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Brain inspired computing is a pioneering computational method gaining momentum
in recent years. Within this scheme, artificial neural networks are implemented using
two main approaches: software algorithms and designated hardware architectures.
However, while software implementations show remarkable results (at high-energy
costs), hardware based ones, specifically resistive random access memory (RRAM)
arrays that consume little power and hold a potential for enormous densities, are
somewhat lagging. One of the reasons may be related to the limited excitatory operation
mode of RRAMs in these arrays as adjustable passive elements. An interesting type of
RRAM was demonstrated recently for having alternating (dynamic switching) current
rectification properties that may be used for complementary operation much like CMOS
transistors. Such artificial synaptic devices may be switched dynamically between
excitatory and inhibitory modes to allow doubling of the array density and significantly
reducing the peripheral circuit complexity.

Keywords: artificial neural networks, brain inspired computing, dynamic artificial synapses, memristors,
rectifying synapses

INTRODUCTION

Ever since the scientific community’s revival of interest in memristors (Chua, 1971; Chua and Kang,
1976) was triggered by publications in the last decade such as Strukov et al. (2008), these devices
have been extensively used for the implementation of artificial neural networks (ANN) in brain-
inspired computational platforms. Within this domain, crossbar array architectures are promising
candidates for achieving high-densities (∼1015 bits/cm2) similar to the human cerebral cortex
(∼1014 synapses), when configured in 3D stacking (Kügelera et al., 2009), due to the nanoscale
device dimensions (Aratani et al., 2007; Jo et al., 2010). In addition, crossbar arrays are very
efficient, in terms of calculation time and energy expenditure, when performing matrix-vector dot
product operations, that form the basis for machine learning algorithms (Hu et al., 2012). Several
demonstrations of resistive random access memory (RRAM) array implementations proved to
be very successful in tasks such as image classification (Prezioso et al., 2015). The sizes of these
networks range from small scales of only few neurons (Kim et al., 2012; Prezioso et al., 2015),
medium levels (Park et al., 2015; Hu et al., 2016) and up to larger scale that incorporate hundreds
of neurons (Yao et al., 2017) and even up to 105 synaptic connections (Burr et al., 2015).

Resistive random access memory arrays are designed to imitate the functionality of
biologic synaptic networks. A chemical synapse is a gapped connection between two neurons
through which communication takes place (Pereda and Faber, 1996; Kandel et al., 2000;
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Nicholls et al., 2001). A typical neuron can have several thousands
of synapses which mostly connect axons in a presynaptic neuron
to dendrites in postsynaptic neuron. Inter-neural signaling
occurs by the release of neurotransmitters from the presynaptic
neuron into the gap (i.e., synaptic cleft) that in turn is
collected by receptors in the postsynaptic neuron. The molecular
neurotransmitters are kept in sacs called synaptic vesicles. During
signaling, these vesicles are released into the synaptic cleft and
bind to receptors on the postsynaptic neuron. Once the signal
is delivered, the transmitters are evacuated from the receptors
through potential mechanisms such as enzymatic degradation,
or absorbed back into the presynaptic neuron by specific
transporters. The postsynaptic potential response is classified
as being either excitatory or inhibitory and determined by the
type of neurotransmitter (Glutamate or γ-aminobutyric acid)
(Nakanishi, 1992). Two key characteristics resulting from this
behavior are the so called long-term potentiation (LTP) and
long-term depression (LTD) and the synaptic weight (connection
strength) is modulated by this neural activity. A recent study
showed that actually both types of neurotransmitter could be
released simultaneously during synaptic activity (Root et al.,
2014). Moreover, neurotransmitters have been shown to be
able to actually exchange roles during early stages of brain
development (Ben-Ari, 2002).

Biologic neural networks have evolved over hundreds of
millions of years to easily and efficiently perform tasks that
state of the art computers find difficult. The operation of a
man-made ANN should thus be true to the source as much as
possible with respect to a building block artificial device. In order
to achieve this target, artificial synaptic devices (ASDs) should
imitate as much as possible the traits that biological synapses
have. Although current understanding of neural networks and
synapses is nowhere near complete, one may assume that such
ASDs would be the best option for future ANN implementations.
Some of these basic features include having a large dynamic
range and multilevel operation to match the analog nature of
the biological synaptic weight changes. These traits translate
to higher accuracies, more degrees of freedom for weight
adjustment and robustness during network training. A positive
correlation exists between device dimensions and the number of
states it can support (e.g., multilevel resistance) (Kuzum et al.,
2013). However, sizing up the device will increases the overall
current and power consumption as well as reduce the potential
density.

