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The major advantage of MEG/EEG over other neuroimaging methods is its high
temporal resolution. Examining the latency of well-studied components can provide
a window into the dynamics of cognitive operations beyond traditional response-time
(RT) measurements. While RTs reflect the cumulative duration of all time-consuming
cognitive operations involved in a task, component latencies can partition this time
into cognitively meaningful sub-steps. Surprisingly, most MEG/EEG studies neglect this
advantage and restrict analyses to component amplitudes without considering latencies.
The major reasons for this neglect might be that, first, the most easily accessible
latency measure (peak latency) is often unreliable and that, second, more complex
measures are difficult to conceive, implement, and parametrize. The present article
illustrates the key advantages and disadvantages of the three main types of latency-
measures (peak latency, onset latency, and percent-area latency), introduces a MATLAB
function that extracts all these measures and is compatible with common analysis tools,
discusses the most important parameter choices for different research questions and
components of interest, and demonstrates its use by various group analyses on one
planar gradiometer pair of the publicly available Wakeman and Henson (2015) data. The
introduced function can extract from group data not only single-subject latencies, but
also grand-average and jackknife latencies. Furthermore, it gives the choice between
different approaches to automatically set baselines and anchor points for latency
estimation, approaches that were partly developed by me and that capitalize on the
informational richness of MEG/EEG data. Although the function comes with a wide range
of customization parameters, the default parameters are set so that even beginners get
reasonable results. Graphical depictions of latency estimates, baselines, and anchor
points overlaid on individual averages further support learning, understanding and
trouble-shooting. Once extracted, latency estimates can be submitted to any analysis
also available for (averaged) RTs, including tests for mean differences, correlational
approaches and cognitive modeling.

Keywords: magnetoencephalography (MEG), electroencephalography (EEG), component latency, mental
chronometry, event-related potential/field (ERP/ERF)
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ESTIMATING THE TIMING OF
COGNITIVE OPERATIONS WITH
MEG/EEG LATENCY MEASURES

Remember the last time you picked apples at the grocery store?
First, you had to find the shelf with the apples, then decide on
the type of apple you want, then to attend to one of the apples
and estimate its quality, to store this information in working
memory and compare it to the alternative apples in the box;
finally you had to program and execute a reaching movement
etc. – this is, of course, a ridiculously coarse description of
the multitude of cognitive processes involved in picking apples.
Beyond any doubt, any cognitive task can be subdivided into
a virtually endless number of sub-processes that unfold over
time. The goal of cognitive science is to understand these sub-
processes and their interplay in detail (e.g., Meyer et al., 1988).
A major piece to this puzzle is the timing of sub-processes – for
example, if sub-process B emerges after process A, B cannot be
the cause of A.

The research tradition focusing on the timing of sub-processes
is termed mental chronometry (Posner, 1978). Using thoughtful
experimental designs, researchers were able to disentangle many
of the sub-processes giving rise to performance in cognitive
tasks (Meyer et al., 1988; Medina et al., 2015). Another,
complementary, approach is to estimate the timing of cognitive
processes via the timing of their (probable) neuronal correlates
(Meyer et al., 1988; Coles, 1989; for recent examples, see Hyun
et al., 2009; Töllner et al., 2012; Fortier-Gauthier et al., 2013;
Ruhnau et al., 2013; Liesefeld et al., 2014; Dell’Acqua et al., 2015;
Drisdelle et al., 2016; Grubert and Eimer, 2016; Liesefeld et al.,
2017; Ruhnau et al., 2017; Xie and Zhang, 2018). The validity of
this latter approach, of course, crucially depends on whether the
examined component is indeed a valid correlate of the cognitive
process of interest and the amount and quality of evidence
supporting this validity varies strongly between components and
interpretations of these components.

For example, the N2pc component of the event-related
potential is a negativity at posterior MEG/EEG recording sites
contralateral to an attended object. Whether it reflects the
allocation of attention toward this object, the suppression of
objects on the other side of the display or a general bias in
attentional resources are heavily discussed questions (Luck and
Hillyard, 1994a,b; Eimer, 1996; Hopf et al., 2000; Luck, 2012).
Nevertheless, most contestants in this discussion would agree
that the N2pc is somehow related to attentional dynamics and
interpreting the timing of the N2pc to reflect the timing of
attention shifts is therefore relatively save. N2pc timing can
thus be used to measure how long it takes until certain objects
draw spatial attention, which becomes particularly interesting
if a task induces multiple shifts of attention (Woodman and
Luck, 1999; Hickey et al., 2006; Grubert and Eimer, 2016;
Liesefeld et al., 2017). Relatedly, the time at which motor-cortex
activity contralateral to the responding hand rises from baseline
(lateralized readiness potential, LRP) is a quite uncontroversial
marker of the timing of motor preparation (e.g., Coles, 1989;
Osman et al., 1992; Miller et al., 1998; Töllner et al., 2012).

