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Background: EEG mu-desynchronization is an index of motor resonance (MR)

and is used to study social interaction deficiencies, but finding differences in

mu-desynchronization does not reveal how nonlinear brain dynamics are affected during

MR. The current study explores how nonlinear brain dynamics change during MR.

We hypothesized that the complexity of the mu frequency band (8–13Hz) changes

during MR, and that this change would be frequency specific. Additionally, we sought

to determine whether complexity at baseline and changes in complexity during action

observation would predict MR and changes in network dynamics.

Methods: EEG was recorded from healthy participants (n = 45) during rest and during

an action observation task. Baseline brain activity was measured followed by participants

observing videos of hands squeezing stress balls. We used multiscale entropy (MSE) to

quantify the complexity of the mu rhythm during MR. We then performed post-hoc graph

theory analysis to explore whether nonlinear dynamics during MR affect brain network

topology.

Results: We found significant mu-desynchronization during the action observation

task and that mu entropy was significantly increased during the task compared to

rest, while gamma, beta, theta, and delta bands showed decreased entropy. Moreover,

resting-state entropy was significantly predictive of the degree of mu desynchronization.

We also observed a decrease in the clustering coefficient in the mu band only and a

significant decrease in global alpha efficiency during action observation. MSE during

action observation was strongly correlated with alpha network efficiency.

Conclusions: The current findings suggest that the desynchronization of the mu wave

during MR results in a local increase of mu entropy in sensorimotor areas, potentially

reflecting a release from alpha inhibition. This release from inhibition may be mediated

by the baseline MSE in the mu band. The dynamical complexity and network analysis of

EEG may provide a useful addition for future studies of MR by incorporating measures

of nonlinearity.
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INTRODUCTION

There has been great interest in the idea of neural mirroring–
neural simulation of the actions and experiences of others
while observing them–as a central process contributing
to action understanding and experience sharing. Using
electroencephalogram (EEG) to record the desynchronization
of the mu wave (8–13Hz) over sensorimotor regions is gaining
popularity as a measure of neural simulation (e.g., Cheng et al.,
2008; Pineda and Hecht, 2009; Gutsell and Inzlicht, 2010; Perry
et al., 2010; Fabi and Leuthold, 2017; Li et al., 2017), including in
the clinical setting (Oberman et al., 2008, 2013; Fan et al., 2010;
Mitra et al., 2014; Minichino et al., 2016). Several researchers
have used mu desynchronization to investigate impaired social
and emotional processing in disorders like schizophrenia and
autism (Oberman et al., 2005; McCormick et al., 2012; Horan
et al., 2014; Brown et al., 2016). However, studies using mu
desynchronization during action observation, have relied solely
on measuring attenuation of the mu power spectrum. Utilizing
the Fast Fourier transform (FFT) to obtain the average power
of pre-selected frequency components or the Morlet wavelet
transform to obtain frequency information at a specific moment
in time, can only provide information on power spectrum
changes and fails to address potentially important changes to
nonlinear brain dynamics. The current study measured changes
to neural complexity and network connectivity that occur during
action observation, and sought to assess how these changes are
related to, and might supplement, the linear changes observed in
the mu power spectrum.