The potential ability to implement symmetric weight changes
may play a role in the simplification of an ANN peripheral control
system. Biologic neural networks are very adaptive and can easily
compensate for asymmetric weight changes especially when
hundreds of neurons are involved in determining the weight
of a synaptic junction. State machine based control systems on
the other hand, are best suited to operate with well known and
predictable parameters. In order to deal with asymmetric or
random parametric distributions, an elaborate feedback system
must be implemented and incorporated into the controller. In
this sense, an ASD having a potential for incrementally small
changes in both the up and down directions may simplify the
controller design. A desirable corresponding weight parameter

(e.g., conductance in RRAM) should thus be both symmetric
with regards to the direction of change (increase or decrease) and
differentially linear in magnitude of step change. Nonetheless,
RRAMs (being a promising candidate in terms of low-power and
high-density) (Wong et al., 2012) and other types of memristors
show non-linear conductance as well as asymmetric conductivity
changes (Lee et al., 2010) in response to successive set and reset
pulses (Alibart et al., 2012; Chen et al., 2015; Wang et al., 2016)
that complicate the task of designing a control state machine
and sensing circuitry. This in turn affects both the potentially
achievable network accuracy and overall performance.

An even more critical attribute expected from an ideal ASD
would be the ability to reconfigure dynamically during real
time operation between the excitatory and inhibitory response
modes in a similar manner to a biologic synapse. Current
RRAM devices are not able to reproduce this feature since they
are passive devices by nature (once formed) and intentionally
operated to comply with the linearity requirements as much
as possible. It is virtually impossible for an RRAM to display
this dynamic attribute without adding an additional control
terminal to modulate the material properties by the field effect.
In other words, it should have a bipolar conductance that is
distinct characteristic of active devices. Adding a control terminal
would damage the linearity and seriously downgrade the high-
integration capabilities.

A common architectural solution is used to work around
the dynamic reconfiguration issue by employing a differential
approach. Instead of representing a synaptic gap by a single
RRAM, two devices are used in a differential manner (Bichler
et al., 2012; Prezioso et al., 2015). In this way, the synaptic
weight-current is evaluated through a differential amplifier to
determine whether the synaptic gap represents an excitatory or
an inhibitory state. Needless to say, the prospective array density
is reduced to half in addition to the added complexity required
from the control and sensory circuitry. Recent publications have
demonstrated ASDs with dynamic capabilities (mimicking either
LTP or LTD behaviors as a function of a modulation bias)
through the use of FET structures (Kim et al., 2013; Tian et al.,
2015, 2016, 2017; Yang et al., 2015). As mentioned previously,
these devices rely on at least one additional modulation terminal
and an associated bias voltage to control the conductance
polarity through the field effect. However, they are operated
using very large biases (tens of volts) that seriously compromise
their integration possibility with modern CMOS architectures.
Moreover, the physical dimensions of these devices are very large
(tens of micrometers), in addition to having a lateral structure (as
opposed to vertical stacking) that is not optimal for high-density
3D integration. State of the art ASDs are thus still far from being
able to truly reproduce the behavior of biologic synapses.

Another type of biologic synapses is based on fast conductive
links between neurons capable of transmitting and receiving
electrical signals (Pereda and Faber, 1996; Kandel et al., 2000).
These links contain numerous ion channels (i.e., connexons)
scattered along plasma membranes to form the connection
between the pre- and post-synaptic neurons (Connors and Long,
2004; Michael et al., 2004). Some of these junctions demonstrate
a rectifying behavior while being stimulated by electric pulses
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resulting in a preferred direction for ion flow (Hormuzdi et al.,
2004; Landisman and Connors, 2005; Haas et al., 2011). In this
light, another subclass of micrometer sized RRAMs was shown
to have a unidirectional current rectification property along
with non-volatile, multilevel resistive states (Yoon et al., 2015;
Kim et al., 2016). In addition, Kim et al. (2018) demonstrated
a rectifying micrometer ASD with transient (volatile) current-
voltage dependence. Unfortunately, all these devices fall short in
terms of both size and high-density integrability that play a key
role in the implementation of ideal ANN.

