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Spiking neural networks (SNNs) are inspired by information processing in biology, where

sparse and asynchronous binary signals are communicated and processed in amassively

parallel fashion. SNNs on neuromorphic hardware exhibit favorable properties such

as low power consumption, fast inference, and event-driven information processing.

This makes them interesting candidates for the efficient implementation of deep neural

networks, the method of choice for many machine learning tasks. In this review, we

address the opportunities that deep spiking networks offer and investigate in detail the

challenges associated with training SNNs in a way that makes them competitive with

conventional deep learning, but simultaneously allows for efficient mapping to hardware.

A wide range of training methods for SNNs is presented, ranging from the conversion of

conventional deep networks into SNNs, constrained training before conversion, spiking

variants of backpropagation, and biologically motivated variants of STDP. The goal of

our review is to define a categorization of SNN training methods, and summarize their

advantages and drawbacks. We further discuss relationships between SNNs and binary

networks, which are becoming popular for efficient digital hardware implementation.

Neuromorphic hardware platforms have great potential to enable deep spiking networks

in real-world applications. We compare the suitability of various neuromorphic systems

that have been developed over the past years, and investigate potential use cases.

Neuromorphic approaches and conventional machine learning should not be considered

simply two solutions to the same classes of problems, instead it is possible to identify and

exploit their task-specific advantages. Deep SNNs offer great opportunities to work with

new types of event-based sensors, exploit temporal codes and local on-chip learning,

and we have so far just scratched the surface of realizing these advantages in practical

applications.

Keywords: neural networks, spiking neurons, neuromorphic engineering, event-based computing, deep learning,

binary networks

1. INTRODUCTION

Training and inference with deep neural networks (DNNs), commonly known as deep learning
(LeCun et al., 2015; Schmidhuber, 2015; Goodfellow et al., 2016), has contributed to many of
the spectacular success stories of artificial intelligence (AI) in recent years (Goodfellow et al.,
2014; Amodei et al., 2016; He et al., 2016; Silver et al., 2016). Models of cortical hierarchies
from neuroscience have strongly inspired the architectural principles behind DNNs (Fukushima,
1988; Riesenhuber and Poggio, 1999), but at the implementation level, only marginal similarities
between brain-like computation and analog neural networks (ANNs) as used in AI applications
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can be recognized. One obvious difference is that neurons
in ANNs are mostly non-linear but continuous function
approximators that operate on a common clock cycle, whereas
biological neurons compute with asynchronous spikes that
signal the occurrence of some characteristic event by digital and
temporally precise action potentials. In recent years, researchers
from the domains of machine learning, computational
neuroscience, neuromorphic engineering, and embedded
systems design have tried to bridge the gap between the big
success of DNNs in AI applications and the promise of spiking
neural networks (SNNs) (Maass, 1997; Ponulak and Kasinski,
2011; Grüning and Bohte, 2014). This promise of SNNs results
from their favorable properties exhibited in real neural circuits
like brains, such as analog computation, low power consumption,
fast inference, event-driven processing, online learning, and
massive parallelism. Furthermore, event-based vision and audio
sensors (Lichtsteiner et al., 2008; Posch et al., 2014; Liu et al.,
2015) have reached an increasingly mature level, and deep SNNs
are one of the most promising concepts for processing such
inputs efficiently (Tavanaei et al., 2018). This line of research
has coincided with an increased interest in efficient hardware
implementations for conventional DNNs, since the massive
hunger for computational resources has turned out to be a
major obstacle as deep learning makes its way toward real-world
applications such as automated driving, robotics, or the internet
of things (IoT). Concepts such as so-called binary networks,
which allow in-memory computations, share a binary and
potentially sparse communication scheme with SNNs. However,
such networks are typically executed in a synchronized manner,
which is different from the event-driven (asynchronous) mode
of execution in SNNs. Consequently, a fruitful interdisciplinary
exchange of ideas to build neuromorphic systems for these
concepts is taking place.

In this review, we provide an overview of several key ideas
behind deep SNNs, and discuss challenges and limitations
of SNNs compared to their ANN counterparts, as well as
opportunities for future applications, in particular in conjunction
with novel computing models and hardware currently being
developed. This article is structured as follows: Section 2
discusses the preparation of input and output in order to perform
inference with deep SNNs. In section 3, we give an overview
of how deep SNNs can be trained, how this is connected to
training conventional DNNs, and how to possibly learn on
spike level. Section 4 discusses efficient implementations of
deep SNNs on neuromorphic hardware and their limitations, as
well as highlights similarities to hardware-efficient solutions for
conventional DNNs. In section 5, we present possible use cases
of deep SNNs, and argue that their strengths are complementary
to those of conventional DNNs. Finally, section 6 provides
a discussion of the state-of-the-art, and gives an outlook on
promising research directions.

1.1. What Is a Deep Spiking Neural
Network?
Neural networks are typically called deep in case they have at
least two hidden layers computing non-linear transformations

of the input. In this article, we consider only feed-forward
networks, which compute a mapping from input to output (for
an example see Figure 1A), and do not address recurrent neural
networks. Our definition includes multi-layer fully-connected
networks, convolutional neural networks (CNNs; LeCun and
Bengio, 1995), deep belief networks (DBNs; Hinton et al., 2006),
deep autoencoders, and many more.

Spiking neural networks were originally studied as models of
biological information processing (Gerstner and Kistler, 2002), in
which neurons exchange information via spikes (for an example,
see Figure 1D). It is assumed that all spikes are stereotypical
events, and, consequently, the processing of information is
reduced to two factors: first, the timing of spikes, e.g., firing
frequencies, relative timing of pre- and postsynaptic spikes, and
particular firing patterns. Second, the identity of the synapses
used, i.e., which neurons are connected, whether the synapse is
excitatory or inhibitory, the synaptic strength, and possible short-
term plasticity or modulatory effects. Depending on the level of
detail of the simulation neurons are either point neurons in which
arriving spikes immediately change their (somatic) membrane
potentials, or are modeled as multi-compartment models with
complex spatial (dendritic) structure, such that dendritic currents
can interact before the somatic potential is modified. Different
spiking neuron models such as the integrate-and-fire, spike
response, or Hodgkin-Huxley model describe the evolution of
the membrane potential and spike generation in different levels
of detail. Typically, the membrane potential integrates currents
from arriving spikes and generates a new spike whenever some
threshold is crossed (Figure 1E). Once a spike is generated,
it is sent via the axon to all connected neurons with a small
axonal delay and the membrane potential is reset toward a given
baseline.

The most direct connection between analog and spiking
neural networks is made by considering the activation of
an analog neuron as the equivalent of the firing rate of
a spiking neuron assuming a steady state. Many models of
neuronal measurements have used such rate codes to explain
computational processes in brains (Hubel and Wiesel, 1959;
Rieke, 1999). However, spiking neuron models can also model
more complex processes that depend on the relative timing
between spikes (Gütig, 2014) or on timing relative to some
reference signal, such as network oscillations (Montemurro et al.,
2008). Temporal codes are of high importance in biology where
even a single spike or small temporal variations of single neuron
firing may trigger different reactions (Gerstner et al., 1996;
Stemmler, 1996; Rieke, 1999; Machens et al., 2003), because often
decisions have to be made before a reliable estimate of a spike rate
can be computed.