Analogous points can be made for many event-related
potential/event-related field (ERP/ERF) components (e.g.,
Verleger et al., 2005; Ruhnau et al., 2013, 2017; Liesefeld et al.,
2016; Xie and Zhang, 2018). For ease of reading, the present
article refers to ERP/ERFs throughout, but the latency-extraction
methods are applicable to any temporally resolved correlate of
cognitive processes, including other data like pupillary light
response (Mathôt and Van der Stigchel, 2015) and fNIRS
(Ferrari and Quaresima, 2012) and results of other preprocessing
techniques of MEG/EEG data like decomposition techniques
(independent component analysis, source localization, etc.),
time–frequency analysis (Cohen, 2014), machine learning, and
combinations thereof (Fahrenfort et al., 2017, 2018; Foster et al.,
2017).

THREE CLASSES OF LATENCY
MEASURES

Given the strong interest of cognitive psychologists in the
timing of cognitive events and the obvious advantages of taking
the timing of established neuronal markers into account, it is
surprising that most research has focused on the amplitude of
components instead of their latency. One reason for this issue
might be that the easiest and most widely used measure of
component latency – the time when a component reaches its
maximum (peak latency) – is easily corrupted by neuronal and
measurement noise (Luck, 2005; Kiesel et al., 2008). An algorithm
looking for the time point with the maximal value will often
pick a high-frequency noise deflection riding on top of the actual
component. This noise deflection may or may not coincide with
the true peak of the component; in fact, with broad components
it can be far off. This is the case in Figure 1, where the peak
latency of the later, blue, component is clearly an overestimation
of the component latency. This is less of a problem for amplitude
measures: once a reasonable temporal range of activity (e.g.,
±5 ms around peak) is taken into account, high-frequency noise
averages out. The quality of peak latency depends on the shape of
the component – peak detection in a more transient component
(with a peakier shape, like the earlier, red, component in Figure 1)
is less likely to be confounded by high-frequency noise. Later
components are typically broader and noise will therefore more
likely influence peak latency.

A measure that is robust to high-frequency noise is percent-
area latency. This is the time point when the component has
reached a predefined percentage of its area under the curve
(typically 50%). Finally, onset latency is the time when the
component has reached some pre-defined percentage of its
amplitude (e.g., 30%) and its reliability lies somewhere in between
percent-area and peak latency. Offset latency can be defined
correspondingly as the time where the component has fallen back
to the pre-defined percentage, and on- and offset latency will
be referred to collectively as percent-amplitude latency. Further
latency measures that were developed for specific components are
not treated here (e.g., Osman et al., 1992).

For percent-area latency the definition of area is not
necessarily straight forward: The simplest possibility is to take
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FIGURE 1 | Extraction of several latency measures (peak latency,
30%-amplitude [on-/offset] latency, and 50%-area latency) from a
representative individual average of the Wakeman and Henson (2015) data
(famous faces at the planar gradiometer pair MEG0712 + 713 of Subject 2).
An early, transient component is marked in red and a later, broad component
is marked in blue. The time windows in which the peaks were searched and
that confine the areas are indicated in light red and light blue; the component
areas are indicated in darker red and blue. Close inspection of the graphs
reveals that all latency measures incur the risk of being confounded by noise
or other components (but see below for some strategies to ameliorate these
potential confounds). Note that the ERF was baseline corrected.

all activity into account that goes into the component’s direction
within a predefined time window (as all activity going into
the opposite direction is ignored, this is more specifically also
referred to as ‘signed area’). According to this definition, area is
confined by the time window, the x-axis (usually determined by
the pre-stimulus baseline) and the ERP/ERF. To avoid missing
some of the activity in some components of some individuals
one would have to pick a rather broad window. This, however,
incurs the risk of including activity from adjacent components or
noise into the calculation and thus – depending on the data –
to introduce a bias to the estimate (Figure 2A). Furthermore,
components might (in contrast to the example in Figure 1) be
far detached from the pre-stimulus baseline (especially if they
occur rather late) and therefore much of the lower part of the
area defined in this way would usually not be considered part of
the component. Including this activity biases area latency toward
the mean of the area window. This happens when the ERP/ERF
drifts away from the pre-trial baseline into the same direction as
the component (see Figure 2B).

Liesefeld et al. (2016) developed several techniques to
make area latency (and on-/offset latency) more robust by
taking more information from the data into account: To
avoid contamination by low-amplitude activity and adjacent
components, one can raise/lower the baseline that constitutes
the lower/upper boundary of the area (e.g., to 30% of the
component amplitude; Figure 3B; see also Kiesel et al., 2008).
Another useful baseline is the activity at a certain percentage
in between the peak amplitude of the component of interest
and an immediately adjacent component (Figure 3C). For high
signal-to-noise ratios (as in the example in Figures 3A–C), these
different approaches yield only slightly different estimates of
component timing (Figure 3D). Adjusting the baseline will not
help avoiding contamination by adjacent components of similar

strength (Figure 3E); to include only the component of interest in
such cases, Liesefeld et al. (2016) confined the area by the points
where the component crosses the percentage-amplitude baseline
for the first time before and after the peak (on- and offsets;
Figure 3F). One problem with the latter approach can be that
high-frequency noise crosses the baseline before the ‘real’ offset
of the component. To avoid that such noise determines the end of
the area window, on- and offset amplitudes can be calculated as a
running average across several time points so that noise peaks are
averaged with surrounding activity (an appropriately designed
low-pass filter would also fulfill this function). This strongly
decreases the probability that on- or offsets are determined by
noise peaks (Figure 3F).

