific finger groups: index and

middle-ring-pinkie (MRP) fingers. We use this device in combination with the ReFIT

(Recalibrated Feedback Intention-Trained) Kalman filter to decode the position of each

finger group during a single degree of freedom task in two rhesus macaques with Utah

arrays in motor cortex. The ReFIT Kalman filter uses a two-stage training approach that

improves online control of upper arm tasks with substantial reductions in orbiting time,

thus making it a logical first choice for precise finger control.

Results: Both animals were able to reliably acquire fingertip targets with both index

and MRP fingers, which they did in blocks of finger group specific trials. Decoding from

motor signals online, the ReFIT Kalman filter reliably outperformed the standard Kalman

filter, measured by bit rate, across all tested finger groups and movements by 31.0 and

35.2%. These decoders were robust when themanipulandumwas removed during online

control. While index finger movements and middle-ring-pinkie finger movements could

be differentiated from each other with 81.7% accuracy across both subjects, the linear

Kalman filter was not sufficient for decoding both finger groups together due to significant

unwanted movement in the stationary finger, potentially due to co-contraction.

Significance: To our knowledge, this is the first systematic and biomimetic separation

of digits for continuous online decoding in a NHP as well as the first demonstration of
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the ReFIT Kalman filter improving the performance of precise finger decoding. These

results suggest that novel nonlinear approaches, apparently not necessary for center out

reaches or gross hand motions, may be necessary to achieve independent and precise

control of individual fingers.

Keywords: brain-machine interface, neural prosthetics, cortical decoding, motor control, Kalman filter, individual

finger, intention estimation

1. INTRODUCTION

Recent clinical trials have demonstrated the use of neural
prostheses to restore motor activity in individuals with severe
paralysis (Wodlinger et al., 2015; Willett et al., 2017). Brain
machine interfaces (BMIs) provide intuitive control signals that
are particularly useful for focused upper-limb movements such
as reaching tasks and tool use. These signals can last for
years (Simeral et al., 2011; Gilja et al., 2012b; Hochberg et al.,
2012; Collinger et al., 2013) enabling, at minimum, long term
feasibility studies. They are a natural choice for improving the
control of functional electrical stimulation (FES) systems, which
apply small electric pulses to muscles to produce movement.
Indeed, restoring natural movement of the arm is more desirable
to people with cervical level SCI than controlling a robotic
prosthesis (Blabe et al., 2015). With existing FES systems, certain
patients with spinal cord injuries can regain partial use of their
paretic hands controlled via residual muscle signals (Kilgore
et al., 2008). More recently, this has been demonstrated using
BMIs, restoring a small number of functional movements during
activities of daily living (Bouton et al., 2016; Ajiboye et al.,
2017). These work demonstrate the immense progress that has
been made in the field. However, performance limitations still
persist, including the inability to activate joints simultaneously
or command complex grasps.

Early studies demonstrated neural decoders, which translate
neural signals from the motor cortex into motion commands,
successfully gave NHPs online control of a robotic arm
capable of whole arm movements and a basic grasp (Taylor
et al., 2002; Carmena et al., 2003; Serruya et al., 2003;
Lebedev et al., 2005; Velliste et al., 2008). While these studies
representedmajor advances, they involved relatively rudimentary
movements. Since these work, advances in experimental setups,
implantation hardware and techniques, signal processing and
control algorithm development have positioned the community
to investigate whether decoders can account for more complex
multi-joint movements. More recent clinical studies have
demonstrated online control of a robotic prostheses in human
patients with tetraplegia (Hochberg et al., 2012), with increasing
degrees of freedom (DOF) (Collinger et al., 2013), and the
ability to activate different grasp patterns(Wodlinger et al., 2015).
The selection of multiple grasps has also been demonstrated
in recent FES systems (Colachis et al., 2018). Although these
studies are impressive demonstrations in a practical setting,
grasps were limited to a simple open-close, a few gross motions,
or discrete selections. In general, precision typically decreases as
subjects are given control of more DOF. Neural prostheses will

ultimately need to provide more dexterous hand functionality
to allow users to fully interact with the world around them to
gain broad acceptance. Newer upper-limb decoders continue to
promise increased levels of performance and reliability (Susillo
et al., 2016; Shanechi et al., 2017). However, their application
has been limited to decoding arm reaches and have yet to
demonstrate improvements in grasp performance. Some studies
have proposed using semi-autonomous control of a robotic arm
to achieve more complex grasps (Downey et al., 2016; Hotson
et al., 2016). While this may be a well-received solution for
some users, it hands off a majority of fine motor control to
an autonomous system, thereby limiting grasping capabilities to
what the chosen algorithm can learn and execute. Here we will
focus on direct control strategies, specifically the challenge of
decoding control signals for precise hand motions for eventual
use in an FES system.

The human upper-limb is a high dimensional system: arm
and wrist joints provide 7 DOF while the hand is a complex
23 DOF end-effector. Previous NHP studies have shown neural
signals can be used to reconstruct 18 (Aggarwal et al., 2013),
25 (Vargas-Irwin et al., 2010), and even 27 (Menz et al., 2015)
DOF offline during reach and grasp movements. However,
these studies only demonstrate that DOF of the hand are well
correlated with primary motor cortex (M1) activity during highly
coordinated grasping movements. They do not demonstrate
that motion in these DOF can be approximated or controlled
individually. Principal component analysis or other forms of
dimensionality reduction can be used to characterize themajority
of hand motions in fewer well-separated DOF which have been
shown to dramatically improve the performance of discrete
offline classifiers (Schaffelhofer et al., 2015). Even though it
is unclear if the principal dimensions are actually represented
in the motor cortex (Mollazadeh et al., 2014), using them for
decoding can theoretically provide more precise control over a
large amount of hand configurations (Rouse and Schieber, 2015).
Recent algorithms have successfully given NHPs the ability to
actively select and continuously modulate 4 principal movement
dimensions of a virtual hand (Rouse, 2016). Although such
techniques have proven to be a promising and efficient way to
process information, control is achieved through long periods of
reward-based training and is not a reproduction of biomimetic
motions. Furthermore, studies have yet to demonstrate precise
control along these dimensions.

The body of previous work has successfully demonstrated that
information relating to fine motions is well represented in M1.
This begs the question if it is possible to use BMIs to control
continuous motion at the level of individual fingers. Earlier
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NHP studies have established that M1 may contain enough
information to distinguish between individual finger movements
(Hamed et al., 2007; Aggarwal et al., 2008). In our previous NHP
work, we characterized the flex-extend motion of all four fingers
together as a single DOF, and used signals from M1 to provide
subjects with online continuous control of a virtual hand (Irwin
et al., 2017). Here we have developed a novel manipulandum
to track and control movement of two separate finger groups.
Furthermore, we seek to improve decoder performance with
the use of the ReFIT (Recalibrated Feedback Intention-Trained)
Kalman filter which has proven successful in reach tasks (Gilja
et al., 2012b). We use the manipulandum in combination with
the ReFIT Kalman filter to provide our NHP subjects with
continuous control of each finger group in a separate fashion.
To our knowledge, this is the first systematic and biomimetic
separation of digits for continuous online decoding in a NHP
as well as the first demonstration of the ReFIT Kalman filter
improving the performance of precise finger decoding.