Besides the biologically motivated definition of SNNs, there
is a more pragmatic application-oriented view coming from
the field of neuromorphic engineering, where SNNs are often
called event-based instead of spiking (Liu et al., 2015). Here, an
event is a digital packet of information, which is characterized
by its origin and destination address, a timestamp, and -
in contrast to biologically motivated SNNs—may carry a few
bits of payload information. The origin of this view is the
address event representation (AER) protocol (Mahowald, 1994;
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FIGURE 1 | Comparison of deep spiking neural networks (SNNs) to conventional deep neural networks (DNNs). (A) Example of a deep network with two hidden

layers. Here, exemplarily a fully-connected network is shown. Neurons are depicted with circles, connections with lines. (B) Time-stepped layer-by-layer computation

of activations in a conventional DNN with step duration 1T. The activation values of neurons (rectangles) are exemplarily visualized with different gray values. The

output of the network, e.g. categories in the case of a classification task, is only available after all layers are completely processed. (C) Like (B), but with binarized

activations. (D) The activity of a deep SNN showing a fast and asynchronous propagation of spikes through the layers of the network. (E) The membrane potential of

the neuron highlighted in green in (D). When the membrane potential (green) crosses the threshold (black dashed line) a spike is emitted and the membrane potential

is reset. (F) The first spike in the output layer (red arrow in D) rapidly estimates the category (assuming a classification task) of the input. The accuracy of this

estimation increases over time with the occurrence of more spikes (red line and Diehl et al., 2015). In contrast, the time-stepped synchronous operation mode of

DNNs results in later, but potentially more accurate classifications compared to SNNs (blue dashed line and red arrows in B,C).

Boahen, 2000), which is used to connect, e.g., event-based
sensors (Lichtsteiner et al., 2008) via digital interconnect to
neuromorphic chips (Indiveri et al., 2011; Amir et al., 2017)
or digital post-processing hardware (Furber et al., 2014).
Event-based vision sensors use the payload bits to distinguish
visual ON or OFF events, but the payload can also be
used to send any other type of relevant information to the
postsynaptic targets potentially computing more sophisticated
functions than simple integrate-and-fire (Stefanini et al.,
2014).

1.2. Advantages of Deep SNNs
A motivation for studying SNNs is that brains exhibit a
remarkable cognitive performance in real-world tasks. With
ongoing efforts toward improving our understanding of brain-
like computation, there are expectations that models staying
closer to biology will also come closer to achieving natural
intelligence than more abstract models, or at least will have
greater computational efficiency.

SNNs are ideally suited for processing spatio-temporal event-
based information from neuromorphic sensors, which are
themselves power efficient. The sensors record temporally precise
information from the environment and SNNs can utilize efficient
temporal codes in their computations as well (Mostafa, 2018).

This processing of information is also event-driven meaning that
whenever there is little or no information recorded the SNN
does not compute much, but when sudden bursts of activity are
recorded, the SNNwill create more spikes. Under the assumption
that typically information from the outside world is sparse, this
results in a highly power-efficient way of computing. In addition,
using time domain input is additional valuable information
compared to frame-driven approaches, where an artificial time
step imposed by the sensor is introduced. This can lead to
efficient computation of features such as optical flow (Benosman
et al., 2014) or stereo disparity (Osswald et al., 2017), and in
combination with learning rules sensitive to spike timing leads
to more data-efficient training (Panda et al., 2017).

In deep SNNs, the asynchronous data-driven mode of
computing leads to fast propagation of salient information
through multiple layers of the network. To best exploit this
effect in practice, SNNs should be run on neuromorphic
hardware. In combination with an event-based sensor, this results
in pseudo-simultaneous information processing (Farabet et al.,
2012; Camuñas-Mesa et al., 2014), which means that a first
approximate output of the final layer is available immediately
after recording the first input spikes. This is true even for multi-
layer networks, because spikes begin to propagate immediately to
higher layers as soon as the lower layer provides sufficient activity
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(Figure 1D). It is not necessary to wait for the complete input
sequence to finish, which is in contrast to conventional DNNs,
where all layers need to be fully updated before the final output
can be computed (Figures 1B,C). The initial output spikes are
necessarily based on incomplete information, hence it has been
shown that deep SNNs improve their classification performance
the longer they are given time to process more spikes of their
input (Figure 1F). SNNs can also be trained specifically to reduce
the latency of approximate inference (Neil et al., 2016a).

SNNs are the preferred computational model to exploit
highly energy-efficient neuromorphic hardware devices,
which support the data-driven processing mode, and keep
computations local, thereby avoiding expensive memory access
operations.

1.3. Limitations of Deep SNNs
One of the biggest drawbacks of deep SNNs is that despite
recent progress (Rueckauer et al., 2017; Sengupta et al., 2018)
their accuracy on typical benchmarks such as MNIST (Lecun
et al., 1998), CIFAR (Krizehvsky and Hinton, 2009), or ImageNet
(Russakovsky et al., 2015) do not reach the same levels as
their machine learning counterparts. To some extent, this
can be attributed to the nature of these benchmarks, which
are on conventional frame-based images. Thus, some form
of conversion from images into spike trains is required that
is typically lossy and inefficient. Another limiting factor is
the lack of training algorithms that make specific use of
the capabilities of spiking neurons, e.g., efficient time codes.
Instead, most approaches use rate-based approximations of
conventional DNNs, which means that no accuracy gains
can be expected. Deep SNNs might still be useful in such
scenarios, because approximate results might be obtained
faster and more efficiently than on conventional systems,
especially if the SNN is run on neuromorphic hardware.
Training algorithms for SNNs are also more difficult to design
and analyze, because of the asynchronous and discontinuous
way of computing, which makes a direct application of
successful backpropagation techniques as used for DNNs
difficult.

The performance of SNNs on conventional AI benchmarks
should only be seen as a proof-of-concept, but not as the ultimate
research goal. If spiking networks model biology, then we should
expect them to be optimized for the behaviorally most relevant
tasks, such as making decisions based on continuous input
streams while moving in the real world. Image classification
corresponds to the task of classifying a random image suddenly
flashed on the retina, without any supporting context. While
brains are able to solve such tasks (Thorpe et al., 1996), they are
certainly not optimized for it. We are currently lacking both good
benchmark datasets and evaluation metrics that could measure
efficient real-world performance. One fruitful direction is the
collection of dynamic vision sensor (DVS) benchmarks (Orchard
et al., 2015a; Serrano-Gotarredona and Linares-Barranco, 2015;
Hu et al., 2016; Liu et al., 2016), in particular for relevant use
cases such as automated driving (Binas et al., 2017; Sironi et al.,
2018).

2. INFERENCE WITH DEEP SNNS

Before diving into the discussion of how to train deep SNNs,
we briefly discuss inference with fully trained deep SNNs, i.e.,
the transformation of input signals to output signals. Whereas
updates between hidden layers are straightforward (Gerstner
and Kistler, 2002), the input and output layers deserve special
attention.

In the ideal case, the input of deep SNNs are already spike
trains, e.g., from neuromorphic sensors. However, in many cases,
especially when using conventional benchmark datasets, some
form of conversion from the input signal into spike trains is
necessary. The most widely used method is for each pixel to
translate real-valued input such as gray levels or color intensities
into spike trains drawn from Poisson processes with proportional
firing rates (O’Connor et al., 2013; Cao et al., 2015; Diehl
et al., 2015). This implies that only average firing rates are
important for classification and information of precise timing is
neglected. Although this is clearly a sub-optimal use of SNNs, the
method is effective in practice and can be realized in hardware
(Neil and Liu, 2014; Stromatias et al., 2015; Schmitt et al.,
2017).