According to anecdotal evidence1, these techniques are robust
against noise and avoid confounds with adjacent components
while still taking into account the whole component, even if it
is subject to substantial interindividual variability. In particular,
the Liesefeld et al. (2016) method was developed to hedge against
low-frequency noise (by adapting the baseline), high-frequency
noise (by employing an area-latency approach and averaging
amplitudes across several sampling points) and confounds by
other components (by confining the area by on- and offsets). It
thus holds promise to yield stable estimates of component latency
even under difficult (i.e., noisy) conditions. The disadvantage of
this measure lies in the number of parameters the researcher has
to set; this will become more evident below where the parameters
are explained in detail (some strategies will be outlined to arrive
at reasonable decisions). Also note that the Liesefeld et al.
(2016) adaptations of area latency (and on-/offset latency) were
developed for the analysis of ERPs and that their suitability for
other types of data (e.g., fNIRS) and other analysis techniques
(e.g., time–frequency analysis) should be validated separately.

COMPLEMENTARY APPROACHES TO
HANDLE NOISE

Problems related to high- and low-frequency noise can often
be ameliorated by respective filtering before extraction of the
latency measure. However, filters (especially on segmented data)
might introduce artifacts and often not only decrease the noise
level, but also the signal (i.e., the component of interest; Luck,
2005). Furthermore, designing the right filter also comes with
many decisions on setting parameters (for an overview, see
Widmann et al., 2014) and requires considerable experience
with filter design. Thus, filter-free approaches might be preferred
by some (for insightful discussions on the pros and cons of
filtering and how potential pitfalls might be avoided (also
in the particular case of latency estimates), see Maess et al.,
2016a,b vs. Tanner et al., 2015, and VanRullen, 2011, or Tanner
et al., 2016, with responses from Rousselet, 2012, and Widmann
and Schröger, 2012). In general, it is of high importance

1A formal validation using surrogate data where the true timing of components
is known is beyond the scope of this tutorial introduction and must await
further dedicated research. Yet, versions of this technique have arguably provided
compelling results in Liesefeld et al. (2016, 2017) as well as in the examples
provided here.
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FIGURE 2 | Potential issues with percent-area latency. (A) The time window that worked well for Figure 1 includes part of the preceding component (individual
average of subject 8, unfamiliar faces); (B) the ERF is quite detached from baseline and thus, much of the area would typically not be considered part of the ERF
(individual average of subject 3, unfamiliar faces). Note that all ERFs were baseline corrected.

FIGURE 3 | Several approaches to determine 50%-area latency, differing in the definition of component area (dark blue). (A) All positive values within the
pre-determined interval (light blue) are added up; (B) only values larger than 30% of the peak amplitude are added up; (C) only values larger than 30% of the
peak-to-peak amplitude distance above the preceding negative peak are added up, (D) a comparison of approaches (A–C) shows that latency estimates differ only
little for ERFs with high signal-to-noise ratios (such as subject 15, unfamiliar faces, in A–D). (E) Same as (C) for another, noisier individual average (subject 8,
unfamiliar faces); (F) same as (E) but with the area’s temporal boundaries set to the on- and offset of the component instead of the pre-defined analysis window.
Note that toward the end of the component area there are some noise peaks crossing the 30% baseline (marked in green). These are ignored for the calculation of
component offset (and therefore do not set the temporal boundaries of the area) by averaging across adjacent time points as explained in the text. Note that all ERFs
were baseline corrected.

to carefully extract the component of interest (i.e., improve
the signal-to-noise ratio) without distorting it by applying
adequate pre-processing steps – such as baseline corrections,
averaging, calculating difference waves (between conditions or
electrodes), time–frequency decomposition, decomposition into
spatio-(spectro-)temporal clusters and many more – before
attempting to estimate its timing. What is adequate depends on
various characteristics of the component of interest, quality of the
data, and state of the art regarding the targeted component and

cognitive function and is therefore not detailed here (see Luck,
2005, 2014, and Cohen, 2014 for excellent general introductions;
see many other articles in this Special Issue for step-by-step
guides on various techniques).

Jackknifing is another approach to handle noise (Miller et al.,
1998; Ulrich and Miller, 2001; Stahl and Gibbons, 2004; Brisson
and Jolicoeur, 2008; Kiesel et al., 2008; Smulders, 2010): Even
though individual averages are likely contaminated by high- and
low-frequency noise, the grand average across all subjects is less
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so. Thus, the best estimate of a component’s latency would be
based on the grand average ERP/ERF. However, getting rid of
all interindividual variability also means that no statistical tests
can be employed to test for latency differences, e.g., between
conditions. Jackknifing provides the best of both worlds: averages
are created across all but one of the n individual data sets with
each data set being left out once. Latencies are then extracted
from each of the n leave-one-out grand averages. Given that
much more data contributes to each of these averages (n –
1 times the data of individual averages, typically), any latency
estimate is much less influenced by noise. Still the variance
between the leave-one-out averages provides some indication
of the error variance (interindividual variance in latencies) and
(appropriately adjusted) statistical tests can be performed (Miller
et al., 1998; Ulrich and Miller, 2001).