2. MATERIALS AND METHODS

2.1. Novel Manipulandum
All experimental tasks were performed in compliance with NIH
guidelines as well as the University of Michigan’s Institutional
Animal Care & Use Committee and Unit for Laboratory Animal
Medicine. We trained two male rhesus macaques, Monkey W
and Monkey N, to use a novel manipulandum, designed to
isolate finger movements (Figure 1B), in order to match fingertip
position targets in the same virtual environment described in
previous work (Irwin et al., 2017). The manipulandum consists
of two "doors" with dividers to isolate index finger movements
from MRP movements. The doors can be locked separately or
together in different positions to create a wide range ofmovement
conditions. Here we used three configurations, each resulting in
1 DOF control:

• Index: MRP door locked to full extension, index finger allowed
to move

• MRP: index door locked to full extension,MRP fingers allowed
to move

• All: index and MRP doors are locked together to encourage
simultaneous movement of all fingers

Switching between configurations can be done in a short period
of time, allowing us to alternate between finger groups in a
single session. Resistive flex sensors (FS-L-0073-103-ST, Spectra
Symbol, Salt Lake City, UT) were attached to each door of
the manipulandum and values were read from a 10 bit analog-
to-digital converter (ADC) on a custom circuit board. At the
beginning of each experiment day, ADC values corresponding
to full flexion and extension of the active DOF were noted. The
amount of flexion at any given time was then determined by
centering and scaling the current ADC value such that a position
of 0 corresponded to the recorded value for full extension and
1 corresponded to the value for full flexion. Each door also
contained a torsional spring which was tuned to apply as little
resistance as possible during flexion, but still allowed the door to
follow the subject’s fingers during extension.

2.2. Behavioral Task
Both subjects performed a target matching task in an electrically
shielded room with their right forearm flexed 90 degrees,
comfortably restrained inside of an acrylic tube. Their hand
rested on a table and inserted into the manipulandum. Position
data and neural data were acquired in real-time using xPC Target
(Mathworks, Natick, MA, United States). The xPC received UDP
packets with neural data marking threshold crossings on array
channels. The specific thresholding scheme is described below in
Signal Processing and Feature Selection. The real-time execution
of the xPC ensured that neural and behavioral data were
synchronized with millisecond precision. The subjects viewed a
virtual hand (MusculoSkeletal Modeling Software; Davoodi et al.,
2007), with finger group animations controlled by the xPC to
either measured flex sensor data or decoded finger position. The
virtual hand was controlled via either the flex sensors for decoder
calibration and offline analysis or the predictions from a decoding
algorithm for online BMI control (Figure 1A). The experiments
for this study only involved control of 1 DOF at any point in time.
For future studies, the system is capable of animating trajectories
for simultaneous control of multiple DOF.

At the start of each trial, a spherical target is placed along. the
flex-extend arc and the subject must move the virtual fingertip
inside and remain in the target for a given hold period. The
range for a successful hold was considered to be within the
visible edges of the spherical target and the required hold period
varied between 500 and 750 ms depending on the subject and
experiment. Successful trials were rewarded with apple juice.
Figure 2 shows an example target sequence for each finger
configuration. To encourage separation of finger movements,
behavioral training was almost always done using either the index
or MRP group to acquire center-out targets. Here, “center-out”
means that targets appear in 1 of 7 positions along the flex-extend
arc with every other target appearing at “center” (50% flexion).
At the time of this study, Monkey W was an experienced BMI
user, previously trained to move all four fingers together with his
hand positioned in a stanchion that did not impede or restrict
finger movement in any way. Monkey N was a new user who had
only been trained with the manipulandum restricted to index or
MRP movements. The first time Monkey N performed the task
with the unrestrictive stanchion was during the sensory context
experiments described later.

2.3. Surgical Procedure
The surgical procedure was performed in compliance with NIH
guidelines as well as the University of Michigan’s Institutional
Animal Care & Use Committee and Unit for Laboratory
Animal Medicine. We implanted each monkey with intracortical
electrode arrays targeting the hand area of left primary motor
cortex (M1), as identified by surface landmarks (Figures 1C,D).
After the craniotomy, the genu of the arcuate sulcus was
identified and a line was traced posteriorly to central sulcus.
Arrays were then implanted along this line just anterior to central
sulcus, as allowed by vasculature. Both subjects were implanted
with Utah arrays (Blackrock Microsystems, Salt Lake City, UT,
United States) targeting M1 as well as the left primary sensory
cortex (S1). The arrays implanted in both subjects had 1.5 mm
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FIGURE 1 | Experiment setup and methods. (A) Subjects performed a target acquisition task using a virtual hand controlled either by flex sensors or neural decoder

output. (B) A novel manipulandum was used to separate finger movements into three active configurations: index only; middle, ring, and pinky (MRP); or all fingers

moving together. An unrestrictive stanchion (not pictured) that does not restrict finger movements was also used for sensory context experiments. (C,D) Array

implants for Monkeys W and N. Only signals from the motor arrays were used in this study. *Monkey N was implanted with a split array, however 64 channels

(darkened) were inactive for the study period.

long electrodes spaced with 400 µm pitch. Monkey W received
96-channel arrays in both M1 and S1, while Monkey N received
a 96 channel array in S1 and a 128 channel split array covering
M1 with one array potentially overlapping with pre-motor cortex
(PMd). Note that only the motor arrays were used for analysis
and decoding in this study. Due to wiring damage, Monkey N
only had 64 channels of neural input available for this study
(Figure 1D). The active array was the one implanted on the
rostral edge of the M1 area, so it is possible that units recorded
from his array are located in PMd. Similar studies for arm
reaches have used signals from both M1 and PMd for continuous
decoding (Gilja et al., 2012b).

2.4. Signal Processing and Feature
Selection
During experiment sessions, neural data was recorded and
processed via a Cerebus neural signal processor (Blackrock
Microsystems, Salt Lake City, UT, United States). Neural spikes
were detected online by a threshold of –4.5 times the RMS
voltage on each channel, after applying a 250 Hz high-pass
filter to the broadband signal. The signals used here were

the voltage difference between each channel and a common
ground. Software referencing techniques such Common Average
Referencing (Ludwig et al., 2009) were not used in this study
but could be explored in future work to provide cleaner signals.