Alternative codes that enable an efficient use of spike times
have only recently been introduced to spiking deep networks.
Kheradpisheh et al. (2018) use a rank-order code in which every
neuron can fire at most once. Mostafa et al. (2017a) propose
a very sparse and efficient temporal code, in which the output
of a neuron is the time of its first spike. Such codes drastically
reduce the number of spikes sent through the network, and
training can be achieved via backpropagation (Mostafa, 2018) or
STDP (Kheradpisheh et al., 2018). Orchard et al. (2015b) used
the timing of spikes to determine maxima in pooling operations.
Temporal codes are very efficient, fast, and map well to hardware,
but they have so far not been able to match the state-of-the-art
accuracy of ANNs or rate-based SNNs. In order to tune the trade-
off between rate-based and temporal coding Lagorce et al. (2017)
and Sironi et al. (2018) propose to use time surfaces around event
input as hierarchical features.

During inference, hidden layers are updated by sending
spikes from pre- to postsynaptic neurons. In deep SNNs, simple
and efficient models for membrane potential updating and
spike generation are typically preferred over more biologically
plausible ones (for examples see section 1). One spike from
a presynaptic neuron triggers updates of many postsynaptic
neurons depending on the number of outgoing connections.

In the output layer of deep SNNs another conversion takes
place. Assuming we are dealing with classification tasks, spike
trains need to be converted into categories. The simplest form
of output code is to report the class corresponding to the
neuron with the highest firing rate over some time period
or over a fixed number of total output spikes. An extreme
case is to report the neuron firing first as the output class,
which typically achieves already good performance (Orchard
et al., 2015b). However, Diehl et al. (2015) have shown that
the classification accuracy increases with the number of output
spikes taken into account. Furthermore, SNNs can be specifically
optimized to report correct output spikes as early as possible
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(Neil et al., 2016a). Instead of using the output of single
neurons, larger populations of neurons can be used to reduce
the variance of the output, or temporal smoothing may be
performed.

3. TRAINING OF DEEP SNNS

Conventional deep learning is relying on stochastic gradient
descent and error backpropagation, which requires differentiable
activation functions. Consequently, in order to reduce activations
to binary values, often also interpreted as spikes, modifications
are required. Such binary networks share the discontinuous
nature of spikes, but not the asynchronous operation mode
with SNNs. The integration of the timing of spikes into the
training process, only required for asynchronous SNNs, requires
additional effort. Five main strategies for training deep SNNs
have been developed over the past years. In this section, we will
briefly review these approaches and discuss their advantages and
disadvantages:

1. Binarization of ANNs: Conventional DNNs are trained with
binary activations, but maintain their synchronous mode of
information processing.

2. Conversion fromANNs: Conventional DNNs are trained with
backpropagation, and then all analog neurons are converted
into spiking ones.

3. Training of constrained networks: Before conversion,
conventional DNN training methods are used together with
constraints that model the properties of the spiking neuron
models.

4. Supervised learning with spikes: Directly training SNNs using
variations of error backpropagation.

5. Local learning rules at synapses, such as STDP (Bi and Poo,
1998; Song et al., 2000), are used for more biologically realistic
training.

3.1. Binary Deep Neural Networks
A simple method to convert ANNs into networks using spikes for
communication is to binarize activations for efficient inference
(Hubara et al., 2016; Kim and Smaragdis, 2016; Rastegari
et al., 2016). Binarized networks propagate information in
a synchronized way and layer-by-layer like in conventional
DNNs, which does not allow for asynchronous information
processing and fast propagation of most salient features
as in SNNs (compare Figures 1C,D). However, binarization
makes network execution on event-based neuromorphic systems
energy-efficient due to sparse activations and computation on
demand (see section 4). Furthermore, the computational costs on
conventional hardware, like CPUs and GPUs, are also decreased
by binarization, since the memory bandwidth as well as the
complexity of multiply-add operations are reduced (for a review
see Sze et al., 2017), and weight kernels can be re-used within the
same network (Hubara et al., 2016). In an extreme case, if both
activations and weights are binarized, multiply-add operations
can be reduced to bitwise XNORs and bit counting (Rastegari
et al., 2016, note that binarized means values in {−1, 1} for
this example). In networks with binary activations, weights are

usually also quantized to lower-bit representations, and hence,
in the following, we review training methods for networks with
binary activations and low-bit weights.

To obtain good test performance, binarization of a network
(e.g., by rounding) after its training with floating point activations
is usually not sufficient (Judd et al., 2015). Instead, networks
have to be trained with binarized activations from scratch.
Two different approaches are commonly used: training with
deterministic and stochastic methods. Deterministic methods
usually apply straight-through-estimators (Bengio et al., 2013)
to approximate non-differentiable activation functions during
backpropagation and accumulate gradients on so-called shadow
weights (Courbariaux et al., 2015). Activations and shadow
weights are quantized during the forward pass, while during
the backward pass gradients are calculated by assuming that
both activations and weights are continuous values. Weight
updates are accumulated in shadow weights, which allows
quantized weights to change their value in the forward pass
in the presence of only very small weight changes during
individual training steps. A commonly used stochastic method
is expectation backpropagation, where neuron activations and
synaptic weights are represented by probability distributions
updated by backpropagation (Soudry et al., 2014). Esser
et al. (2015) adapted this method and showed that ensembles
of networks with deterministic binary activations and their
ternary weights randomly drawn from the learned probability
distributions achieve comparable results to unconstrained
networks on classification tasks.

A number of methods exist that improve test performance
specifically for networks with binary activations. These methods
include normalization of activations (e.g., Hubara et al., 2016),
modifications of regularizers (Tang et al., 2017), gradual
transitions from soft to hard binarizations (Wu et al., 2015),
adding noise on activations and weights (Merolla et al., 2016),
and knowledge distillation (Wu et al., 2016; Polino et al., 2018).
Nevertheless, networks with binary activations usually show
degraded test performance, which can partly be compensated
by modifying the network structure, e.g., increasing their width
(Mishra et al., 2017). Input and output layers, as well as
first and last weight kernels are often not binarized, because
only little additional computational resources are needed and
otherwise the test performance is likely to significantly drop
(e.g., Hubara et al., 2016; Rastegari et al., 2016). Binarization
also improves the robustness of networks against adversarial
examples (Galloway et al., 2018) and other distortions (Merolla
et al., 2016).

Hubara et al. (2016) achieve good results on classification
tasks by modifying the binarization scheme of activations a from
spikes (a ∈ {0, 1}) to a ∈ {−1, 1}, thereby improving the
convergence properties (Li et al., 2017). Although events with
payload (here with size 1 bit; see also section 1.1) could be used
for communication in order to implement the latter scheme on
neuromorphic hardware, communication is not sparse anymore.
It is also possible to use payloads with multiple bits per spike to
simulate low-precision networks (Courbariaux et al., 2014; Deng
et al., 2018), but this approach is outside the scope of the present
review.
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In summary, binary networks offer efficient inference, which
often comes at the cost of slight performance degradations.
In addition, the learning process usually takes longer than for
unconstrained networks, since the training methods are more
complex, intermediate results need to be tracked with floating
point precision, and networks are potentially larger. As the need
for energy-efficient conventional deep networks increases, binary
networks are an active and important research topic independent
of their connection to SNNs.