Recently, Berco et al. (2018) presented a proof of concept
for a nanoscale current rectifying dynamic RRAM. This
ASD, of merely a few nanometers in size, dissipates only
several picowatts of power during operation while having the
ability to dynamically flip its current rectification direction
thus effectively implementing both excitatory and inhibitory
synaptic functionalities without the need for a modulation
terminal. This operation mode allows for doubling the array
size when compared to the common differential approach
discussed previously (Bichler et al., 2012; Prezioso et al., 2015).
Conductance-weight changes may be implemented by using a
digital methodology (as opposed to the ubiquitous analog model).
In this manner, a group of nanoscale ASDs are grouped together
to represent a single artificial synapse where each member of
the group plays the role of a rectifying connexon at the expense
of layout resources. Setting the number of current-rectifying
devices to a specific direction, being either positive rectification
(PR) or negative rectification (NR), in relation to the others

(being in the opposite direction), effectively determines the
total conductance for each rectification direction. These artificial
rectifying connexons (ARCs) may be individually toggled and the
overall synaptic weight digitally manipulated in a similar manner
to the LTP and LTD in biologic synapses.

ARTIFICIAL SYNAPTIC DEVICE
IMPLEMENTATION

Memristor arrays for hardware implementations of ANN are
extremely efficient in performing matrix vector dot products
as weighted-sum operations. A widely used RRAM-based
differential array architecture is depicted in Figure 1A (Bichler
et al., 2012; Prezioso et al., 2015). In this approach, two passive
devices are used to determine a single synaptic weight in a
differential manner thus allowing for both positive and negative
parametric values. Programming the analog conductance levels
may be done either during network training or on the fly
to emulate the LTP and LTD synaptic behaviors. The sensing
circuitry is based on a differential amplifier driving an activation
function module (marked as f ). However, analog RRAM
operation (conductivity adjustment) (Lee et al., 2010; Alibart
et al., 2012; Chen et al., 2015; Wang et al., 2016) usually requires
complex pulsing schemes to account for its non-linear nature
which complicates the design of a digital controller. An ARC-
based implementation is given in Figure 1B (Berco et al., 2018).
The operation principal allows for dynamically switching of

FIGURE 1 | (A) A common approach for emulating LTP and LTD using a memristors crossbar array as an ANN weight matrix (Prezioso et al., 2015; Bichler et al.,
2012). Two memristors (W1a,1 and W1b,1) represent a single artificial synapse and their induced current, based on a pre-programmed conductance, is summed in a
differential manner to determine the synaptic potentiation or depression. (B) An ARC-based implementation can both double the array density and simplify the
peripheral circuitry by allowing dynamic switching of the rectification direction thus implementing either an excitatory or inhibitory weight parameter at each junction
(much like a CMOS gate shown in the inset). (C) Sample response of an ARC-based ANN to a generic input (1,1,0). (D) A different input (1,0,0) would produce a
different response from the same network setting.
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FIGURE 2 | (A) Schematic diagram of OV-O distribution in the RSL of an ARC after forming where the gap in the CF (indicated by a blue arrow) yields a rectifying
behavior. (B) A digital approach for synaptic weight adjustment demonstrated by Spice simulation (using a generic behavioral model for a group of 10 ARCs). The
LTP conductance (black curve) depends on the ratio of PR-ARCs to NR-ARCs with a bias of 0.3 V and the LTD conductance (blue curve) depends on the ratio of
NR-ARCs to PR-ARCs with a bias of –1.5 V while the inset shows the circuit under simulation where individual ARC are consecutively flipped from PR to NR and vice
versa. (C) An abstract model for synaptic operation as proposed by Berco et al. (2018).

the rectification direction resulting in either an excitatory or
inhibitory weight parameter at each junction. In this manner, a
single active device can be set to either push or pull current (much
like the CMOS couple shown in the inset) effectively doubling
the prospective density and simplifying the peripheral circuitry
considerably.

A sample response of an ARC-based ANN to a generic input
(1,1,0) is demonstrated in Figure 1C. In this example, some ARCs
are configured as a PR-ARC (current direction marked by a red
arrow) while the others are configured as an NR-ARC (current
direction marked by a blue arrow). A high-voltage input “1” will
result in current flowing into the output neuron through the PR-
ARC. In the same manner, a low-voltage input “0” will result in
current flowing out of the output neuron through the NR-ARC.
ARCs that are configured in an opposite direction (in relation to
the input value) will produce a zero current response. Figure 1D
depicts the response of the exact same network configuration to
a different input vector (1,0,0). In this manner, both network
training and learning may be implemented.

Figure 2A depicts a schematic diagram of a lateral structured
RRAM device configured as an ARC for illustrative purposes. The
device is comprised of a metal-oxide-based resistive switching
layer (RSL) placed between two conductive electrodes. The
forming of a conductive filament (CF, an aligned path of current
conducting defects) is done using a specific current compliance
limit that yields an uneven distribution of oxygen vacancies (OV)
and oxygen species (O) (Berco and Tseng, 2016; Berco et al.,
2018). The figure depicts positively charged OV being pushed
away from the anode and accumulated near the cathode while
the negatively charged O ions are drawn to the anode. The
forming process is arrested by the current compliance setting

before a continuous CF from anode to cathode is able to form.
The resulting gap (indicated by a blue arrow) yields a current
rectifying behavior (Berco et al., 2018).