Broadband data was sampled and recorded at 30 kHz, while the
thresholded spikes were also recorded for offline analysis and
sent to the xPC for real-time decoding. On each experiment
day, channel selection for analysis and decoding was done

simply by retaining all channels with an average firing rate >

1 spike/s determined by threshold crossings during a training
run. Some high-impedance (> 1 MOhm) channels repeatedly

showed threshold crossings of large disturbances not reflective

of neural activity. Therefore, an additional 13 channels for

Monkey N and 3 for Monkey W with no visible information
content were excluded regardless of whether or not they met
the activity cutoff on experiment days. The cutoff threshold
was chosen empirically by visually comparing waveforms to
impedances. Although daily impedance measurements were
taken, the excluded channel list was determined at the start of
the study and not updated.While electrode impedances may vary
in-vivo, the excluded channels almost always remained above
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FIGURE 2 | Single DOF target tasks. Each row shows a target sequence for a different finger configuration. For Index and MRP configurations, both the display and

manipulandum of the inactive group were fixed to extend. A single trial consists of a target being presented (first column) and the subject moving his active finger

group to the target (second column). After the subjects satisfies the required hold time or the trial times out, a new target is presented immediately to begin the next

trial (third column).

the 1 MOhm threshold, ranging from 19.03 to 23.16 MOhm for
Monkey W and 0.98− 23.19MOhm for Monkey N.

For offline analysis and online decoding, we compared the
summed threshold crossings in 50 ms time bins to the averaged
kinematic data recorded from the flex sensor. Previous work
demonstrated processing bin widths in the 50 − 100 ms range
produces an accurate decoder that is sufficiently responsive for
online control (Kim et al., 2008). We selected a 50 ms bin width
empirically in both subjects while they were being familiarized
with BMI control, using a standard Kalman filter. In both
subjects, we first tested a 100 ms bin width and observed online
performance as we decreased the bin width. Anecdotally, we
found that 50 ms produced a more responsive online decoder
without a noticeable trade-off in stability and smaller widths
performed inconsistently. For offline analysis and parameter
estimation, the raw 1 kHz flex sensor data was passed through
a moving average filter with a 50 ms span before being averaged
into time bins. Velocity measurements were then computed by
taking the difference between successive position bins and scaling
according to bin width.

2.5. Kalman Filter Implementation
A linear Kalman filter was used to predict kinematics of the
selected finger group during each session. For this study, we
predicted the motion of a single DOF at a time. At the beginning
of each experiment day, all parameters for the initial Kalman filter
were estimated from a training run of approximately 300 center-
out trials with a hold time of 750 ms scaled to take up 15% of
the flex-extend arc. To reduce the effects of sensor noise during

parameter fitting, velocities with magnitude below an empirically
chosen threshold (0.2%flex/s) were set to 0. The state vector for
the Kalman filter Xt (1) describes the kinematics of the active
DOF with an additional offset term to account for baseline firing
rate of each of the n active channels in Yt (2).

Xt =
[

pos vel 1
]T

(1)

Yt =
[

y1 y2 . . . yn
]T

(2)

The Kalman filter state transition model A (3) assumes that
the finger group’s position is explained perfectly by velocity
integration, matching our control implementation (7) in which
error is only propagated through the velocity term. Velocity
estimates are assumed to be contaminated by zero mean
Gaussian noise with covariance matrix W (4). The velocity
damping coefficient av,v and variance σ 2

v were determined each
day via maximum likelihood estimation using measured hand
kinematics from the training run. On average, the estimation
yielded av,v = 0.855± 0.01 for index sessions and av,v = 0.869±
0.04 (mean ± s.t.d) for MRP sessions. Here dt is equal to the
50ms bin width selected for use.

Xt = AXt−1 + w (3)

A =





1 dt 0
0 av,v 0
0 0 1



 and W =





0 0 0
0 σ 2

v 0
0 0 0



 (4)
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The model for the measurement equation (5) assumes a linear
relationship between the firing rate of each active channel and
each of the kinematic state variables (10), while the additive
noise q is drawn from a multivariate gaussian distribution with
covariance matrix Q (6). Parameters for C and Q were chosen
daily via maximum likelihood estimation. Similar to previous
work (Irwin et al., 2017), an optimal time lag parameter (0, 1,
2, or 3 bins) was also chosen from the same training dataset
(Figure 3A). The time lag is an offset to temporally align bins
of neural data with the ideal kinematic measurement. Alternate
measurement models (8) and (9) were considered but ultimately
discarded (see Measurement Model Selection below).

Yt−lag = CXt + q (5)

C =











c1,p c1,v c1,o
c2,p c2,v c2,o
...

...
...

cn,p cn,v cn,o











and Q =







σ 2
1 · · · σ 2

1,n
...

. . .
...

σ 2
1,n · · · σ 2

n






(6)

Drawing from previous work (Gilja et al., 2012b), we used
integrated velocity for the virtual fingertip position control signal
instead of the predicted position at each time step. Since we
assume the subject changes their neural activity in response to
both the position and velocity of the virtual fingertip, during
online control the position at each time step is set to match the
controller output in preparation for the next decode (7).

post|t = post−1|t−1 + velt|t × dt (7)

2.6. Measurement Model Selection
Many algorithm implementations have successfully relied on
models that only relate neural activity to velocity states (Kim
et al., 2008; Collinger et al., 2013; Shanechi et al., 2017). However,
neural activity has been observed to also vary with position
changes during armmovements, possibly due to differing muscle
activation required to maintain postures (Scott and Kalaska,
1997). Previous ReFIT implementations on reach tasks (Gilja
et al., 2012b) as well as our earlier Kalman filter implementation
for finger motions (Irwin et al., 2017) used a measurement model
that included both position and velocity states. Here, we analyzed
three choices for kinematic measurement models: position only,
velocity only, and position + velocity, shown in Equations 8-10
where yi is the expected number of threshold crossings in a 50ms
time bin for channel i.

yi = ci,p × pos+ ci,o (8)

yi = ci,v × vel+ ci,o (9)

yi = ci,p × pos+ ci,v × vel+ ci,o (10)

We performed initial testing with all three measurement
models in both subjects after implantation. For finger motions,
the position-only and velocity-only models did not provide

satisfactory online control, so we opted to continue experiments
only with the position + velocity model. We conducted a post-
hoc analysis to determine the amount of active channels (average
firing rate> 1spike/s) that were “well tuned” to finger activity and
showed decent encoding performance with the position+velocity
model (cross-validated Pearson’s correlation coefficient between
predicted and actual firing rate of ρ > 0.05). We also compared
the offline decoding performance of the Kalman filters used for
decoding days (cross-validated ρ between predicted and actual
kinematics) to examine how indicative reconstructions were of
our online results.