Viewing the actions of another person triggers neural
representations similar to when actually performing the same
action (di Pellegrino et al., 1992; Rizzolatti and Craighero, 2004;
Rizzolatti, 2005), and such motor resonance (MR) is thought to
transform visual information about the action including basic
intentions into knowledge (Rizzolatti et al., 2009; Liu et al., 2016).
EEG mu desynchronization is considered a valid measure of MR
(see Fox et al., 2015 for a meta-analysis and Hobson and Bishop,
2016, for a critical perspective). The mu-rhythm can be picked up
over the sensorimotor cortex at central electrodes (C3, C1, CZ,
C2, and C4 electrodes), and its desynchronization is correlated
with activation in areas thought to be part of the human
mirror system, including the dorsal premotor cortex, the primary
somatosensory cortex, and the inferior parietal lobe (Perry and
Bentin, 2009; Arnstein et al., 2011; Yin et al., 2016). Since the
decrease in mu amplitude during mu desynchronization occurs
because the number of synchronously active neurons firing
at a frequency of 8–13Hz decreases during action and action
observation (Lopes da Silva, 1991), the underlying nonlinear
patterns of activity should becomemore complex (non-randomly
varying), and may provide information on the adaptability of
a system or network of connections to a stimulus (McIntosh
et al., 2008; Manor et al., 2010; Vakorin et al., 2011). Such
nonlinear patterns contain information that is not accessible
by spectral measures (Meyer-Lindenberg et al., 1998; Abásolo
et al., 2006; Park et al., 2007; Mizuno et al., 2010), and the
current study is a novel investigation of EEG signal during action
observation.

A promising approach to analyzing nonlinear dynamics in
the brain is multi scale entropy (MSE), which measures entropy
over multiple time scales inherent in a time series (Costa et al.,
2002). Sample entropy of each coarse-grained time series serves
as an index of signal complexity by evaluating the occurrence
of repetitive patterns. Thus, using MSE analysis in this study
allows us to extract meaningful information about the changes
to nonlinear dynamics that occur in the EEG signal during action
observation. Moreover, changes in entropy indexed using MSE,
are likely to indicate, to some degree, a change in the neural
underpinnings of connectivity (Friston et al., 1995; Sporns et al.,
2000; Takahashi et al., 2010). To validate this assumption, we also
measured changes in connectivity across the scalp using graph
theoretical analysis and tested their link to changes in entropy.
More specifically, we used global efficiency and the cluster
coefficient (graph theoretical measures), to provide information
on local and global changes to functional connectivity that result
from local changes in nonlinear dynamics.

In sum, the first goal of the current study was to capture
changes in the complexity of the signal measured over the
sensorimotor area during MR using MSE analysis. The second
goal was to determine how resting state MSE relates to mu
desynchronization duringMR. Resting-state complexity has been
previously used as a predictor for risk of developing ASD
(Bosl et al., 2011), as well as predicting cognitive function in
Alzheimer’s disease (Mizuno et al., 2010). The finding by Mizuno
et al. (2010), suggests that complexity at rest can predict one’s
adaptability to a future “engaged” or active state. Along the same
lines, we expected the level of resting MSE measured in the
mu frequency band, to be predictive of the amount of decrease,
if any, in the mu power spectrum during action observation.
The final goal of the study was to assess whether MR changes
network communication in the gamma, beta, alpha, theta, and
delta bands, and its relationship to the MSE measured over the
sensorimotor area.

THE CURRENT RESEARCH

We measured MR during action observation, using mu
desynchronization, as part of a larger study that tested how
perceptions of warmth and competence of target individuals
affect MR. Participants first viewed personality ratings of varying
combinations of the warmth and competence of a target
person followed by a short video of ostensibly that person
performing an action. We collapsed the action observation
data across all warmth and competence conditions to assess
mu desynchronization, MSE change, and network changes. We
hypothesized that the level of MSE (average entropy across
all scale factors) measured in the mu frequency band would
increase during action observation relative to baseline, and
that an increase would be linked to mu desynchronization,
such that stronger desynchronization would be associated with
a larger increase in MSE. Additionally, we tested whether
changes to MSE during action observation was frequency-
band specific by analyzing change in the MSE values in four
other frequency bands (gamma, beta, theta, and delta). We
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hypothesized that the level of baseline MSE would predict the
degree of mu desynchronization, thereby being a determinant
of adaptability during action observation. Finally, we used graph
theory analysis to assess the effect of mu desynchronization on
network communication by analyzing global efficiency in the five
mentioned frequency bands, and the cluster coefficient over the
sensorimotor area, respectively.