The dynamic nature of ARCs may be utilized for real time
modulation of the ASD junction plasticity, using a plurality of
devices, by changing the ratio of the number of PR to NR-ARCs.
A digital approach (contrary to the common analog treatment)

FIGURE 3 | Implementation of logic gates with ARCs. The directionality of the
ARC determines either a push or pull functionality and as a result the logic
output value. (A) OR gate. (B) AND gate.
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(Lee et al., 2010; Alibart et al., 2012; Chen et al., 2015;
Wang et al., 2016) using ARCs for implementing LTP and
LTD synaptic weight adjustment is summarized in Figure 2B.
Using this concept, a group of ARCs are treated as a single
ASD (consuming more area). This implementation was verified
with Spice simulations using a behavioral model based on the
experimental data published by Berco et al. (2018). The circuit
under simulation is composed of 10 ARCs connected in parallel
to a single DC voltage source (Figure 2B inset) representing the
input value (either “0” or “1”). The LTP simulation progresses
by consecutive flipping an NR-ARC to a PR-ARC starting from
n = 1 to n = 10 and calculating the overall conductance under
positive bias of 0.3 V. The LTD simulation is done by consecutive
flipping a PR-ARC to an NR-ARC in the same manner under a
negative bias of −1.5 V. The conductance results in Figure 2B
show a good linear behavior when depicted as a function of
the ratio of PR-ARCs (n) to NR-ARCs (10−n) and vice versa.
The positive slope for PR may thus be used to implement an
excitatory synaptic weight change (increased current flow to
the postsynaptic circuitry for a positive input vector) while the
negative slope for NR may be used for an inhibitory synaptic
weight (increased current flow from the postsynaptic circuitry for
a negative input vector).

ABSTRACT MODEL

Figure 2C depicts a block diagram of an abstract model for
synaptic operation based on n ARCs connected in parallel as
proposed by Berco et al. (2018). The number of PR-ARCs in
the group is marked as nPR and of NR-ARCs as nNR. GPR is
the combined conductance of the PR-ARCs and GNR of the
NR-ARCs. The conductivity of a single PR-ARC is Gu and
Gd of a single NR-ARC. Both parameters may be modeled
after experimental data by using a behavioral lookup table.
The synaptic model transitions from an excitatory state to
an inhibitory one once the positive conductivity surpasses the
negative conductivity and vice versa. The synaptic weight change
1G corresponds to spiking timing alignment in biologic synapses
and is determined by network training and operation. In this
manner, the number of ARCs which are flipped from a NR state
to a PR one is determined by the ratio 1G/Gu for LTP. In a similar
way, the number of ARCs which are flipped from a PR state to a
NR one is determined by the ratio 1G/Gd for LTD.

LOGIC GATE IMPLEMENTATION

ARCs may also be used for the implementation of logic gates as
depicted in Figure 3. Programming entire crossbar arrays could

be utilized in this manner to implement in-memory computing
schemes. Figure 3A shows the implementation of an OR gate.
Both ARCs are programmed to rectify current from the inputs
toward the output. A high logic level setting of any of the inputs
would result in current flow and charging of the output parasitic
capacitance to “1”. When both inputs are set low the output will
either retain a low logic level or discharge through leakage to
“0”. Figure 3B gives the implementation of an AND gate. In this
case, both ARCs are set to rectify in an opposite direction (from
output to inputs). Only when both inputs are set to a high level
the output will charge through leakage to “1”. If any of the inputs
is set to a low level, a discharge path will occur which will force
the output to “0”.

CONCLUSION

In summary, a nanoscale RRAM with dynamic current
rectification properties may be used as an ASD in neural networks
to effectively double the array density for some applications and
significantly reduce the required complexity from the peripheral
circuitry (both sensing and control). This device is analogous
to a biologic connexon (gap connection between synapses)
that, when aggregated in a group, define the overall synaptic
directionality and weight with respect to ion motion. An ARC
may be dynamically toggled between positive and negative
rectifications states thus allowing for a complementary operation
(much like CMOS devices) of artificial synapses (as opposed
to the linear analog scheme common to passive RRAM-based
networks). In addition, the synaptic weight may be controlled
in a digital manner by using a plurality of devices grouped
together by changing the ratio of the number of positive-
rectifying to negative-rectifying ones. Furthermore, the LTP
and LTD behaviors of biologic synapses may be emulated as
well.
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