3.2. Conversion of Deep Neural Networks
To circumvent the problems of gradient descent in spiking
networks, conventionally trained DNNs can be converted into
deep SNNs by adapting weights and parameters of the spiking
neurons. The goal is to achieve the same input-output mapping
with a deep SNN as the original DNN. This mapping, however,
does not only include the neural network itself, but also the input-
and output-encoding, as discussed in section 2.

Conversion approaches were initially developed to
process data from event-based sensors with convolutional
networks. Whereas, early attempts used manually programmed
convolution kernels on spike train inputs (Serrano-Gotarredona
et al., 2009; Pérez-Carrasco et al., 2013) introduced the first
systematic way to map conventionally learned CNNs to SNNs.
Their conversion approach and that of almost all others follows
the idea of rate-coding, such that activations of analog neurons
are translated into firing rates of spiking ones. Weights are
rescaled according to the parameters of spiking neurons such as
leak rates or refractory times. These parameters are not present
in conventional CNNs, and need to be set as hyperparameters
before conversion. An alternative method is to use the Neural
Engineering Framework (Eliasmith and Anderson, 2004) to
convert restricted Boltzmann machines into spiking networks
(Eliasmith et al., 2012). An approach for converting recurrent
neural networks under constraints of a neuromorphic platform
was presented by Diehl et al. (2016).

The main advantage of the conversion approach is that the
full toolkit of deep learning can be exploited, meaning that
state-of-the-art deep networks for classification tasks can be
straightforwardly converted into SNNs (Hu et al., 2018). Formost
methods, the original DNNs can be trained without considering
the later conversion into SNNs. Once the parameters of the
DNN are known, conversion into an SNN usually consists
only of parsing and simple transformations, and thus adds
only negligible training overhead. Network conversion has set
most benchmark records in terms of accuracy for SNNs, with
negligible deviations in accuracy from the underlying DNNs
(Diehl et al., 2015; Sengupta et al., 2018). It is even possible to
provide performance guarantees that can quantify the expected
deviations in accuracy (Rueckauer et al., 2017).

Conversion from conventional networks into SNNs, however,
comes with its flaws: first of all, not all ANNs can easily be
converted into SNNs. One major obstacle is that in ANNs it
does not matter if activations are negative, whereas firing rates
in SNNs are always positive. In principle, spiking neurons can be
divided into excitatory and inhibitory neurons, i.e., neurons with
exclusively positive or negative synapses, respectively. However,

compared to these biologically realistic SNNs, ANNs can switch
the sign of their activation between different inputs. One possible
solution, first suggested by Pérez-Carrasco et al. (2013), is to
have two spiking neurons for each ANN neuron, one for either
positive or negative activations, but mutually exclusive. This
problem has gotten less severe with the dominance of rectified
linear-unit (ReLU) (Nair and Hinton, 2010) activation functions
in deep learning, because then activations are either zero or
positive, and can thus easily be translated into firing rates (Cao
et al., 2015). Sigmoid activation functions were used in Pérez-
Carrasco et al. (2013), but their non-linearity requires additional
approximations and introduces additional errors compared to
the mainly linear ReLU. Negative activations are a specific
problem for softmax-layers at the output, but Rueckauer et al.
(2017) presented a practical solution to this problem.

Another limitation of most conversion approaches for CNNs
is that max-pooling operations, which are common in state-of-
the-art analog deep networks, are difficult to realize in the spiking
setting (Yu et al., 2002). The main problem is that the maximum
operation is non-linear, and cannot be computed on a spike-
by-spike basis. Most approaches (e.g., Cao et al., 2015; Diehl
et al., 2015; Sengupta et al., 2018) circumvented this problem
by replacing all pooling operations with average pooling, which
is easy to implement in SNNs as a linear operation, but leads
to a drop of accuracy. A simple mechanism for max-pooling is
presented in Rueckauer et al. (2017), where output units contain
gating functions that only let spikes from the maximally firing
neuron pass, and all other spikes are discarded. This allows a
non-linear pooling operation, and contributes to better accuracy
of SNNs. Max operations can also be implemented with latency
codes (Orchard et al., 2015b), but this is not directly compatible
with rate codes typically used for conversion.

While in ReLU networks activations of a layer can be
linearly rescaled without changing the final class output by
scaling all weights in this layer, SNNs are not immune to such
rescaling of weights. Neurons with low firing rates are more
susceptible to noisy firing rates and temporal jitter of spikes,
which increases the variance of each estimate and elongates the
time until a reliable estimate can be formed. Too high firing
rates can also be an issue, especially if predicted firing rates
exceed the maximum firing rate determined by the neuron
parameters. Diehl et al. (2015) improved the performance of
deep SNNs significantly by propagating a subset of training
examples through the network, observing the firing rates in each
layer, and rescaling the input weights to each layer such that
a target rate is reached. Rueckauer et al. (2017) and Sengupta
et al. (2018) extended this mechanism and improved the results
for very deep networks by increasing the robustness against
outliers and accounting for the actual firing rates during weight
normalization, respectively.

Conversion and weight normalization may come at the cost
of more spikes being produced, and thus less energy efficient
classification. The trade-off between latency and accuracy in
SNNs (Diehl et al., 2015) allows compensating this effect by
training deep SNNs to achieve a target performance level as early
as possible (Neil et al., 2016a). Nevertheless, ANNs converted into
SNNs using rate codes are in general not particularly efficient
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in terms of spikes being produced, because multiple spikes are
necessary to represent one real-valued activation. In the worst
case the SNN might need more spike operations than the ANN
needs multiply-adds. However, spike operations are cheaper than
real-valued matrix multiplications, and can be implemented on
very efficient neuromorphic hardware (section 4).

In order to address the inefficiencies of conversion approaches
based on rate codes, an important direction of research
investigates the use of alternative spike codes based on the
timing information. This is particularly important when inputs
come from event-based sensors, and therefore naturally contain
precise timing information. The HFirst model (Orchard et al.,
2015b) introduced a spiking adaptation of anHMAX hierarchical
network (Riesenhuber and Poggio, 1999) with predefined
Gabor filters. A temporal winner-take-all mechanism replaces
the computation of rate maxima, and thus simplifies the
classification. Time surface features (Lagorce et al., 2017) capture
the local spatio-temporal dynamics around events by computing
a continuous-valued feature for small spatial and temporal
windows around each event, which describes the spiking activity
of nearby events. The HATS method (Sironi et al., 2018)
divides the image into a regular grid of cells, and smoothes all
time surfaces within each cell and specified time window. A
histogram of averaged time surfaces is formed, and the resulting
feature vector is fed to a standard classifier, such as an SVM
or a neural network. Approaches such as HATS are tailored
for neuromorphic vision sensors, and have no equivalent in
conventional deep learning or computer vision. Zambrano and
Bohte (2016) introduces an asynchronous pulsed Sigma-Delta
coding scheme for SNNs, which maintains the accuracy of the
underlying ANN, but utilizes far fewer spikes than other ANN-
to-SNN conversion methods.