METHODS

Participants
Participants (n = 66) right-handed undergraduate college
students had normal or corrected vision, and the ability to read
and write fluently in English. Participants were all right-handed
to ensure analogous cortical responses to videos of right hands
performing simple motor activities.

All participants provided informed consent and participated
in the research for course credit or financial compensation.
Participants were excluded due to equipment failure resulting
in too many non-functioning electrodes (cutoff of 5 non-
functioning electrodes; N = 4), excessive EEG artifacts in the C3
electrode (N = 12; such as blinks, electromyogram (EMG), line
noise, and visible signal drift), and visually excessive frontal alpha
activity (N = 4) which suggests a participant might be sleeping,
leading to a final sample of 45 participants (mean age = 18.814,
SD= 0.958; 33 female).

Procedure
The experimental protocol and data acquisition procedure were
approved by the Brandeis Institutional Review Board. After
EEG setup was complete, participants were asked to repeatedly
squeeze a stress ball using their right hand for 15 s while we
filmed their hand. This both created a baseline for brain activity
during actual hand movement and reinforced the cover story
that participants would be watching videos previously recorded
from other participants. Participants then underwent a measure
of baseline neural activity for which they sat completely still, first
with their eyes closed for 1.5min, then open for 1.5min, then
while watching a video of white noise for 1min. The baseline
recorded with eyes open was used to calculate the complexity of
the mu rhythm at rest.

Following the baseline recording, participants were told that
they would be taking a personality test. The test required them
to rate themselves on a list of adjectives related to warmth and
competence. They were then told that nine other people had
previously taken the same test and had their hand movement
recorded. EEG was recorded while participants viewed the action
videos following the warmth and competence information.
Finally, participants filled out a demographic questionnaire, were
debriefed, thanked, and dismissed.

Action Observation Task
The task consisted of 135 trials. During each trial, participants
were first presented with a video of white noise for 2,000–
2,300ms followed by a fixation cross for 500ms. They then
viewed a screen with a target’s name (e.g., “Participant A”), a
simple silhouette andwarmth/competence scores (e.g., “Warmth:

High, Competence: Low”) for 4,000ms, followed by a video
of what was ostensibly that person’s hand squeezing a yellow
stress ball for 2,000ms at the rate of approximately one squeeze
per second (see Figure 1 for a depiction of a typical trial). Each
hand was always paired with the same identity; all hands were
White and with an even gender split (five female). The task was
split into two blocks of∼15min in length divided by a short break
of a duration determined by the participant.

EEG Recording and Processing
EEG was recorded from 32 active electrodes embedded in a
stretch-lycra cap (ActiCap, BrainProducts GmbH, Munich,
Germany) arranged per the 10–20 system with the impedances
kept below 10 k�. The EEG was digitized at 500Hz using
BrainAmp amplifiers and BrainVision recorder software
(BrainProducts GmbH, Munich, Germany) with an initial
reference at FCz. The data was then re-referenced offline
using the Reference Electrode Standardization Technique to
standardize the reference of scalp EEG recordings to a point at
infinity that, being far from all possible neural sources, acts like a
neutral virtual reference (Yao, 2001; Dong et al., 2017). To avoid
corrupting the raw data, we manually extracted segments of
artifact-free EEG data by visually identifying and then removing
vertical eye movements, blinks, muscle activity, and other artifact
sources. From 40,000 data points, we extracted at least 20,000
artifact-free data points from the resting state task, and from
14,000 data points we extracted at least 12,000 artifact-free data
points from the action observation task. For each of the 2-s
action observation segments, we then computed the integrated
power in the 8–13Hz range using a Fast Fourier Transform
(FFT) performed at 0.2 s intervals with an overlap of 0.25 s (using
a Hamming window with 25% overlap). Finally, we averaged the
segments over all trials and calculated Mu desynchronization
scores with the following formulas: (ln

(

µtask power

)

−

ln(µpre−task resting power))/ ln(µpre−task resting power)
∗100.