2.7. ReFIT Process
The ReFIT Kalman filter was implemented at the beginning of
each experiment day using the same two stage process described
in previous studies (Gilja et al., 2012a). After performing the
task with online brain control with an initial Kalman filter for
approximately 200 center-out trials, new measurement model
coefficients were determined by regressing recorded neural
activity against the intention-estimated online kinematics of
the initial decoder (Figure 3B). Intention-estimation alters the
training data used for parameter re-estimation by flipping the
direction of the predicted velocities to always point toward the
target (and setting velocities to zero when the predicted position
was inside the target). This process “corrects" velocities with
the assumption that the subject always intends to move the
virtual hand toward the target, regardless of the direction that
was predicted by the initial decoder. The online trials used for
retraining were performed with the most challenging center-out
targets the subject was able to acquire with the initial Kalman
filter. For Monkey W, this was typically smaller targets (15.75%
of the flex-extend arc) with longer hold times (750 ms), whereas
Monkey N required a mixture of reduced hold times (500 ms) or
larger targets (16.5% of the flex-extend arc). Note that intention
estimation was only used during the parameter re-estimation;
no knowledge of the target locations was used during online
control. Finally, during online processing for the ReFIT filter,
we assumed the subjects perfectly internalize the position of the
virtual fingertips and adjust their neural activity accordingly.
Therefore, the Kalman gain for the ReFIT filter was computed
with the assumption of zero a priori position uncertainty (11).

Pt|t−1 =





0 0 0
0 1 0
0 0 0





(

APt−1|t−1A
T +W

)





0 0 0
0 1 0
0 0 0



 (11)

2.8. Individuated Finger Analysis
Each subject performed one day of experiments to collect offline
data to assess the viability of a 2 DOF decoder. On these
days, the subject performed the center-out target task (1 s hold
time, targets take up 16.5% of the flex-extend arc) with hand
control of the index or MRP fingers in alternating blocks of
approximately 200 trials for 2 sets (approximately 400 total trials
per finger group). To determine whether information regarding
individuated finger motions was present in M1, we attempted to
distinguish between index and MRP movement onset, defined
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FIGURE 3 | Decoding methods. (A) The initial Kalman filter estimates fingertip kinematics based on summed threshold crossings from either the current 50 ms time

bin or an optimally chosen time lag (dashed lines show 50 ms lag). (B) Finger motion was characterized in 1 DOF per finger group such that a position of 0

corresponds full extension and 100 corresponds full flexion. Intention estimation was applied to the online kinematics of the initial Kalman filter by taking incorrect

decoder velocities (blue arrow) and flipping them (green arrow) to point toward the desired target (red circle), on-target velocities are set to zero. Intention estimation is

only applied to estimate parameters for the ReFIT decoder, no knowledge of target locations is used during online control.

as the 100 ms surrounding the time the subject’s finger(s) began
to flex. Similar to earlier studies that classify individual finger
movements (Aggarwal et al., 2008), we used a sliding window
which updated every 20ms with the summed threshold crossings
of the last 160ms as our neural feature. A support-vectormachine
with a Gaussian kernel function and L1 regularization was chosen
as the classifier and tested using 10-fold cross validation. A 2
DOF linear Kalman filter was also trained and tested offline
across all trials using the same training protocol described earlier.
In order to discourage co-contractions in the predicted output,
the physical model was constrained to keep each finger group
completely independent (13). The measurement model (14) was
approximated in a similar manner as the 1DOF case.

X =
[

posindex posmrp velindex velmrp 1
]T

(12)

A =













1 0 dt 0 0
0 1 0 dt 0

0 0 aindexv,v 0 0

0 0 0 a
mrp
v,v 0

0 0 0 0 1













and W =













0 0 0 0 0
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(13)

yi = ci,pi × posindex + ci,pm × posmrp + ci,vi × velindex

+ci,vm × velmrp + ci,o (14)

2.9. Online Experiments
The first group of online experiments was designed to
test performance across a variety of target styles and hand
configurations. For these, a total of 12 experiments were
conducted over 10 days for Monkey W while 8 experiments were
conducted over 5 days for Monkey N (Table 1). On each day,
subjects were given 1 DOF control over a specific group of fingers
(index or MRP). After the ReFIT algorithm was fully trained
using center-out targets, the subjects performed the task using
online brain control and one of three target styles:

TABLE 1 | Number of online sessions performed grouped by either finger group

or target style.

Monkey Finger group Target style

Index MRP All C-O Rand. F-E

W 6 6 2 6 4 4

N 4 4 2 6 4 -

Monkey W performed a total of 14 online experiments while Monkey N performed 10.

Subjects performed sensory context experiments with “All” four fingers, while target

acquisitions sessions were performed with either “Index” and “MRP” finger groups.

• Center-out (C-O): same as training, targets appear in one of
7 positions along the flex-extend arc with every other target
occurring halfway (50% flexion)

• Random (Rand): targets appear in random positions along the
flex-extend arc

• Flex-Extend (F-E): targets alternate between flexed (95%
flexion) and extended (5% flexion)

The alternate target styles were chosen to test decoder
controllability. The random style is not predictable and requires
the decoder navigate untrained trajectories. On the other hand,
the flex-extend style is entirely predictable, but exclusively
contains difficult targets.

No limits were placed on decoder output so predictions
were capable of hyper-extending or over-flexing during online
control. To maintain usable feedback during such adverse events
a visual limit of −50% to 150% flexion was placed on the virtual
fingertips. Otherwise, a disturbance or series of particularly poor
predictions could place the virtual hand in state that the subject
cannot interpret and correct. The subjects performed the novel
task with both the ReFIT and initial Kalman filter in alternating
blocks of approximately 50 trials for 3 sets (approximately 150
total trials per decoder). Including the full ReFIT training process
and block testing, subjects completed between 826 and 1,252
trials on these experiment days, depending on whether or not
multiple target styles were tested. Experiments usually lasted
a 2–4 h including time for rig setup and decoder calibration.
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Monkey W performed two sessions for each of the three target
styles with a 750ms hold time and the targets taking up 15.75% of
the flex-extend arc. Monkey N performed two sessions of center-
out and random target styles with a 500 ms hold time and the
targets taking up 16.5% of the flex-extend arc.