3.3. Training of Constrained Networks
Whereas the conversion approaches presented in section 3.2
start from fully trained ANNs, and then convert these networks
into SNNs, Esser et al. (2015) coined the term constrain-
then-train for approaches that include constraints due to the
properties of spiking neurons or the target hardware already
during the training process. Conventional learning rules for
ANNs, such as backpropagation, are applied to learn the optimal
weights under constraints of the spiking model. After training,
a conversion into an SNN is performed, where the parameters
of the constrained ANN model are directly used as parameters
of the SNN without further weight scaling. There is a fine
line between conversion and constrain-then-train methods, since
conversion algorithms also put some constraints on the ANN
model, e.g., they demand the use of ReLU activation functions or
zero biases, and constrain-then-train models also convert ANNs
into SNNs. The main difference is that conversion methods train
the ANN just once and then map the weights for arbitrarily
specified parameters of spiking neurons, whereas for constrain-
then-train methods the ANN is trained for one specific setting
of spiking neuron model parameters. If later these spiking
neuron parameters should change then a complete retraining
of the constrained ANN is required, which is not necessary
for conversion methods. Constrain-then-train models have the

potential to adapt better to the target platform than converted
models, because the ANN training already considers specifics of
the final SNN. As a result, constrain-then-train methods often
yield better accuracy than generic conversion methods, at the
expense of more complicated ANN training.

Constrain-then-train methods need to transform spiking
neuron models into a continuous-valued and differentiable form
that can be trained via backpropagation. In Esser et al. (2015)
a training network was introduced which used continuous
valued weights and activations constrained to be in the range
[0, 1]. Such a network after training yields values representing
probabilities of spikes occurring or binary synapses being on. The
learned probabilities are used to generate samples of deployment
networks with low-bit synapses, matching the constraints of the
TrueNorth target platform (Merolla et al., 2014). This results in
highly accurate classifiers for MNIST, at very low energy costs
(see also section 4). This approach was improved and extended
to multi-chip setups in Esser et al. (2016).

For more realistic models of spiking neurons it is often
possible to derive or approximate a transfer function that
relates a constant input current and neuron parameters (e.g.,
refractory period, reset voltage, etc.) to an average firing rate
(Gerstner and Kistler, 2002; Burkitt, 2006). This will typically
result in a non-differentiable function, because output spikes
will only be generated after the input current crossed a
threshold. Instead of ignoring the more complex activation
functions of spiking neurons and simply using ReLUs, constrain-
then-train approaches typically introduce various smoothing
approximations to model spike generation and the variability of
spike times and rates more accurately (O’Connor et al., 2013;
Hunsberger and Eliasmith, 2016). The key idea is modeling this
variability, e.g., noisy firing rates and jitter on spike times, in the
input spike trains to obtain a differentiable activation function
that enable training with backpropagation. After training, all
neurons are turned into spiking ones using the model parameters
set before training and the newly learned weights. The goal is to
have the rate-coded SNN perform similar to the ANN resulting
from the constrained learning process.

One of the first successful applications of deep SNNs was
presented by O’Connor et al. (2013), who used the so-called
Siegert approximation (Jug et al., 2012) to train a spiking DBN.
Their training did not involve backpropagation, but contrastive
divergence (CD) learning (Hinton et al., 2006). However, the key
ideas remain the same. For CD learning in SNNs, firing rates are
used as proxies for activation probabilities that are normalized
into the range [0, 1]. This transformation can be easily achieved
by assuming that the inverse of the refractory period yields the
maximum firing rate, and therefore also the maximum activation
during training with CD. The different layers of the DBN are
trained sequentially, and after training all neurons in the network
are converted into spiking neurons, using the parameters defined
before or during training. The Siegert approximation provides
more accurate predictions of the output firing rate of leaky
integrate-and-fire (I&F) neurons, if the inputs are Poisson spike
trains, rather than constant currents. A conventional DBN
trained with Siegert approximation can thus be converted almost
loss-less into a spiking DBN. Interestingly, the DBN trained
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on conventional MNIST also performs well when being fed
inputs from an event-based vision sensor recording MNIST
digits. Despite the mismatch to the assumed Poisson distribution,
visual recognition with high accuracy can be performed in real-
time.

A similar concept was used in Hunsberger and Eliasmith
(2015), where a spiking CNN was trained with backpropagation,
using a so-called soft leaky I&F. This neuron model employs
a smoothed and therefore differentiable version of the I&F
transfer function, which can be used for gradient descent, and
additionally adds noise to the training process. Hunsberger and
Eliasmith (2016) show competitive results with this approach on
a number of benchmarks, including the challenging ImageNet
dataset.

3.4. Supervised Learning With Spikes
Whereas constrain-then-train methods reduce the training of
SNNs to training methods of conventional ANNs, various
approaches have been proposed that directly introduce
supervised learning on the level of spikes. These approaches do
not necessarily aim for biological plausibility, which is the goal
of approaches using local learning with STDP, as discussed in
section 3.5. Instead, supervised training methods with spikes
typically use variants of backpropagation to train deep SNNs.
The obvious advantage of spike-based learning rules for SNNs is
that they are not constrained to mean-rate codes, but can learn
to utilize spatio-temporal patterns in spike trains, which can
arise in inputs from event-based sensors. This might come at the
cost of longer training times, because fully spiking simulations
are computationally more expensive than simulations of
conventional DNNs, although the number of spikes needed is
typically lower than in rate-coded simulations of SNNs.

There are several supervised learning methods for spiking
networks that work only for single layers, such as ReSuMe
(Ponulak and Kasiński, 2010) or the Tempotron (Gütig and
Sompolinsky, 2006). The focus of this review is on deep spiking
networks, so we discuss in the following only methods that
implement some form of backpropagation to train multiple
layers. Another important distinction is the nature of the target
signal: whereas some methods (e.g., Bohte et al., 2002) require
a target spike train and during training try to reproduce the
temporal pattern for a given input, for most other methods
presented here (e.g., Lee et al., 2016) it is sufficient if a target
label is provided. The training goal can then either be to have
the correct output neuron firing more than all others, or having
the correct output neuron firing first (e.g., Mostafa, 2018).
Intermediate forms, such as defining a regular target spike train
for the correct class as in Kulkarni and Rajendran (2018) are also
possible.

The key for many spike-based learning rules for multi-
layer SNNs is to find a real-valued and almost-everywhere
differentiable proxy, on which backpropagation can be
performed. The earliest attempts at training multi-layer SNNs
fall into this category, most notably SpikeProp (Bohte et al.,
2002) and variants (Schrauwen and Van Campenhout, 2004;
McKennoch et al., 2006). SpikeProp derives a backpropagation
rule for spike times in the output layer, and Booij and tat Nguyen

(2005) showed an extension to patterns of multiple spikes.
However, SpikeProp has not been applied to problems at the
scale of modern deep learning applications, yet, because this
method is computationally expensive.

Recently, Lee et al. (2016) have introduced a spike-based
backpropagation rule that can train deep SNNs for conventional
classification tasks (given only labels, but not target spike
trains) directly from spike signals. The key trick is to perform
stochastic gradient descent on real-valued membrane potentials.
Discontinuities at the times of spikes are handled via low-pass
filtering before they are used for backpropagation. Together
with a variety of optimizations, this method achieves state-of-
the-art results for deep SNNs on tasks such as MNIST, and
its event-based counterpart N-MNIST (Orchard et al., 2015a).
(Kulkarni and Rajendran, 2018) follow a similar approach and
achieved similar results, but minimized the distance between
network output and a regular firing target spike train for the
desired output neuron, instead of the squared distance between
normalized network output and one-hot labels.