An obvious disadvantage of jackknifing is that there are no
individual estimates of component timing and that appropriate
tests must be developed for each statistical test (e.g., Miller
et al., 1998; Ulrich and Miller, 2001; Stahl and Gibbons, 2004),
rendering the technique rather inflexible. This problem can be
resolved using a technique to restore such individual estimates
from jackknife estimates (Brisson and Jolicoeur, 2008; Smulders,
2010).

latency.m: A MATLAB FUNCTION FOR
LATENCY EXTRACTION

The following, will demonstrate how all these latency estimates
(and versions thereof) are extracted from group data, using
the MATLAB (The Mathworks, Natick, MA, United States)
function latency.m (the most current version is available here2),
so that they can be submitted to statistical tests.3 This function
can be used with output from common MATLAB-based
analysis toolboxes (EEGlab, Delorme and Makeig, 2004; Fieldtrip,
Oostenveld et al., 2011) or data converted to MATLAB (e.g.,
from BrainVision Analyzer, BrainProducts, Munich, Germany).
It requires the Signal Processing Toolbox (The Mathworks,
Natick, MA, United States). All of the following examples will
be done on publicly available MEG data collected by Wakeman
and Henson (2015) as preprocessed by Robert Oostenveld4. In
particular, the examples make use the event-related averages in
timelock_x_cmb.mat (where x stands for faces, famous, scrambled,
and unfamiliar). All code needed to generate raw versions of the
figures shown above and the example analyses described below
from the Wakeman-and-Henson data is deposited at figshare5.
Note that the purpose of this article is not to introduce or validate
any new method, but to provide a tutorial example of how to

2https://github.com/Liesefeld/latency
3See the ERP Measurement Tool (available from https://github.com/lucklab/
erplab/wiki/ERP-Measurement-Tool) for an alternative that provides a user
interface. The main differences to the present function are that it is integrated into
a particular toolbox (ERPLAB) and that the modifications of on-/offset latency and
area latency suggested by Liesefeld et al. (2016) as well as jackknife estimates are
not implemented.
4https://github.com/robertoostenveld/Wakeman-and-Henson-2015
5https://figshare.com/projects/MEG_EEG_latency/39068

extract latency estimates for running group analyses from already
preprocessed data, including statistical tests of latency differences
between conditions.

Basic Input and Output
The following describes the various input parameters (see
Table 1 for a summary) and resulting outputs of latency.m.
A list of all parameters with a short description, including
the default values, as well as all possible outputs is contained
in the MATLAB function and displayed using help latency.
The function expects two input arguments: the individual,
preprocessed averages (avgs) and a configuration structure6 (cfg;
similar to Fieldtrip, Oostenveld et al., 2011). So, a valid call
to the function is res = latency(cfg, avgs). The input avgs is
a Subjects × Channels × Time matrix with the individual
averages or a structure that contains such a matrix as the fields
‘data’ (EEGlab) or ‘individual’ (Fieldtrip); one can also specify
the name of the data field via cfg.datafield. The function also
recognizes a cell array of structures (one structure for each
subject) with the data stored in the field ‘avg’ (such as those
produced by the Oostenveld script). The only parameter that
must be specified is the sign of the component by setting
cfg.sign to either ‘1’ or ‘−1’ (or to ‘pos’/‘neg,’ alternatively). One
should additionally indicate which type of latency estimate to
extract, for example, cfg.extract = ‘peakLat’. With these settings,
latency.m returns the latency of the local maximum in the
indicated direction (peak latency) with data averaged across
all channels. Usually, one would like to restrict the temporal
search space by setting cfg.peakWin according to the temporal
extent of the component (with some leeway to account for
individual differences). Channels of interest are selected via
cfg.chans. Indicate either multiple channels if an unweighted
average across these channels is desired (which is less likely
for ERF than for ERP analyses) or only one channel (that
may contain a weighted combination of original channels,
e.g., the result of a decomposition). To include only specific
subjects, select them via cfg.subs. Time points, channels, and
subjects are by default addressed by their positions in the matrix
(indices); cfg.peakWin expects start and end points, cfg.chans and
cfg.subs expect all indices (to allow for choosing non-adjacent
channels and subjects, which would not usually make sense for
cfg.peakWin). Alternatively, subjects can be addressed by their
designation in the experiment if, additionally, a list of subject
numbers is provided as cfg.subNum (array of integers). The same
is possible for channels by specifying cfg.chanNames (cell array
of strings) and times by specifying cfg.times (array of numbers).

6A structure is a MATLAB data type that groups data containers called ‘fields’
(and potentially subfields), each of which can hold any type of data (see
MATLAB/Language Fundamentals/Data Types/Structures in the online MATLAB
documentation). This approach is preferable to differentiating parameters by their
input order, because it is less prone to confusion or omission errors (switching
the position of two parameters or accidentally omitting one parameter so that all
following parameters are interpreted incorrectly by the function). One (among
others) advantage the configuration structure has in comparison to the key+ value
input method [e.g., latency(avgs,‘sign,’1)] is its re-usability in several calls to
the function, e.g., for applying the exact same parameters to several datasets
(conditions) or changing single parameter values per call such as the analyzed
(cluster of) channel(s) in cfg.chans (see Table 1).
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TABLE 1 | Fields of the configuration structure (cfg). See the text for details.