2.10. Sensory Context
Previous work has shown that sensory signals from fingertip
stimulation are well represented inmotor cortex (Schroeder et al.,
2017). Although the springs on each door of the manipulandum
were selected to provide minimal resistance, the subjects still
had the tactile sensation of their fingers pushing on the door.
To make sure most of the neural information used by our
decoder is primarily a product of motor activity and not a
sensory reaction, which may not be a reliable input for SCI
patients, subjects performed 2 daily sessions each in which
the sensory cue of touching the manipulandum doors was
removed. In these sessions, subjects performed these experiments
with the manipulandum doors locked together (encouraged
to move all fingers together). A ReFIT filter trained with the

manipulandum was then used to acquire center-out targets
after the manipulandum was replaced with a stanchion that did
not interfere with or restrict finger movements, and therefore
introduced no additional sensory feedback during movements.
Including the initial training period, subjects completed a total of
905–1,063 trials during these experiment days. Performance was
compared across decoders and sensory contexts using center-out
targets that took up 16.5% of the flex-extend arc and a 500 ms
hold time.

2.11. Online Performance Metrics
In an attempt to ignore initial adjustments to the decoder,
the first 5 BMI trials from each trial block were excluded
from performance analysis. To compare performance across
experiment sessions while accounting for variations in target
difficulties, we used bit rate as our primary performance metric
(Thompson et al., 2014). Random trials that required minimal
movement to complete (target center appearing within 10%
flexion of fingertips) were excluded from this analysis. We did
not attempt to draw direct comparisons between the subjects as

FIGURE 4 | Offline decoding performance. (A) Single DOF reconstructions representative of average error on separate training runs for each DOF and subject.

Correlations across the entirety of each training run using 5-fold cross validation are shown. (B) Cross validated classification of finger group during onset of flex

movements using a support-vector machine. Threshold crossings were binned in a sliding window that was updated every 20 ms. The feature vector was formed

from multiple time bins for all available channels.
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MonkeyWhadmore experience at the time of these experiments.
Furthermore, targets with longer hold times are considerably
more difficult to acquire in BMI mode due to orbiting, a
phenomena in which the controller oscillates around the desired
position and is unable to stop. This increase in difficulty is not
fully captured in the metric, despite the hold time itself being
excluded from the calculation.

We compared the average acquisition time and average
orbiting time for each decoder over all of the center-out decoding
sessions. Acquisition time was defined as the time taken to
complete a trial from the start to the beginning of a successful
hold time. Orbiting time was defined as the time between first
target contact and successful acquisition, again excluding the
target hold time. Unsuccessful trials are counted as the time
between first target contact and the end of the timeout period.
Since these metrics can count close to the entire timeout period

for unsuccessful trials, they penalize failure more heavily than bit
rate. The center-out task was the most conducive for this analysis
as it was performed by both subjects and consistently produced
targets that were far enough apart to induce orbiting.

3. RESULTS

3.1. Neural Tuning and Finger Separation
We first evaluated whether finger kinematics were well
represented in the neural units we recorded. Excluding channels
due to low firing rate, artifact activity, or low correlation with
finger kinematics as described in the Methods, an average of
48 ± 9 channels from Monkey W and 10 ± 2 channels from
Monkey N (mean ± s.t.d) were “well tuned" to finger activity on
a given day. Offline Kalman filters from active channels across all
training days yielded an average correlation coefficient between

FIGURE 5 | Online index finger decoding performance. (A) Traces of the center-out trials closest to session average (session shaded in green below), orange shading

indicates trials with > 3 s acquisition time. (B) Acquisition times from the same center-out session binned in 1s intervals shown along with average orbiting times

(mean ± s.e.m.). (C) Decoding performance across trial blocks for each target style (mean ± s.e.m.). Dashed lines indicate separate experiment sessions, with a

center-out training session shown for a comparison to hand performance. Within each session, the initial Kalman filter trials used to train the ReFIT filter are not shown.
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predicted and actual position of 0.807 ± 0.074 for Monkey W
and 0.655 ± 0.035 for Monkey N (mean ± s.t.d). Example
offline decodes are shown in Figure 4A. The average correlation
between predicted and actual velocity was 0.618 ± 0.093 for
Monkey W and 0.421 ± 0.050 for Monkey N (mean ± s.t.d).
Between the two subjects, Monkey W had better offline results
and was able to achieve better online performance metrics (see
Online Decoding below) while performing a significantly more
difficult task (longer hold times, smaller targets) than Monkey
N. We suspect that higher quality neural signals, potentially due
to a better array location, contributed to Monkey W’s better
performance. In both subjects, the encoding performance of
an active channel was positively (ρ = 0.594 Monkey W and
ρ = 0.849 Monkey N) and significantly correlated with its
value to the offline decode (Monkey W, p < 1 × 10−9, n =
92 channels; Monkey N, p < 1 × 10−14, n = 52 channels;

Student’s t-test). The value of a specific channel was determined
each day by comparing the initial Kalman filter’s ability to predict
velocity to an offline decoder without that channel (Wahnoun
et al., 2006). Across days, we noticed positive but statistically
insignificant correlations between offline predictive power and
online bit rate, consistent with other studies which note that
one is not necessarily indicative of the other (Kim et al., 2008;
Ganguly and Carmena, 2010; Cunningham et al., 2011). We
also did not uncover any significant correlations between either
the quantity of active channels or the number of “well tuned"
channels and daily online performance, so we cannot rule out
subject motivation and experience as additional performance
factors.

To determine if the separate DOFs in our task are well
represented in our neural units, we had each subject run an
additional offline session in which they alternated between trial

FIGURE 6 | Online MRP finger decoding performance. (A) Traces of the center-out trials closest to session average (session shaded in green below), orange shading

indicates trials with > 3 s acquisition time. (B) Acquisition times from the same center-out session binned in 1s intervals shown along with average orbiting times

(mean ± s.e.m.). (C) Decoding performance across trial blocks for each target style (mean ± s.e.m.). Dashed lines indicate separate experiment sessions, with a

center-out training session shown for a comparison to hand performance. Within each session, the initial Kalman filter trials used to train the ReFIT filter are not shown.
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blocks of index andMRP target acquisition. Similar to techniques
used in Hamed et al. (2007) and Aggarwal et al. (2008), we
restricted our analysis to the onset of flex movements from the
center position and used a sliding window that was updated
every 20 ms to including summed threshold crossing over the
preceding 160 ms. The feature vector used for classification
contained all time bins during the movement onset period
for every available channel. A support-vector machine, tested
with 10-fold cross validation, was able to distinguish between
index and MRP flexion with 85.29% accuracy for Monkey W
and 78.03% accuracy for Monkey N (Figure 4B). Classification
performance suffered when using non-overlapping 20 ms bins
(71.01% Monkey W and 68.20% Monkey N) or a larger 100 ms
bin (65.97% Monkey W and 61.98% Monkey N). The poor
classification performance with the single 100 ms bin suggests
that the majority of neurons we recorded were broadly tuned.
However supplying the classifier with temporal history at a high
resolution appeared to alleviate this issue. Therefore, consistent
with previous work (Hamed et al., 2007; Aggarwal et al., 2008),
these two finger movements could be distinguished from motor
cortex activity.