Multiscale Entropy (MSE) Analysis
MSE analysis (Costa et al., 2002, 2005) was developed to estimate
sample entropy in multiple time scales by using a coarse-graining
procedure. MSE analysis uses sample entropy (SE) because it
provides greater consistency and is less dependent on a given
signal length compared with other entropy methods (Richman
andMoorman, 2000). MSE calculation can be summarized in the
following three steps: (a) constructing coarse-grained time series
per different scale factors (SF); (b) quantifying the SE of each
coarse-grained time series; and (c) examining the sample entropy
profile over a range of scales. Per this method, the length of each
coarse-grained time series is equal to the length of the original
time series divided by the SF. For Scale 1, the time series is merely
the original time series.

TheMSE analysis of EEG signal has been described previously
(Catarino et al., 2011) using parameters of m = 2, r = 0.15,
and a SF up to 40. In this study, we used m = 2, r = 0.15
standard deviation (SD), N = 14,000 data points and SF of 20
for resting state, and N = 14,000 data points and SF of 20 for the
action observation task. We N/SF= 14,000/20= 700 data points,
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FIGURE 1 | Depiction of a typical task trial.

which is enough to obtain a reliable estimation of the SE values
(Richman and Moorman, 2000).

Using the MSE of resting-state EEG signal as the reference, we
classified MSE profiles into three types: (1) increased complexity
(i.e., increased entropy in all scales), (2) reduced complexity
toward regularity (i.e., decreased entropy in all scales), or (3)
reduced complexity toward randomness (i.e., increased entropy
in fine scales followed by decay in entropy as the scale factors
increase; Yang et al., 2015). The random type of MSE profile
quantifies uncorrelated randomness that cannot be fully captured
by single-scale entropy.

Network Analysis
We used the first 2 s from the eyes-open baseline and the
first of seven segments from the action observation task, for
analysis. We then calculated the respective phase coherences
(rPCs) for every electrode pair to obtain network measures
(please see Figure 2 for a graphical illustration of the procedure).
The method used for obtaining the rPC is the phase-locking
index (Tass et al., 1998). Once the rPC values between all
the electrode-pairs were calculated, we obtained an undirected
and weighted network by regarding each electrode as a node
and the rPC values as the weight between two corresponding
nodes. Then we considered two network measures, clustering
coefficient (CC; Rubinov and Sporns, 2010) and global efficiency
(GE; Rubinov and Sporns, 2010) to investigate the topological
characteristics of the network. Based on graph theory, in the
undirected and weighted network with n nodes in a nodes’
set N, CC of a node j is obtained by the ratio of geometric
mean of triangles around the node to the maximum possible
number of the connections between all the neighbors of the node,
as

CCj =
1

kj(kj − 1)

N
∑

i,m=1

(wijwimwjm)
1/3 , (1)

where

kj =

N
∑

i=1

wij (2)

is the weighted degree of node j, wij are connection weights
which are normalized between 0 and 1 for all i and j
related to edges (i, j), and N is the number of all nodes.
Importantly, the clustering coefficient can indicate the degree
of local interconnectedness of a node and applied to evaluate
the local structure of a graph (Rubinov and Sporns, 2010;
Miraglia et al., 2017; Wang and Tao, 2017). The average value
of all nodes’ CC (denoted as aver_CC in this paper) is the
average clustering coefficient CC over all nodes, as expressed in
Equation (1).

The global efficiency that allows the existence of isolated
points is the reciprocal of the shortest path, and not only reflects
the global traffic capacity and integration, but also evaluates
the performance of the graph effectively (Achard and Bullmore,
2007). The definition of global efficiency (denoted as GE) is given
in Equation (3):

GE =
1

N(N − 1)

N
∑

i,j,i6=j

1

dij
, (3)

The shortest weighted path length between node i and j is defined
as Equation (2):

dij =
∑

auv∈gi
w
←→ j

f (wuv) , (4)

where f is a map (e.g., an inverse) from weight (wuv) to length,
and gij is the shortest weighted path between node i and j
(Rubinov and Sporns, 2010).
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FIGURE 2 | The multi-step illustration of the procedure for extracting networks’ measures from EEG time series to sub-network. To be noted, the EEG series given in

this graph are the 10th subject’s resting state data set and the electrode Fp1, F7, and O2 are shown as an example of the phase synchronization coefficients

computed between two electrodes in the alpha band. Additionally, the graph is fully connected. Abbreviation: rPC: respective phase coherence.