Name Description Options Default

extract (List of) measures to extract ‘all’ or any combination of the following: ‘mean,’
‘peakLat,’ ‘onset,’ ‘offset,’ ‘width,’ ‘areaLat,’
‘peakAmp,’ ‘peak2peak,’ ‘percAmp,’ ‘area’

‘all’

aggregate How to combine the data ‘individual,’ ‘GA,’ ‘jackMiller,’ ‘jackSmulders’ ‘individual’

fig To plot ERPs and latency estimates True, false, 1, 0 False

subs Subjects to include into the analysis Indices/subject numbers or logical filter All

subNum List of subject numbers Subject numbers in correct order: vector of
length(avgs,1)

chans Channels to average across Indices or channel names All

chanName List of channel names Channel names (strings) in correct order: vector of
length(avgs,2)

peakWin Search window for detecting the peak Start and end of search interval: vector with two
elements

Whole range

meanTime Window for extracting mean amplitude Start and end of averaging interval: vector with two
elements

peakWin

times Information on the time scale of the data Individual time points: vector of length(avgs,3);
alternatively, start, end and sampling rate: vector with
three elements

peakWidth Determines averaging window for peak amplitude Time around peak (±peakWidth) Five sampling points/∼5 ms

cWinStart Point from where the counter-peak is searched ‘peak’ or ‘peakWin’ ‘peakWin’

cWinWidth Width of the counter-peak search interval Time before (negative values) or after (positive values)
cWinStart: single number

cWin Search interval for counterpeak (alternative to
cWinStart/Width)

Start and end of search interval: vector with two
elements

percArea Percentage of the total area for percent-area latency Value in between 0 and 1 0.5

percAmp Percentage of the amplitude (peak-to-peak, if a counter
peak is used)

Value in between 0 and 1 0.5

areaWin Determines temporal boundaries for area calculation ‘peakWin,’ ‘ampLat,’ ‘fullRange’; alternatively, start and
end of area: vector with two elements

‘peakWin’

areaBase Determines one area boundary in amplitude space ‘zero’ (x-axis; typically pre-stimulus baseline) or
‘percAmp’

‘zero’

ampLatWin Determines where on- and offsets are searched ‘fullRange,’ ‘peakWin,’ alternatively, start and end of
search interval: vector with two elements

‘fullRange’

cBound Determines whether counter peak is one border of the
search interval for on- and offsets

True, false, 1, 0 True

warnings Determines whether warnings are shown True, false, 1, 0 True

Notably, if cfg.times is specified, all parameters specifying times
are interpreted as and latency estimate(s) are returned in the units
of cfg.times (ms or s) instead of sampling points. cfg.subNum,
cfg.chanNames and cfg.times must be the same order as in the
Subjects× Channels× Time data matrix.

If cfg.extract is not set, latency.m will extract everything it
can, using default parameters where applicable. It is, however,
recommended to choose one (or a few) latency measure(s)
a priori by setting cfg.extract. Use tilted brackets to submit a
list of desired output measures, separated by commas. Possible
latency measures are peak latency (‘peakLat’), percent-amplitude
latency before (‘onset’) or after (‘offset’) the peak, and percent-
area latency (‘areaLat’). In addition it is possible to extract
other measures that are created along the way or might be
useful for other analyses or quality checks, namely mean
amplitude (‘mean’), peak amplitude (‘peakAmp’), total area under
the curve (‘area’), width of the component (offset – onset;
‘width’), difference in peak amplitude between the component
of interest and an adjacent component of opposite polarity

(‘peak2peak’), and the new baseline for the area boundary
(‘baseline’). ‘counterAmp’ and ‘counterLat’ are the amplitude and
the latency of the preceding (cfg.cWinWidth < 0) or following
(cfg.cWinWidth > 0) adjacent peak (referred to as counter peak
here). Furthermore, there are several Booleans that indicate for
each subject whether a local peak was found (‘foundLocal’)7,
whether on- and offsets were found (‘foundOn,’ ‘foundOff’) and
whether a point dividing the area into the desired percentage
(area latency) was found (‘foundArea’). When a single output
measure is requested, the output res is a vector with one value for
each participant, otherwise res is a structure with the respective
fields for each output measure. An additional output can be
requested (cfgNew), which contains all information on the final
settings, including parameters that were not set at call and were

7Usually a local peak (the sample with the highest [or lowest] value that has samples
with smaller [or higher] values on both sides) is returned, a global peak (one border
of the analysis window that contains the highest [or lowest] value) is only returned
in the rare cases that no local peak is found. See the section “Troubleshooting”
below.
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filled with default values, and the field ann, which contains some
in depth information on the extracted measures that might be
useful for understanding and reporting the results.

Peak latency (peakLat) is extracted from the desired
spatiotemporal analysis window without any additional
parameters. Percent-amplitude latency (onset and offset) and
percent-area latency (areaLat) require some parametrizing,
which will be detailed right away.