3.2. Online Decoding
Both subjects were able to achieve some level of online control
of the virtual hand with the initial Kalman filter as shown in
Figures 5A, 6A for index finger and MRP fingers, respectively.

Across all sessions, Monkey W achieved an average bit rate
with the initial Kalman filter of 1.32 ± 0.29 bps, while Monkey
N achieved a bit rate of 1.07 ± 0.16 bps (bits-per-second;
mean ± s.t.d.). The Kalman filter was generally responsive to
each subject’s input. However, similar to center out literature,
sometimes the decoder was unable to stop on-target for the
required hold time. Examples of longer trial times, often due to
orbiting, are highlighted in orange in Figures 5A, 6A. In some
cases, particularly with the initial Kalman filter, orbiting was so
severe that the subjects were unable to acquire targets within
the timeout period. While using the ReFIT filter, orbiting was
generally less frequent and less severe for both index and MRP
decoding, resulting in improved performance metrics (example
sessions shown in Figures 5B, 6B).

Consistent with previous studies (Gilja et al., 2012b; Fan et al.,
2014), subjects were able to achieve their best online performance
with the ReFIT algorithm, which always outperformed the initial
Kalman filter throughout the day (Monkey W, p < 1 × 10−7, n
= 38 trial blocks; Monkey N, p < 1 × 10−5, n = 26 trial blocks;
one-sided Wilcoxon sign-rank test). Example target acquisition
sessions for both subjects are shown in Figures 5C, 6C. Figure 7
shows the online success rate averaged across trial blocks for
the tasks performed by each subject. Overall, the ReFIT decoder
improved success rate by 4.33 ± 7.19% for Monkey W (mean
± s.t.d; p < 1 × 10−4, n = 38 trial blocks; one-sided Wilcoxon
sign-rank test) and 5.78 ± 7.35% for Monkey N (mean ± s.t.d;

FIGURE 7 | Average success rate of trial blocks across two sessions for each subject (mean ± std). Overall, the ReFIT decoder improved success rate by

4.33± 7.19% for Monkey W (p < 1× 10−5, n = 38 trial blocks; one-sided Wilcoxon sign-rank test) and 5.78± 7.35% for Monkey N (p < 1× 10−4, n = 26 trial

blocks; one-sided Wilcoxon sign-rank test).
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p < 1 × 10−5, n = 26 trial blocks; one-sided Wilcoxon sign-
rank test). Across all experiment sessions, the ReFIT algorithm
improved the average bit rate by 31.04 ± 2.78% for Monkey
W (mean ± s.e.m; p < 1 × 10−36, n = 2114 KF trials and
2010 RF trials; one-sided two sample t-test) and 35.17 ± 4.44%
for Monkey N (mean ± s.e.m; p < 1 × 10−20, n = 1558
KF trials and 1607 RF trials; one-sided two sample t-test).
See Supplementary Material for individual session statistics.
Furthermore, improvements in bit rate when using the ReFIT
decoder were not limited to a particular finger group (Table 2)
or target style (Table 3). Overall, while the improvement was
robust and reliably present, the increase was not as large as was
previously observed in upper limb center out studies (Gilja et al.,
2012b).

Figure 8 shows the average acquisition time performing the
center-out target task along with the average fraction of each
trial spent orbiting. Metrics between both subjects were similar
when viewed as percentages. Across all finger groups, using the
initial Kalman filter, subjects spent an average of 45.95 ± 0.81%
(mean ± s.e.m.) of each trial orbiting the target. Using the
ReFIT filter, the average fraction of trial time spent orbiting
dropped by 28.21 ± 2.12% (mean ± s.e.m; p < 1 × 10−37,
n = 1994 KF trials and 1929 RF trials; one-sided two sample
t-test). The reduction in orbiting time helped improve average
center-out acquisition time by 33.43 ± 2.02% (mean ± s.e.m;
p < 1 × 10−37, n = 1994 KF trials and 1929 RF trials; one-sided
two sample t-test). Consistent with its application in decoding
center-out arm reaches (Gilja et al., 2012b), ReFIT significantly
increased target acquisition rate primarily due to improved
stopping behavior.

TABLE 2 | ReFIT performance improvements separated by finger group such that

“Index” is the improvement to average bit rate (% mean ± s.e.m) across all

sessions and target styles performed with the Index finger active.

Monkey Finger group (% improvement)

Index MRP All

W 38.21 ± 5.04**** 28.97 ± 3.56**** 18.38 ± 6.76*

N 55.60 ± 10.43**** 33.97 ± 6.07**** 17.08 ± 7.04*

Total number of sessions for each group is shown in Table 1. Stars indicate a significant

improvement of ReFIT over the initial Kalman filter (one-sided two sample t-test with
∗p < 0.05 and ∗∗∗∗p < 1× 10−6).

TABLE 3 | ReFIT performance improvements grouped by target style such that

“C-O” is improvement to average bit rate (% mean ± s.e.m) across all sessions

and finger groups acquiring center-out targets.

Monkey Target style (% improvement)

C-O Rand F-E

W 35.28 ± 4.33**** 30.20 ± 6.04**** 24.92 ± 4.18****

N 31.61 ± 4.95**** 43.74 ± 9.43**** -

Total number of sessions of each type is shown in Table 1. Stars indicate a significant

improvement of ReFIT over the initial Kalman filter (one-sided two sample t-test with
∗∗∗∗p < 1× 10−6).

3.3. Modulation Analysis
Most of the improvement of ReFIT for upper-limb movements
has been attributed to the sharpening of directional velocity
tuning by intention estimation (Fan et al., 2014). Since we
characterize finger motions in 1 dimension, velocity tuning is
simply represented as the difference in firing rate between flexion
and extension. The absolute value of this difference is referred
to as modulation. We looked at the change in modulation when
intention estimation is applied to the native center-out training
data across each monkey’s experiment days. Many channels are
not well tuned, and therefore are neither expected to benefit
or worsen from intention estimation. Therefore, we limited
this analysis to “high quality” examples defined as channels on
any day that were velocity modulated before applying intention
estimation (Mod. > 1 spike/s), had good encoding performance
(ρ > 0.1 Monkey W, ρ > 0.05 Monkey N), and were
valuable to the decoder. Specifically, the value of a specific
channel was determined as described in the Neural Tuning and
Finger Separation section above. Here, a negative result indicates
the channel is valuable since performance is worse when it
is removed. In both subjects, the majority of the high quality
channel examples (33 out of 37 channels MonkeyW, 12 out of 16
channelsMonkeyN) chosen for analysis benefited from intention
estimation, meaning they showed a raw increase in modulation