Statistical Analysis
Statistical analyses were carried out using R version 3.3.2 (R
Core Team, 2016). We set the alpha significance value at .05 and
confirmed the normal distribution of the MSE values using the
Kolmogorov–Smirnov normality test and by examining skewness
and kurtosis values, for the (C3, C4, CZ, F3, F4, FZ, P3, P4,
PZ, O1, O2, and OZ) electrodes. We found all MSE scores to
be normally distributed. To determine the complexity score of
the mu signal, we calculated the average sample entropy across
all scale factors. All analyses were performed on a subset of
electrodes reflecting neural activation in the sensorimotor cortex
(C3, C4, and CZ as a control), which have been shown to produce
the strongest mu signal, and frontal (F3, FZ, and F4), parietal
(P3, PZ, and P4), and occipital (O1, OZ, and O2) areas as control
regions. Repeated measures ANOVAs were carried out using the
“car” package (Fox et al., 2012). Collapsing across the original
experimental task conditions, we averaged MSE and mu power
across all warmth/competence conditions to collapse the data
into a single motor observation condition. We used Bonferroni
correction to control for multiple comparisons, for 12 electrode
comparisons the corrected p-value= 0.05/12= 0.004.

RESULTS

Mu Desynchronization
We confirmed that significant mu desynchronization had
occurred in our region of interest using a series of one
sample t-tests on desynchronization scores obtained from

electrodes C3 [t(44) = −5.209, p < 0.001, d = 0.759] and
C4 [t(44) = −3.117, p = 0.003, d = 0.465], and that no
significant alpha desynchronization occurred in the occipital
electrodes O1 [t(44) = −0.421, p = 0.676], Oz [t(44) = 0.043,
p = 0.966], or O2 [t(44) = 1.526, p = 0.134]. These findings
suggest that we indeed picked up mu desynchronization due
to MR and not changes in alpha related to attentional shifts.
Additionally, we performed a 3-way repeated measures ANOVA
with Mu/alpha desynchronization as the dependent variable,
and electrode centrality [frontal (F3, F4, Fz), central (C3, C4,
Cz), parietal (P3, P4, Pz), and occipital (O1, O2, and Oz)
electrodes], and electrode lateralization (left, central, right) as
the within-subject factors. We found a significant main effect of
lateralization [F(2, 88) = 40.733, p < 0.001], no effect of centrality
[F(3, 132) = 1.152, p = 0.331], and a significant interaction
effect between lateralization and centrality [F(6, 264) = 37.557,
p < 0.001]. Unpacking the interaction using simple effects, we
found significantly more desynchronization at the C3 electrode
compared to posterior P3, [F(1, 44) = 9.133, p = 0.004], Pz [F(1,
44) = 32.023, p < 0.001], P4, [F(1, 44) = 40.321, p < 0.001],
occipital, O1, [F(1, 44) = 42.602, p< 0.001], Oz, [F(1, 44) = 18.302,
p < 0.001], and O2, [F(1, 44) = 28.230, p < 0.001], and frontal,
Fz [F(1, 44) = 28.161, p < 0.001], F4 [F(1, 44) = 30.646,
p < 0.001], F3 [F(1, 44) = 28.336, p < 0.001] electrodes, further
confirming that mu-desynchronization was region specific. An
additional one sample t-test was performed to check for beta
desynchronization and no significant beta desynchronization was
found [t(44) = –1.101, p = 0.277]. In sum, these findings suggest
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that desynchronization of mu was primarily localized to the C3
electrode–our region of interest.