O’Connor andWelling (2016) propose a spiking network that
approximates a deep MLP with ReLU activations using signed
spikes. During training backpropagation operates on collected
spike statistics. Similarly, Stromatias et al. (2017) bin spike
trains, and fine-tune output layers of deep SNNs by performing
gradient descent on these real-valued histogram bins. A different
approach is taken in Mostafa (2018), where the time of first
spike for each neuron is used as its activation value during
training. This results in sparsely firing SNNs that are able to
utilize temporal patterns in input sequences. A spatio-temporal
backpropagation rule for SNNs is derived in Wu et al. (2017).
The authors are separating spatial input signals, which come
from other neurons, from temporal dynamics arising from the
spiking behavior of the neuron itself. Their results consistently
show improvements over methods unaware of the temporal
aspects. An interesting hybrid model has recently been proposed
by Jin et al. (2018), which uses a backpropagation rule for a
rate-coded error signal on a longer "macro" time-scale, and
combines this with an update on a shorter "micro" time-scale
which captures individual spike effects. The method leads to
state-of-the-art results on static MNIST and N-MNIST (Orchard
et al., 2015a).

Overall, the past years have clearly yielded an increasing
number of spike-based learning approaches for supervised
training, occasionally outperforming approaches based on
conversion alone. Their benefits for machine learning tasks
on neuromorphic sensor data is still not fully explored, but
potentially even greater performance gains could be achieved
by exploiting temporal codes that deviate from pure rate
models.

3.5. Local Learning Rules
It is of great interest for neuroscience to understand how
hierarchically organized neural networks can be trained with
local learning rules such as STDP (Markram et al., 1997; Bi
and Poo, 1998) or Hebbian learning (Hebb, 1949). For practical
applications, the use of local learning rules is very attractive,
because it would allow very hardware-efficient ways of training
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DNNs. In addition, spike-timing dependent learning allows
detecting spatio-temporal patterns as features.

The main obstacle for the use of purely local learning rules
in deep networks is the difficulty to perform backpropagation
of supervised error signals. An error signal might only be
available at the output layer, and since the information flow in
biological axons is assumed to be uni-directional, it is unclear
how error information can reach lower levels of the hierarchy at
all. Typical feed-forward architectures used in machine learning
are not capable of providing the necessary training information to
synapses learning with local rules. Hence, most of the following
studies investigating local learning in hierarchies introduce
recurrent feedback connections that modulate learning in lower
layers.

One insight from biology is that feedback connections,
i.e., connections projecting from higher to lower layers, are
common and important in hierarchically organized networks
for information processing, such as the cortex (Markov et al.,
2014). Furthermore, feedback connections could provide training
signals in the framework of predictive coding (Rao and Ballard,
1999). Another interesting perspective is that random back-
projections of error signals are sufficient to train lower
layers (Lillicrap et al., 2016). This concept has been recently
demonstrated for deep SNNs (Neftci et al., 2017), and for
networks with spiking multi-compartment neurons (Guerguiev
et al., 2017). Although the performance does not match that
of conventional machine learning techniques (Bartunov et al.,
2018), this approach is a proof-of-concept that biologically
plausible training of deep SNNs with local learning rules is
possible. In particular, random backpropagation is one possible
solution for training spiking and biologically realistic networks
with backpropagation, despite deviating from the requirements
of classical backpropagation, namely precise calculation of
real-valued gradients, a separation and synchronization of
forward- and backward-passes, and symmetry of weights in
both directions (Bengio et al., 2015a). Mostafa et al. (2017b)
show how feature hierarchies can be trained with local errors
from random auxiliary classifiers, and how training can work
despite the asynchronous updates found in SNNs. Another
recent line of research has established links between inference
in energy-based networks and backpropagation (Bengio et al.,
2017). A proposal for solving the credit assignment problem
by using multiple layers with local rules was made, and it was
shown that early steps of inference in this iterative method
in autoencoder-like models yield activation changes in hidden
layers that approximate backpropagation. Furthermore, the
required updates are compatible with STDP, and could thus
be implemented in a biologically plausible way (Bengio et al.,
2015b).

In general, the function of STDP is highly dependent on
the network architecture, in which it is applied. In competitive
networks, STDP is capable of solving unsupervised learning tasks
such as clustering (Masquelier et al., 2009; Nessler et al., 2013).
This is encouraging, since recent work (e.g., Coates et al., 2011;
Dundar et al., 2015) has shown that competitive convolutional
networks can be trained with unsupervised learning of filters.
If spiking neurons are connected according to the structure of

restricted Boltzmann machines, contrastive divergence can be
approximated in an event-based fashion (Neftci et al., 2014,
2016). In principle, this can be extended to multi-layer DBNs,
but then training occurs only within each layer. Spiking CNNs
(Kheradpisheh et al., 2018; Lee et al., 2018) and autoencoders
(Panda and Roy, 2016) can be trained layer-by-layer with
unsupervised STDP, assuming that weight updates for identical
kernels are shared between their applications to different spatial
locations, and single-layer supervised frame-based learning is
used for the output layer (Stromatias et al., 2017). Mozafari et al.
(2018) add multiple layers with reward-modulated STDP to such
networks to obtain fully spiking supervised training. Recently,
in order to simultaneously train all layers with STDP within
a deep network Thiele et al. (2018) introduced neurons with
two integrate-and-fire units decoupling learning with STDP and
inference. These approaches discussed above, however, do not
reach the accuracy of conventional deep neural networks trained
with backpropagation.

4. NEUROMORPHIC HARDWARE

There is a big discrepancy between the promise of efficient
computing with SNNs and the actual implementation on
currently available computing hardware. Simulating SNNs
on von Neumann machines is typically inefficient, since
asynchronous network activity leads to a quasi-random access
of synaptic weights in time and space. Ideally, each spiking
neuron is an own processor in a network without central
clock, which is the design principle of neuromorphic platforms.
The highly parallel structure, sparse communication, and in-
memory computation proposed by SNNs stands in contrast to
the sequential and central processing of data constrained by
the memory wall between processor and memory on CPUs
and GPUs. The computational efficiency of SNNs can be
observed in brains that can solve complex tasks while requiring
less power than a dim light bulb (Laughlin and Sejnowski,
2003). To close the gap in terms of energy-efficiency between
simulations of SNNs and biological SNNs in the last decade
several neuromorphic hardware systems were developed which
are optimized for execution of SNNs (see Table 1; for a review
of technical specifications see Furber, 2016; Singh Thakur et al.,
2018). The energy-efficiency of neuromorphic systems makes
them ideal candidates for embedded devices subject to power
constraints, e.g., mobile phones, mobile and aerial robots, and
internet of things (IoT) devices. Furthermore, neuromorphic
devices could be utilized in data centers to reduce the cost of
cloud applications relying on neural networks.

Inspired by biology, neuromorphic devices share the locality
of data to reduce on-chip traffic, mostly reflected by using spikes
for communication and limiting the fan-in of neurons. The
massive parallelism of neuromorphic devices manifests itself in
the physical representation of neurons and synapses on hardware
inspired by the seminal study of Mead (1990) (for a review,
see Indiveri et al., 2011). Analog neuromorphic systems, which
implement functionalities of spiking neurons and synapses with
analog electronic circuits, usually have a one-to-one mapping
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between neurons and synapses in the network description and
on hardware. In contrast, digital systems implement the parallel
structure less fine-grained by grouping and virtualizing neurons
on cores (hundreds for the TrueNorth and thousands for the
SpiNNaker system, see also Table 1). However, compared to the
extensive virtualization on CPUs and GPUs, i.e., the total number
of neurons in a network divided by the number of cores, the
virtualization on neuromorphic systems is rather low. This leads
to less flexibility in terms of connectivity and size of networks,
and thus hardware demonstrations that show functional deep
SNNs are few. All hardware systems listed in Table 1 share an
asynchronous computation scheme that enables computation on
demand and reduces power consumption in case of low network
activity.