FIGURE 8 | Online performance of center-out target task. Bar graphs indicate

average acquisition time (mean ± s.e.m.), with the darkened region scaled to

represent the average fraction of each trial spent orbiting (mean ± s.e.m.)

across two sessions for each subject. Stars indicate a significant improvement

in the orbiting behavior of ReFIT over the initial Kalman filter (one-sided two

sample t-test, n ≈ 300 trials; with ∗∗p < 0.001, ∗∗∗p < 1× 10−4, and
∗∗∗∗p < 1× 10−6).
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after intention estimation was applied (Figure 9). MonkeyW had
an average raw improvement of 3.34 ± 0.51 spikes/s (mean ±

s.e.m.; p < 1×10−5, one-sidedWilcoxon sign-rank test).Monkey
N had an average raw improvement of 1.54±0.54 spikes/s (mean
± s.e.m.; p < 0.01, one-sided Wilcoxon sign-rank test). Monkey
W had more significant results overall, likely due to the fact that
he had more high quality channels available at the time of the
study. The positive response to intention estimation suggests that
ReFIT may improve performance for finger motions via similar
mechanisms observed in upper-limb studies.

3.4. Sensory Context Results
Each subject also performed two days of sensory context
experiments. In these sessions, online performance with the
manipulandummoving all fingers was compared to performance
after the manipulandum was removed in favor of a stanchion
that provided no restrictions on finger movement or tactile finger

sensations. To compare performance across subjects, data was
normalized across animals by centering around initial Kalman
filter performance at 1bps. Across both subjects and sessions,
the ReFIT Kalman filter improved performance over the initial
Kalman filter (p < 1× 10−4, n = 747 RF trials and 781 KF trials;
one-sided two sample t-test). However, there was no statistically
significant change using the ReFIT filter across sensory contexts
(p > 0.9, n = 747 manipulandum trials and 780 stanchion
trials; two sample t-test; Figure 10A). At the minimum, this
suggests that the neural information used by the decoders is
largely a product of motor activity and subjects are able to
adjust to sensory context shifts. Furthermore, we noticed that
sometimes subjects will stop moving their active fingers while
performing the task in online BMI mode. An example of Monkey
W voluntarily holding his MRP fingers still during an online
center-target acquisition session is shown in Figure 10B. The
subject is still able to control the virtual hand to acquire MRP

FIGURE 9 | Effects of intention estimation on velocity modulation across all training runs. Analysis was restricted to channels that were originally velocity modulated,

had a well correlated linear model, and were valuable to offline decoder performance (n = 37 channels over 12 days, Monkey W; n = 16 channels over 7 days,

Monkey N). The raw change in modulation after intention estimation is applied to the original velocities is shown binned in 2 spike/s intervals. In both subjects intention

estimation improved modulation compared to a randomized bootstrap analysis (p < 1× 10−7 Monkey W, p < 0.01 Monkey N; one-sided two sample t-test).

FIGURE 10 | Online decoding under various sensory contexts. (A) A ReFIT decoder was trained with the manipulandum to control flexion of all 4 digits. At the dashed

line, the manipulandum was removed and subjects continued online control with the same ReFIT decoder (Unr.). Bars represent average bit rate (mean ± s.e.m.)

across all sessions for both subjects. For each day and subject, data was normalized by centering such that the average bit rate for the initial Kalman filter was 1bps.

Stars indicate a significant improvement of ReFIT over the intial Kalman filter (p < 1× 10−4, n = 747 ReFIT trials and 781 Kalman filter trials; one-sided two sample

t-test). (B) Target trace of Money W performing center-out target acquisition in BMI mode while voluntarily holding his active MRP fingers still. Green rectangles

represent the displayed target ranges the subject successfully acquired.
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targets even after electing to hold his MRP fingers still. This
indicates that decoding performance is not purely dependent on
proprioceptive feedback.

3.5. Multiple DOF Analysis
As an initial test of decoding multiple fingers simultaneously, the
animals both performed a four block set of alternating datasets
(A-B-A-B) for index and MRP fingers. This was decoded offline
with cross validation using a Kalman filter state vector that simply
included position and velocity for both fingers. As shown in
Figure 11, the moving finger had similar decodes to those shown
above, however, the motionless finger was usually incorrectly
decoded asmoving asmuch ormore as the active finger, as shown
with example traces in Figure 11. As the physical model (i.e.,
the A matrix) explicitly decouples the fingers, this correlation
apparently results from the neural observation model. This is
consistent with the modulation depths listed above, in which
almost all of the modulated neurons had significant correlations
with both index and MRP motion.

4. DISCUSSION

Here we showed that NHPs are able to use a ReFIT Kalman
filter to acquire fingertip targets usingmultiple finger groups. The
decoder appears controllable in a variety of target configurations
and responsive to the subject’s intent, as judged by their ability
to maneuver to random and unpredictable positions along
the finger arcs. Consistent with previous studies, the ReFIT
process improved performance over the standard Kalman filter
with a substantial improvement in stopping behavior. This
was not a given, since the mechanism of improvement is not
fully understood, and there is no obvious cosine tuning model
(Georgopoulos et al., 1986) for finger movements. However,
the performance improvements observed for finger motions are

less dramatic than those observed in upper-limb studies (Gilja
et al., 2012b). If we consider a purely biomimetic perspective,
the increase in modulation via intention estimation shown here
and in previous work may result from a reduction in motor
noise (Fan et al., 2014). Since fingers are smaller lever arms
with actuators designed for precise movements, it stands to
reason that there may be less motor noise to eliminate in an
able-bodied subject. Secondly, this study and previous work
(Irwin et al., 2017) have observed a significant positional tuning
element to finger movements. However, our implementation
only assumes and corrects noise from velocity measurements.
If we look at performance discrepancy from a perspective of
decoder adaptation, the task complexity may affect the intention
estimation process. The subjects in this study were only given
control of 1 DOF at a time: a simple task where a naive
decoder has a relatively high chance level of choosing the
correct direction at any timepoint. In other words, the chance
of false positives with the initial decoder is higher in our 1 DOF
task. It is possible that intention estimation techniques may be
more impactful when attempting to control multiple degrees of
freedom simultaneously, as in a 2 DOF center out task.

In earlier studies, intention estimation was noted as the
primary mechanism by which the ReFIT Kalman filter improved
performance (Gilja et al., 2012b). The second training stage
serves as a closed-loop adaptation period during which the user
is presented with visual feedback from the initial Kalman filter
and is able to issue corrections in real time which are later
processed via intention estimation. Initial decoder parameters
may be suboptimal due to poor training data, a shift from physical
control to BMI control, or both. Poor training data may be
the result of noise in the motor system - discussed earlier, or
inconsistent physical behavior. In this context, signal availability
and noise from the electrode array is associated with the shift
from physical to BMI control. An optimal adaptation to BMI

FIGURE 11 | Offline traces of two DOF decoding or both subjects using 5-fold cross validation. Dashed lines are the Kalman filter prediction, while solid lines are the

actual finger group position. Training data for this decoder was created by combining multiple training runs, each with a single active DOF. For each subject, intervals

where each DOF is active and the other is restricted are shown.