Multiscale Entropy (MSE) Analysis
To test for changes in entropy in the mu frequency band during
MR, we performed a paired t-test on our electrode of interest
(C3). We found average entropy to be higher during the task
(mean = 1.057, SD = 0.097) compared to rest [mean = 1.004,
SD = 0.129, t(44) = 3.524, p = 0.001, d = 0.525], indicating
increased complexity of the mu signal. To determine whether
entropy change during MR was frequency-band specific, we
performed a series of paired t-tests on the five frequency
bands (gamma = 30–60Hz, beta = 13–30Hz, alpha = 8–13Hz,
theta = 4–8Hz, and delta = 1–4Hz) between rest and task.
After Bonferroni correction, we found significant changes in
entropy for all frequency bands, as shown in Figure 3. Gamma
(baseline, m = 0.936, SD = 0.085; task, m = 0.846, SD = 0.106)
[t(44) = 5.892, p < 0.001, d = 0.878], beta (baseline, m = 1.352,
SD = 0.073; task, m = 1.311, SD = 0.073) [t(44) = 3.279,
p = 0.002, d = 0.489], theta (baseline, m = 1.124, SD = 0.051;
task, m= 1.029, SD= 0.071) [t(44) = 7.636, p< 0.001, d= 1.138],
and delta (baseline, m = 0.704, SD = 0.041; task, m = 0.626,
SD = 0.063) [t(44) = 8.307, p < 0.001, d = 1.238] all showed
a decrease in entropy for task compared to rest. These findings
indicate that complexity change has a unique increase in the
alpha band while all other frequencies showed a significant
decrease in complexity.

To determine whether MSE change in the alpha band during
MR was region specific, we performed a 3-way repeated-
measures ANOVA with average entropy as the dependent
variable, and condition (resting vs. task) and electrode (C3, C4,
Cz, F3, F4, Fz, P3, P4, Pz, O1, O2, and Oz) as the within-subject
factors. We found significant main effects for electrode [F(11,
484) = 10.981, p < 0.001], condition [F(1, 44) = 8.791, p = 0.005],

and an interaction between condition and electrode [F(11,
484)= 2.003, p= 0.026]. To unpack the interaction, we performed
pairwise comparisons for each electrode showing significant
increases in average entropy in the C3 [F(1, 44) = 12.468,
p < 0.001, η2p = 0.220] and C4 [F(1, 44) = 17.953, p < 0.001, η2p
= 0.290] electrodes. This finding suggests that changes in MSE
in the Mu frequency band between baseline and task only occur
in the bilateral sensorimotor area, with no changes to occipital
regions with alpha activity.

To determine whether entropy change in the alpha band
during MR was dependent on the SF, we performed a 3-
way repeated-measures ANOVA with entropy as the dependent
variable, and condition (resting vs. task) and SF (1 through
20) as the within-subject factors. A significant condition by SF
interaction effect was found [F(19, 798) = 15.397, p < 0.001].
This finding indicates that the sample entropy curves of each
condition presented a different slope as the scale factor increased.
Although the difference between conditions is not noticeable
for smaller scale factors, the curves for both conditions become
distinguishable for higher scale factors, representing greater
differences in sample entropy at higher scale factors.

To determine whether complexity of the mu signal predicts
MR, we used multiple linear regression models to examine the
relationship between MR and baseline entropy. Using general
linear hypothesis testing on mu desynchronization scores, the
best model fit was found for model 1 with a significant regression
equation [F(1, 43) = 11.73, p = 0.001, with an R2 of 0.214], as
shown in Table 1. The model indicates that resting state entropy
is significantly predictive ofMR such that higher baseline entropy
predicts less mu desynchronization, indicating less MR.