In principle, neuromorphic hardware could be used for both
training and inference of SNNs. While original and constrained
DNNs (section 3.3) can usually be trained on GPUs and are
then converted to SNNs (section 3.2), spike-based training
(section 3.4) and especially local learning rules (section 3.5) are
computationally more expensive on von Neumann machines
and, hence, could highly benefit from hardware acceleration.
However, so far, spike-based training and local learning rules
have not been shown for competitive deep networks. Rapid
developments in this area of research makes it difficult to
build dedicated hardware for training, since their design and
production is time-consuming and costly (see also section 6).

4.1. Inference on Neuromorphic Hardware
Once the parameters of SNNs are obtained by any of the
training methods reviewed in section 3, usually these networks
have to be adapted to the specific hardware system to be used
for inference. Analog neuromorphic systems suffering from
parameter variation may require cumbersome fine-tuning of pre-
trained networks with the hardware system in-the-loop (Schmitt
et al., 2017). This is not always practical, because the re-
configuration of neuromorphic systems is often slow compared
to, for example, CPUs and GPUs. Another common approach
to improve the test performance is to incorporate hardware
constraints like, for example, limited counts of incoming
connections and quantized weights into the training process
(section 3.3). Once parameters are trained and the device is
configured, inference is usually fast and energy-efficient due to
their optimization for spike input and output. To our knowledge
only for the TrueNorth, SpiNNaker and BrainScaleS hardware
system results were shown, in which deep SNNs on silicon
chips were used for classification tasks with the complexity of
at least MNIST (for hardware specifications and classification
performances, see Table 1). For other promising neuromorphic
systems no results for deep SNNs are shown yet (Park et al.,
2014; Lin et al., 2018), or the presented neuron and synapse
count is too small to show competitive results (Pfeil et al., 2013a;
Schmuker et al., 2014; Indiveri et al., 2015; Qiao et al., 2015;
Moradi et al., 2017; Petrovici et al., 2017). Prototypical software
implementations and field-programmable gate array (FPGA)
systems are not considered in this study. As an exception, we
would like to mention the novel Intel Loihi chip (Davies et al.,
2018), for which results of a single layer network on preprocessed
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MNIST images on a prototypical FPGA implementation are
shown (Lin et al., 2018). Once commissioned, Loihi’s large
number of neurons, their connectivity and configurability, and
on-chip learning capabilities could be a good basis to enable
deep networks on raw image data. Table 1 shows deep SNNs on
the SpiNNaker and BrainScaleS systems that approximate multi-
layer perceptrons (MLPs) and rate-based deep belief networks
(DBNs), respectively, showing network activity like exemplarily
plotted in Figure 1D. In contrast, deep CNNs are binarized
for their execution on the TrueNorth system (compare to
Figure 1C). This means that neuron activations on TrueNorth
are represented by single spikes and each neuron in a network is
stateless and fires at most once for each input. In other words,
spikes do not contain temporal information anymore, but the
high throughput makes inference energy-efficient.

Are the presented neuromorphic systems more power-
efficient than GPUs? The answer to this question very much
depends on the chosen benchmark task, and we can give only
approximate numbers for frame-based classification tasks (for
further discussions see section 6). Since power measurements
on modern mobile GPUs (Nvidia Tegra X1) are only reported
for large networks (AlexNet) on comparably large images from
the ImageNet dataset (NVIDIA Corporation, 2015), and power
numbers of the most efficient neuromorphic system are recorded
for custom networks on smaller images from the CIFAR10
dataset (Esser et al., 2016), a straight-forward comparison is
not possible. However, if we assume a linear decrease in the
number of operations with the area of the input image, which
is approximately true for convolutional networks, the reported
energy of 76mJ for GPUs to process an image of size 224 ×

224 scales down to approximately 2mJ for an image from the
CIFAR10 dataset with size 32 × 32. This energy consumption is
approximately one order of magnitude higher than for the most
power-efficient neuromorphic solution, i.e., binarized DNNs on
the TrueNorth system (for numbers seeTable 1). Since the energy
consumption of most neuromorphic systems is dominated by
that of synaptic events, i.e., communication and processing of
spikes, higher benefits are expected for models that exploit sparse
temporal codes, rather than rate-based models.

4.2. On-Chip Learning
Although unified methods to train SNNs are still missing,
the SpiNNaker and BrainScaleS hardware systems implement
spike-timing-dependent plasticity (STDP), a local unsupervised
learning rule inspired by biology. Synaptic weights are updated
by means of local correlations between pre- and postsynaptic
activity (see also section 3.5). Neuromorphic systems are valuable
tools to investigate such local learning rules, because the training
of networks with STDP often requires long simulations of
SNNs in terms of biological time, and neuromorphic systems
usually accelerate such simulations compared to conventional
computers. The BrainScaleS system (Schemmel et al., 2010) and
its successor (Aamir et al., 2018) is an especially promising
candidate for on-chip learning due to its acceleration of up to
a factor of 10000 compared to biological real time, but so far
STDP is only shown for small networks on a prototype chip (Pfeil
et al., 2013b) and shows significant parameter variation due to
imperfections in the production process (Pfeil et al., 2012). In

addition, Friedmann et al. (2017) investigated the integration
of on-chip plasticity processors into the BrainScaleS system to
modulate STDP based on the model of neuromodulators in
biology (Pawlak et al., 2010) allowing for supervised training.
Although the implementation of STDP is in terms of chip
area costly for the presented neuromorphic systems, novel
electronic components, so called memristors, may allow for
much higher densities of plastic synapses (Jo et al., 2010; Saïghi
et al., 2015; Boyn et al., 2017; Burr et al., 2017; Pedretti et al.,
2017).

5. APPLICATIONS

With the current big success of deep learning in conventional
machine learning it is tempting to view deep SNNs exclusively
as a more efficient replacement of conventional DNNs. This
view is reflected in the way deep SNNs are benchmarked against
conventional machine learning approaches by their classification
accuracy on standard datasets such as MNIST or CIFAR. Such
comparisons are certainly important, because they show that
SNNs can be powerful classifiers in the classical machine learning
setup. However, entirely focusing on accuracy can easily become
misleading when it comes to the potential advantages of SNNs,
namely efficiency and low latency. Achieving state-of-the-art
accuracy with rate-based networks often comes at the cost of
having very high firing rates and long integration times to obtain
reliable results (Rueckauer et al., 2017).