Percent-Amplitude Latency (On- and
Offset)
Percent-amplitude latency is the time point at which the
component has reached a certain percentage of its peak amplitude
(typically 50%). This percentage is set via cfg.percAmp. The point
before the peak, where activity has reached this threshold is called
onset and the point after the peak can analogously be referred
to as offset. Peak amplitude (peakAmp; which is calculated as an
intermediate step) should be an average across several sampling
points to avoid contamination by high-frequency noise. Thus,
a second parameter that determines the width of this averaging
window is necessary. cfg.peakWidth is the number of sampling
points to the left and right of the peak latency that is averaged
and defaults to 5 sampling points or ∼5 ms (i.e., 11 sampling
points or ∼11 ms are averaged). The same number of sampling
points is also averaged for determining the amplitude at on-
and offset (which is used for the decision whether the desired
percentage of the amplitude has been reached), so that percent-
amplitude latency is not contaminated by high-frequency noise
(see Figure 3F). If no averaging across sampling points is desired,
(e.g., because an appropriately designed low-pass filtered has
already removed high-frequency noise), set cfg.peakWidth = 0.

As discussed above (and displayed in Figure 3) later
components often do not cross the pre-stimulus baseline due
to slow-wave activity or low-frequency noise, thus sometimes
introducing a bias toward earlier time points in onset latency
(e.g., Figure 3A). Liesefeld et al. (2016) devised a way to
handle these drifts. Instead of defining percent-amplitude
latency with respect to the pre-stimulus baseline, they defined
it with respect to a certain percentage of the peak-to-peak
amplitude difference between the component of interest and
an adjacent component. This can be done in latency.m by
setting cfg.cWinWidth. This parameter indicates how much
before (negative values) or after (positive values) the search-
window border (cfg.cWinStart = ‘peakWin’; default) or the
peak of the component of interest (cfg.cWinStart = ‘peak’) the
algorithm should look for the peak of the adjacent component.
If cfg.cWinWidth is set, cfg.percAmp no longer refers to the
percentage of component amplitude relative to the pre-stimulus
baseline, but to the percentage of the peak-to-peak amplitude
(e.g., cfg.percAmp = 0.5, will result in the time where the
amplitude is in between that of the two peaks; values > 0.5 will
result in times closer to the peak of interest).

cfg.ampLatBound is used to control the temporal extent in
which the algorithm searches for percent-amplitude latencies.
cfg.ampLatBound = ‘peakWin’ restricts this search to the search
interval used to determine the component’s peak; ‘fullRange’

(default) does not restrict the search range. If cfg.cWinWidth
is set and cfg.cBound is true (default), the peak of the other
component determines one temporal boundary. Alternatively,
cfg.ampLatBound can be set by hand by providing start and end
times.

Percent-Area Latency
Percent-area latency is the time point where a component has
reached a certain percentage of its area (set via cfg.percArea;
typically 50%). As discussed above, the crux is the definition
of area. In the simplest (default) case, the area is confined in
amplitude space by the ERP/ERF and the pre-stimulus baseline
(cfg.areaBase = ‘zero’). If cfg.areaBase is set to ‘percAmp’ the
desired percentage of the peak amplitude (cfg.percAmp) serves
as a boundary in amplitude space; in a way, the baseline is
moved toward the peak of the component (thus decreasing the
area; see also Kiesel et al., 2008). In time, the area is confined
by the indicated time window (cfg.areaWin, which defaults to
cfg.peakWin, but can also be set by hand) or by the on- and offsets
(cfg.areaWin = ‘ampLat’).

Extracting Jackknife and Grand-Average
Latencies
The default output of latency.m is one latency estimate per
subject. The function can also return jackknife estimates for
any output measure by setting cfg.aggregation = ‘jackMiller.’ For
sample size n, the output will contain n jackknife estimates plus
the respective grand average estimate as the last entry. These
must then be analyzed with appropriate statistical tests (Miller
et al., 1998; Ulrich and Miller, 2001; Stahl and Gibbons, 2004).
For paired t-tests, the figshare folder (see footnote 5) contains
a small function called jackT.m implementing the Miller et al.
(1998) formula. Alternatively, the method of Smulders (2010) can
be used by setting cfg.aggregation = ‘jackSmulders.’ If latencies of
the grand average are needed, set cfg.aggregation = ‘GA.’

DECIDING ON PARAMETER SETTINGS

There is quite some flexibility in choosing parameters, incurring
the risk of arriving at sub-optimal solutions or bogus effects
(Simmons et al., 2011; Luck and Gaspelin, 2017). However,
(a) under high signal-to-noise conditions most (reasonable)
settings should typically converge to the same conclusions (see
Figure 3D), (b) the validity of individual latency estimates can
be easily verified using an in-built graphical representation (set
cfg.fig = true), and (c) the descriptions of the various latency
measures above and the further advice and the examples below
point to quite a few principles that can be used to considerably
restrict the parameter space a priori. Furthermore, using on- and
offsets to constrain the area (as suggested by Liesefeld et al., 2016)
will make percent-area-latency estimates quite robust against the
choice of the analysis window (see Luck and Gaspelin, 2017,
for advantages of analysis-window independency); that is, the
increase in parameters fed into the function is likely (more than)
balanced by a reduction in the arbitrariness of the choice of
analysis window. In general, to avoid analyst-induced biases,
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suitable parameters should be identified based on data averaged
across conditions where the analyst is blind to any condition
differences (Luck and Gaspelin, 2017).