Efficiency Analysis
To explore the relationship between network efficiency and MR,
we performed a 3-way repeated measures ANOVA with global

FIGURE 3 | Complexity profiles of the raw signal and all frequency bands for baseline and task.
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efficiency as the dependent variable, and condition (resting vs.
observation), and frequency band (gamma, beta, alpha, theta,
delta) as the within-subject factors. We found a significant main
effect for frequency [F(4, 176) = 64.452, p < 0.001, η2p = 0.593]

and condition [F(1, 44) = 5.723, p = 0.021, η2p = 0.113] and
no significant interaction effect for condition and frequency
[F(4, 176) = 0.934, p = 0.446]. We decided to perform pairwise
comparisons for each frequency band to determine whether
global efficiency modification was frequency specific during MR.
The analysis revealed a significant decrease in efficiency in the
alpha [F(1, 44) = 15.509, p < 0.001, η2p = 0.260] frequency
band only. These findings indicate that global efficiency decreases
during action observation in the alpha network only. As shown in
Figure 4, alpha connectivity was reduced in frontal, central and
parietal areas.

To explore the relationship between the cluster coefficient
over the sensorimotor area and MR, we performed pairwise
comparisons for the alpha frequency band. A significant decrease
in the CC was shown in the alpha band [t(44) = 2.879, p = 0.006,
d= 0.439] during the task condition. These findings indicate that
the local efficiency over the C3 electrode decreases during action
observation in the mu frequency band.

TABLE 1 | Parameter estimates, approximate p-values, and associated

goodness-of-fit statistics for a series of models depicting the relationship between

mu desynchronization scores (as an index of motor resonance) and complexity of

the mu rhythm.

Predictor Model 1

ß(SE)

Model 2

ß(SE)

Model 3

ß(SE)

Intercept −77.88*** (19.29) −41.90 (29.16) −4.929 (7.597)

C3 resting complexity 65.17** (19.03)

C3 task complexity 27.95 (27.43)

Baseline Mu power −3.839 (3.708)

MODEL FIT STATISTICS

R2 0.214 0.024 0.024

RMSE 15.98 17.82 17.81

DF 43 43 43

***p < 0.001, **p < 0.01. RMSE, root mean square error; SE, standard error of the mean;

DF, degrees of freedom.

Finally, to determine whether there is a relationship between
complexity change, measured as the percent change in entropy
from baseline to task, and percent change in task efficiency in
the alpha band, we performed a simple correlation, finding that
there is a significant negative relationship between entropy and
global efficiency during the task [t(43) = −2.653, p = 0.011,
r = −0.375] suggesting that there may be a direct relationship
between efficiency change and complexity change.

DISCUSSION

The change in amplitude in the mu frequency band over the
sensorimotor area, resulting from the observation of object-
oriented actions, has been used as a marker of MR (Fox et al.,
2015). The intention of this study was to explore how nonlinear
brain dynamics change during MR, and how these changes are
related to the linear changes observed in the mu power spectrum.
We found that MSE measured from the C3 electrode over the
sensorimotor area during action observation, increases in the
mu frequency band only. At the same time, the MSE of the
raw signal and other frequency bands decreases in response
to action observation. These findings confirm our hypothesis
that a decrease in the mu power spectrum results in increased
complexity in that same frequency band, and the increase is
frequency specific. We did not predict decreased complexity
in the other frequency bands and this phenomenon should be
addressed in future studies. The respective decrease in global
efficiency in the alpha band during MR, may indicate greater
local information processing due to a release from so-called
alpha inhibition. The increased complexity in the mu band and
decreased global alpha efficiencymay underlie an increase to local
functional integration (Sporns et al., 2000). Further supporting
the link between increased complexity and MR, we found that
larger decreases inmu power are associated with greater increases
to the MSE of that signal.