Frontiers in Neuroscience | www.frontiersin.org 14 November 2018 | Volume 12 | Article 751

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Vaskov et al. Cortical Decoding of Finger Groups

control could be a synergy in which the brain is able to learn
a particular decoder and the decoder adapts to better execute
commands (Shenoy and Carmena, 2014). Indeed, the brain
may identify neurons critical BMI performance and modulate
them accordingly (Orsborn et al., 2014). In this view, ReFIT
then improves performance by highlighting and better executing
commands from these important neurons. In this study and
earlier work (Gilja et al., 2012b), a separate re-training step was
used, although online learning techniques can potentially update
decoder parameters recursively on a shorter timescale (Orsborn
et al., 2012; Dangi et al., 2013). Newer adaptive decoders have
leveraged more accurate encoding models, improved intention
estimation transformations, and assistive training to further
optimize parameter convergence (Shanechi et al., 2017). Assistive
training strategies combine the output of an initial decoder with
an optimal trajectory or enforce constraints along an ideal path
during the adaptation phase, typically with decreasing levels of
assistance as performance improves. Such techniques incorporate
a similar assumption of intention estimation with the addition of
online visual feedback of the ideal decoder in a graded fashion.
Assistive strategies have successfully provided a paralyzed human
subject with high DOF control of a prosthetic arm and hand
(Collinger et al., 2013; Wodlinger et al., 2015), and may prove
useful as we increase task complexity beyond 1 DOF.

For individual finger control to ultimately be available
using neuroprostheses, we must provide control of multiple
finger groups simultaneously in an online setting. Decoders
that leverage a linear encoding model have been shown to
simultaneously control four distinct hand motions in a human
subject (Wodlinger et al., 2015). This study is remarkable because
it demonstrates that the combination of a well-chosen basis and
simple decoder can provide BMI users with modulated control
of different grasps in a clinical setting. In the future we aim to
provide our NHP subjects with precise online control in a 2
DOF target matching task with the index andMRP finger groups.
However, the offline results in this study suggest that linear
decoders may not be able to achieve high precision for heavily
interdependent fingermotions, potentially due to co-contraction.
It would be interesting to examine a linear decoder’s performance
on a subset of the full range of motion we tested. Not only is a
reduced range more likely to remain in an area of linearization,
but a well chosen range where the subjects can comfortably
modulate each DOF with limited natural co-contraction may
produce better initial results. It would then be interesting to see if
ReFIT or other training techniques allow subjects to generalize
to the full range of motion. If the combination of various
online linear decoders and intention estimation or adaptation
techniques does indeed prove insufficient, there are multiple
design directions which may be fruitful. One could develop a
more accurate classification scheme to account for and suppress
unwanted finger movements, similar to work in reach tasks
(Aggarwal et al., 2013; Sachs et al., 2016) and cursor control
(Kao et al., 2017). Another study effectively reduced the numbers
of DOF of the hand using dimensionality reduction (Rouse,
2016). However, ultimately we need to control multiple fingers
at the same time for a hand to be truly useful. We could also
seek a more accurate model of the natural muscle synergies

that may enable more generalization to multi-finger movements
(Nazarpour et al., 2012; Oby et al., 2013; Ethier et al., 2016).
These can be incorporated into more general non-linear machine
learning approaches, for example including neural networks
(Sussillo et al., 2012; Gao et al., 2016). Finally, we could explore
contributions from additional information sources (Aflalo et al.,
2015) to augment these approaches.

In this study we demonstrated that online finger decoders can
be robust to changes in sensory context and proprioception in
able-bodied subjects. We hypothesize that had we introduced a
context change via increasing spring tension during training, the
subjects would be able to compensate with the ReFIT decoder
much like they did to other sensorimotor input shifts. As
described earlier, the online adaptation of ReFIT may be creating
a decoder that is optimal for BMI control of the virtual hand
irrespective of existing forward motor path. However, BMIs that
promise complex grasps will have to perform under dynamic
conditions and disturbances during object manipulation. So
while we believe that subjects can compensate for global changes,
the rate of environmental adaption may not be sufficient for
many realistic conditions. In the future, non-visual feedback
mechanisms for BMIs may become available (Flesher et al.,
2016), which can greatly improve motor performance provided
they are well integrated into the sensorimotor system. Other
studies that have examined finger control in able-bodied subjects
have observed that the precision of finger control in response
to physical disturbances can vary with naturally occurring or
induced input noise (Mendez-Balbuena et al., 2012). The authors
of that study found that for different individuals introducing a
mechanical stochastic noise at different levels produced optimal
performance. BMI systems are novel sensorimotor systems where
select neurons in the brain interface with either the natural
periphery or robotic devices through decoders and encoders.
Studying the effects of different types of input noise may be a
step toward characterizing and optimizing fine motor control of
BMI-FES systems with different feedback modes.

In clinical settings, recent FES systems have provided human
patients with the ability to modulate previously paralyzed joints
(Bouton et al., 2016; Ajiboye et al., 2017). These implementations
show immense potential and represent an amazing convergence
of technology and knowledge of the human motor system.
As this technology becomes more advanced and transitions
further into clinical and ultimately commercial use, further
systems level experiments will be required to achieve higher
levels of performance in terms of activities of daily living.
The everyday functionality of such systems will be limited by
both our ability to extract meaningful control signals as well
as our ability to actuate multiple joints. It has recently been
shown in human subjects that commanding many degrees of
freedom simultaneously introduces more error (Ajiboye et al.,
2017). In that study, grasp failures with the muscle controller
often occurred when the BMI command was generally correct,
but small oscillations triggered large swings in other joint
movements. While the FES efficacy could be improved with
better implantable devices and physical therapy, some of the
problem with multiple degrees of freedom will likely require
different algorithms. The able-bodied NHP model enables the
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development of these algorithms with simultaneous knowledge
of the complex plant that these neural signals are driving,
including significant co-contraction of the muscles. It is not
immediately obvious whether the most effective system for
individuated finger control will involve directly extractingmuscle
activation commands from motor cortex or a more agnostic
machine learning approach. In a practical setting, the amount
of training data required impacts this decision as well, and
may favor muscle based decoders. Ultimately, further systems
level brain-controlled FES experiments could focus on dynamic
motions to answer these equations and continue advancing the
state of the art for neuroprostheses.
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