Choice of Latency Estimates and
Parameter Settings
Choosing the appropriate latency measure and deciding on
parameter settings is a matter of expertise and depends on the
data set and research question at hand. Nevertheless, a few
general recommendations apply to ERP/ERFs: Due to its low
reliability, peak latency should usually be avoided. It can give
reasonable results for very transient components under high
signal-to-noise-ratio conditions, though. Even then applying
a relatively strict low-pass filter (considerably attenuating all
frequencies above 30 Hz) before the peak detection is typically
necessary (see also Luck, 2005). Percent-amplitude latency should
be used when the hypotheses relate to the onset (or offset)
of the component. A fairly low percentage of the component
amplitude, e.g., 10%, would reflect the true on- or offset of the
component. On the downside, a low percentage makes percent-
amplitude latency prone to noise so that higher percentages are
often advisable (e.g., 30%). Also note that onset latency is always
biased toward the earliest component onsets (across trials and, for
jackknife or grand average latencies, additionally across subjects),
because these determine when the individual averages deviate
from the baseline. Likewise the offset is biased by the latest
component offsets. Furthermore, with slowly rising components
and moderate levels of high-frequency noise, onset latency will
be relatively unreliable. In most cases, 50%-area amplitude is
the best choice, because it provides a reliable estimate of the
median component latency (Luck, 2005). Lower or higher area
percentages can be used to capture more the on- or offset of the
component.

If the component of interest occurs relatively late and
there is contamination with low-frequency noise or slow-
wave activity, the baseline adaptation of Liesefeld et al. (2016)
should be used. In most cases, using the adjacent peak as
an anchor point and bounding the area by on- and offsets
as suggested by Liesefeld et al. (2016), should improve the
results of percent-amplitude latency and percent-area latency,
because it increases the robustness against slow-wave activity
and low-frequency noise and it reduces confounds with the
area of other (close) components (see Figure 3). Furthermore,
as it allows using more generous windows, interindividual
differences in component timing are less likely to push (part
of) the component out of the window for some subjects.
Where to search for the adjacent peak (i.e., the specific values
for cfg.cWinStart and cfg.cWinWidth) heavily depends on the
observed data pattern and can likely not be fully determined
a priori, but must be based on an inspection of the grand average
across conditions (see previous section). Baseline adaptation and
adjacent-peak anchor are typically unnecessary if the component
of interest is well isolated during preprocessing (e.g., when
the contaminating slow-wave activity is subtracted out to a
large extent by calculating differences between conditions or
hemispheres).

Troubleshooting
A good way to get used to the function is to set cfg.sign according
to the direction of the component, run [res, cfgNew] = latency(cfg,
avgs), read the warning messages and inspect the contents of
cfgNew, which will tell you about the default parameters. This
should already provide quite some clues on which parameters
one would like to change. Warnings can be turned off by setting
cfg.warnings = false.

One common problem is that no local peak is found and
the algorithm returns one of the boundaries of the search
interval (cfg.peakWin) instead. If this happens too often (for
more than half the participants), the algorithm returns a warning.
This typically indicates that the search interval is set too
narrowly and, thus, increasing cfg.peakWin often helps. The
output res.foundLocal indicates for each subject whether a local
peak was found or not and, thus, helps to identify anomalous
individual averages (e.g., not showing the component of interest
or containing a high level of low-frequency noise).

Percent-amplitude latency is corrupted when the ERP/ERF
does not cross the baseline before or after the peak. This is the
case when the indicated percentage of the component amplitude
is already reached before the onset of the search interval or
activity does not fall sufficiently again after the component’s
peak. The algorithm than sets the on- or offset estimate to the
respective search boundary (determined by cfg.ampLatWin). If
this happens too often (for more than half of the participants),
the algorithm returns a warning. One reason might be that a
slow-wave component overlays the component of interest. In this
case, using the adjacent peak as an anchor point and changing
the baseline as described above holds promise to considerably
improve the results. If this occurs for only a few participants,
their individual averages might be too noisy and should be
rejected. Inspect ‘res.foundOn’ and ‘res.foundOff’ to identify such
corrupted data sets.

A more general troubleshooting strategy is to set cfg.fig = true.
This will produce a figure for each subject with a graphical
depiction of the various extracted measures, baselines, and
anchor points. Visual inspection of these figures will often help to
identify issues with the parameters or individual averages. These
figures will also help understanding what exactly the function is
doing, so that inspecting them is advisable whenever there is any
uncertainty regarding the latency-extraction procedure.

EXAMPLE ANALYSIS OF GROUP DATA

Example Data and Parameter Settings
As a practical example, the usage of latency.m will be
demonstrated on the planar gradiometer pair MEG0712 + 713
of the freely available MEG data set of Wakeman and Henson
(2015) as preprocessed by Robert Oostenveld (see footnote 4),
which was already used in the examples above (all code and the
preprocessed data are at figshare; see footnote 5). These data
were collected from observers looking at scrambled or intact
faces, whereby faces were either famous persons or unfamiliar
to the observer (see Wakeman and Henson, 2015, for details).
Inspection of the grand average across all individuals and
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FIGURE 4 | Baseline-corrected grand averages at the planar gradiometer pair MEG0712 + 713 of the Wakeman and Henson (2015) data. (A) Average across all
conditions with peak-search windows for the early (red) and the late component (blue), and (B) the conditional averages with the extracted latency estimates.