Oscillations within specific frequency bands h ave been
considered to be associated with information processing (Başar
et al., 2001; Ghanbari et al., 2015), and our findings suggest that
information processing increases in the mu band during MR.
Interestingly, Ghanbari et al. (2015) found a significantly negative
relationship between change in alpha connectivity and change in

FIGURE 4 | Network changes: Resting alpha network connectivity (Left) Alpha network connectivity during action observation (Right). To be noted, the graphs

presented are from the 10th subject.
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MSE in patients with ASD, but no such relationship in the healthy
controls. We did not find any significant relationship between
complexity change and network efficiency change, confirming
this finding for healthy controls. It is important to note, that
the decrease in entropy within the other frequency bands does
not necessarily indicate a reduction in information processing
(McDonough and Nashiro, 2014), but instead may reflect that
the flow of information in the sensorimotor area being mainly
regulated by the alpha band during action observation.

Interestingly, the differences in the alpha complexity profiles
of rest and task condition appear to be mainly in the higher
time scales. Greater entropy at high scale factors are believed
to capture long-range temporal correlations (Bhattacharya et al.,
2005). Bhattacharya et al. (2005) found that neurons that showed
long-range correlations also showed statistically significantly
correlated firing, suggesting that the presence of long-range
correlations indicates a memory of the firing pattern. The
decrease in long-range correlations in the mu band reflects we
found, may therefore reflect greater non-random variability in
the underlying neuronal firing patterns, and therefore greater
complexity.

Can EEG Complexity Predict Motor
Resonance?
We expected MSE measured in the mu band over the
sensorimotor area to increase during action observation due to
less synchronous firing, reflecting an increase of the non-random
variability within the underlying patterns of activity. Our analyses
confirmed this hypothesis showing that a greater percent increase
in MSE from baseline to action observation in the mu band
was significantly associated with a greater decrease in the mu
power spectrum, indicating greater MR. We also hypothesized
that resting MSE measured in the mu band would predict
decreases in the mu power spectrum during action observation,
reflecting adaptability. Complexity may be a reflection of the
adaptability to a constantly changing environment (Hager et al.,
2016), and it may be that the level of MSE at rest predicts the
adaptability to information processing when viewing an action.
Specifically, we found that higher levels of resting MSE in the
mu band were predictive of less mu desynchronization during
action observation. This finding suggests that measuring signal
complexity in the mu band at rest may have the potential to serve
as a predictor of adaptability to a stimulus intended to trigger mu
desynchronization.

EEG Network Changes
The observed increase in MSE during action observation was
related to a decrease in global efficiency of the alpha network.
If the role of the alpha rhythm is indeed inhibitory (Klimesch

et al., 2007; Jensen and Mazaheri, 2010; Klimesch, 2012), this
finding may suggest that signal complexity measured in the mu
band in the sensorimotor area acts as a mediator of release
from alpha inhibition. We found decreased network efficiency
in the alpha band during MR, and no change in the gamma,
theta, and delta bands. The reduced global efficiency in the
alpha band suggests a reduction in the exchange of information
across the brain in that band. Klimesch (2012), posited that
the magnitude of alpha desynchronization reflects the degree of
cortical activation because lower alpha power releases inhibition,
and we found a stronger relationship between MSE and mu
desynchronization when global alpha efficiency was lower during
action observation. Since alpha oscillations are associated with
inhibiting neural networks (Klimesch et al., 2007; Jensen et al.,
2014), our finding of increased complexity in themu band during
mu desynchronization and decreased global alpha network
efficiency, may indicate decreased alpha inhibition during action
observation; an unattainable observation when looking at the
power spectrum alone.

CONCLUSIONS

Our current study suggests that the desynchronization of mu
over the sensorimotor area during the observation of an object-
oriented action results in previously unexplored changes to
nonlinear brain dynamics. The degree to which MSE measured
in the mu band increases during action observation, may be
related to individual differences in basal complexity leading to
a dampening of local alpha and global alpha inhibition. Our
findings suggest that increased complexity in the sensorimotor
area reflects an increase of local information capacity, thus
enabling successful processing of stimulus-related information,
by triggering a decrease in alpha inhibition. These findings
encourage future incorporation of measures of nonlinearity into
analysis of MR to improve understanding of how the brain
processes information.
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