conditions (Figure 4A) indicates that there are two prominent
components: an early transient positivity and a later broad
positivity. Inspection of Figure 4B indicates that the peak and
median latency, but not the onset, of the latter component
differs for intact and scrambled faces and that this effect is
absent in the earlier component. For illustrative purposes, let us
assume that these are well-characterized components, that pre-
processing was adequate for extracting them, and that this is
the predicted pattern of results, so that we can test them for
significance using latency.m. For reasons outlined above, this
example uses 50%-area latency with area bound by the on-
and offset of the component (cfg.areaWin = ‘ampLat’), which
are defined as 30% of the peak amplitude (cfg.percAmp = 0.3)
relative to the adjacent negative peak. With regard to the shape
of the overall ERF displayed in Figure 4A and in order to
definitely include the peak of the component, but avoid the
peak of the respective other component, the algorithm is set to
search in the time windows 140–240 ms (cfg.peakWin = [0.14,
0.24]) and 400–1,000 ms (cfg.peakWin = [0.4, 1]) for the peak
of the early and late component, respectively. The adjacent
peak is searched starting 200 ms before the search window
for the late component (cfg.cWinWidth = −0.2) and until
100 ms after the search window for the early component
(cfg.cWinWidth = 0.1).

Classical t-Tests
Indeed, confirming the initial observation, the 50%-area latency
of the late component differed between intact and scrambled
faces (mean difference, d = 90.2 ms), t(15) = 3.39, p = 0.004,
but not between famous and unfamiliar faces, t(15) = 1.24,
p = 0.234, d = 13.1 ms. Notably, this was not due to a
difference in onset latency, t(15) = 1.20, p = 0.249, d = 36.7 ms,
and t(15) = 0.50, p = 0.627, d = 6.7 ms, respectively. An
analysis of peak latencies confirmed the area-latency results,
t(15) = 3.51, p = 0.003, d = 125.8 ms, and t(15) = 0.15, p = 0.885,
d = 3.8 ms, respectively. An analysis of the earlier component’s
area latency with the same parameters (except for the time
windows) showed no significant differences in latency between
intact and scrambled faces, t(15) = 1.58, p = 0.135, d = 11.3 ms,
or between famous and unfamiliar faces, t(15) = 0.35, p = 0.734,
d = 2.0 ms.

Jackknife t-Tests
Surprisingly, jackknife analyses of the late component’s peak
latency did not confirm the pattern, t(15) = 1.06, p = 0.306,
d = 77.3 ms, and t(15) = 0.01, p = 0.991, d = 0.9 ms, respectively,
for the Miller et al. (1998) method, and t(15) = 0.94, p = 0.364,
d = 68.2 ms, and t(15) = 0.06, p = 0.956, d = 4.4 ms, respectively,
for the Smulders (2010) method. Without overstraining this
serendipitous finding here, this might indicate that under
certain conditions (probably with high signal-to-noise ratios and
components without a clear singular peak, see Figure 4) jackknife
estimates of peak latency can be inferior for detecting existing
differences compared to individual peak-latency estimates. Using
jackknife estimates of 50%-area latency, recovered the pattern,
t(15) = 3.43, p = 0.004, d = 79.1 ms, and t(15) = 0.55,
p = 0.591, d = 16.4 ms, for intact vs. scrambled and famous vs.
unfamiliar faces, respectively, for the Miller et al. (1998) method,
and t(15) = 3.36, p = 0.004, d = 77.6 ms, and t(15) = 0.48,
p = 0.639, d = 14.3 ms, respectively, for the Smulders (2010)
method.

Reliability and Interrelation of Latency
Measures
These analyses indicate that latency does not differ depending
on whether the face is famous or unfamiliar. This opens
the interesting possibility to use the correlation between
the late component’s latencies for famous and unfamiliar
faces as an index of the reliability of the various measures.
This estimate of reliability was highest for area latency,
r = 0.94, p < 0.001, second for onset latency, r = 0.86,
p < 0.001, and worst (although still acceptable) for peak
latency, r = 0.70, p = 0.002. Furthermore, the inter-correlations
of the various measures of the late component’s latency
might serve to gauge in how far these measures capture
the same aspects of the underlying process. Area latency
correlated highly with peak latency, r = 0.84 (corrected
for attenuation, rcorr = 1), p < 0.001, and weaker with
onset latency, r = 0.50 (rcorr = 0.56), p = 0.048, but the
correlation between onset and peak latency did not reach
significance, r = 0.21 (rcorr = 0.27), p = 0.436. As makes
intuitive sense, area latency and peak latency pick up the same
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variance, which is different though somewhat related to onset
latency.

CONCLUDING REMARKS

The present article illustrated the importance of component-
latency measures for cognitive theories, introduced the three
most common latency measures and variants thereof and
discussed their strength and weaknesses. Furthermore, it
described a function that can extract all these measures from
group data (latency.m) and applied this function to an MEG data
set (Wakeman and Henson, 2015). An accompanying figshare
folder (see footnote 5) contains the version of latency.m used
here, a function for performing paired t-tests on jackknife data,
and a MATLAB script and all dependencies for reproducing raw

versions of all figures as well as all results of the example analyses.
The most current version of latency.m can be downloaded from
https://github.com/Liesefeld/latency.
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