Using temporal codes (Mostafa et al., 2017a) is an attractive
alternative, but, so far, such approaches have not reached state-of-
the-art accuracy. The ability to utilize the information of precise
timing is a feature than only SNNs - whether deep or not -
offer, but which we think has not been investigated and exploited
enough. Temporal codes allow to represent features of the input
in precise spike patterns of small groups of neurons (Gütig,
2014), and there is no more need to precisely estimate firing
rates first (Gardner et al., 2015). Information in SNNs might also
be encoded in spike times relative to background oscillations,
which has been shown to benefit learning in recurrent networks
(Neil et al., 2016b), and allows to encode multiple features
in parallel (Kayser et al., 2009). The use of precise timing
information always carries the risk of being susceptible to noise
and temporal jitter, but the approaches mentioned above exhibit
quite high degrees of noise robustness. Several promising, but
not necessarily deep, temporal coding and learning schemes have
been proposed (e.g., Gütig and Sompolinsky, 2006; Tapson et al.,
2013; Lagorce and Benosman, 2015), but no applications at the
scale that conventional deep learning is addressing have been
demonstrated, yet.

The greatest impact of deep SNNs is expected in the processing
of inputs from event-based sensors, because only SNNs are able
to fully exploit the precise temporal information such sensors
offer. To stimulate research in this direction, we and others
from the neuromorphic engineering community have argued
that new benchmarks are necessary, which do not carry the legacy
of evaluation in conventional machine learning or computer
vision (e.g., Iyer et al., 2018). Instead, they should be specifically
designed to show the advantages of the neuromorphic approach
(Orchard et al., 2015a; Tan et al., 2015; Barranco et al., 2016; Hu
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et al., 2016; Liu et al., 2016; Binas et al., 2017; Mueggler et al.,
2017). Such datasets have only recently become available, but
already had a beneficial effect on the fair comparison between
different SNN approaches. Although this is a step into the right
direction, it is still problematic that most of these datasets are
event-based variants of conventional classification tasks, such as
MNIST digits recorded with a dynamic vision sensor. In order
to fully exploit the strengths of the neuromorphic approach,
we suggest that a careful analysis of use cases is necessary. We
propose that there are at least two classes of use cases that should
be investigated deeper: First, the case where neuromorphic
sensors provide additional features (e.g., precise timing and low
latency) that can be exploited by a deep SNN. Second the case
where low-power and low-latency aspects of deep SNNs really
make a difference in real-world applications.

We are currently observing the interesting trend that
event-based vision becomes increasingly interesting for
research communities rooted in classical computer vision and
robotics. Advantages of using event-based sensors have been
demonstrated for diverse applications such as tracking (Mueggler
et al., 2014; Lagorce et al., 2015; Gallego et al., 2018), stereo vision
(Rogister et al., 2012; Osswald et al., 2017; Martel et al., 2018),
optical flow estimation (Benosman et al., 2014; Bardow et al.,
2016), gesture recognition (Lee et al., 2014; Amir et al., 2017),
scene reconstruction (Carneiro et al., 2013; Kim et al., 2016;
Rebecq et al., 2017), or SLAM (Weikersdorfer et al., 2014; Vidal
et al., 2018). All of these applications benefit from the high speed
and the high dynamic range of spike-based sensors to solve
tasks, such as high-speed localization and navigation, which are
very hard with conventional vision sensors. However, only few
of these approaches use SNNs for event-based post-processing,
or run on neuromorphic hardware. A notable exception is the
gesture recognition system in Amir et al. (2017), which was
designed to highlight the benefits of combining a dynamic vision
sensor with the TrueNorth processing chip. We think there
is great potential for fully event-based sensing and processing
systems, and given the success of conventional deep learning,
deep SNNs on neuromorphic hardware platforms seem like an
obvious choice. Initial demonstrations on simpler classification
tasks are encouraging (Orchard et al., 2013; Merolla et al., 2014;
Neil and Liu, 2014; Stromatias et al., 2015), but more research is
needed to create deep SNNs specifically tailored for event-based
sensor input.

Conventional machine learning has realized that a co-
development of algorithms and hardware is necessary by moving
toward low-bit precision or binary networks. The same is true
in the neuromorphic domain, and further adaptations of vision
sensors to the capabilities of post-processing systems have a great
potential. Once the performance of deep SNNs is good enough,
neuromorphic hardware implementations could become the
method of choice for applications, wherever low power is
of particular importance. Besides battery powered robots and
embedded devices, a particularly interesting application field
is brain-machine interfaces (Dethier et al., 2013; Corradi
and Indiveri, 2015; Boi et al., 2016), where small size, low
energy consumption, low heat dissipation, robustness, and the
ability to decode in real-time are important. The fact that

SNNs can process recorded biological spikes without further
transformation adds to the appeal of such systems. The field
of automated driving is expected to become another major
application area, where the focus is less on low power, but
on enhancing safety critical functions by exploiting speed and
dynamic range of neuromorphic sensors (Binas et al., 2017; Sironi
et al., 2018). On-board, SNNs can process sensor information
in real-time, potentially improving emergency brake assistants,
which have to deal with challenging light conditions as well as
suddenly appearing road users, or providing reliable perception
during evasive high-speed maneuvers.

Finally, deep SNNs and their hardware implementations will
continue to be used as models of computation in biological
neural circuits, and thus form a valuable tool for Computational
Neuroscience (Singh Thakur et al., 2018). Hardware platforms
such as SpiNNaker (Furber et al., 2014), Neurogrid (Benjamin
et al., 2014), TrueNorth (Merolla et al., 2014), and BrainScaleS
(Schemmel et al., 2010) have shown great potential to accelerate
large-scale brain simulations. Recently discovered analogies of
real neural representations in the cortex to those learned in deep
networks (Kriegeskorte, 2015; Yamins and DiCarlo, 2016) have
increased the interest of the neuroscience community in deep
learning, and deep SNNs could become an interesting tool to
study the interplay of neuronal structure, plasticity, and spiking
dynamics in large-scale simulations.

6. DISCUSSION

Advances in deep SNNs have helped closing the performance
gap to conventional DNNs. However, the promise of low-power
inference is not fulfilled yet, since network conversion (section
3.2) and training of constrained networks (section 3.3) result in
spike-based networks that encode information mostly in their
neurons’ mean firing rates, but do not exploit the potential of
encoding information in the timing of single spikes. Although
these networks achieve a remarkable performance on various
benchmark datasets, the average firing rates of their neurons
are comparably high for static input images, and hence their
energy-efficiency on neuromorphic systems is not significantly
better than for conventional DNNs on GPUs (section 4). To
reduce firing rates and increase energy-efficiency spike-based
training methods (section 3.4) and local learning rules (section
3.5) have become increasingly popular research topics. Their
accuracy onmachine learning benchmarks is not quite at the level
of converted networks, but recent approaches by Lee et al. (2016)
or Jin et al. (2018) could partly close the gap. Besides, the choice of
benchmarks that usually consist of frame-based images converted
to spiking representations (section 2) puts spike-based rules at a
disadvantage. Finding local learning rules that can achieve the
same performance as backpropagation would be a result with
great implications beyond machine learning applications, since
it could possibly explain how brains can learn their remarkable
capabilities with the constraints for information and error signal
routing imposed by biology (Bengio et al., 2015a).

We have argued in section 5 that further opportunities for
deep SNNs will arise when appropriate benchmark datasets
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recorded with event-based sensors become available. The rise
of deep learning has largely been driven by the availability
of large common benchmarks such as ImageNet (Russakovsky
et al., 2015). Similarly large and challenging neuromorphic
datasets are not available, yet, but we see a positive trend
and increased awareness of the community. First benchmarks
for real-world applications in automated driving (Binas et al.,
2017; Sironi et al., 2018) and robotics (Mueggler et al., 2017)
have been released, and together with convincing results on
problems where conventional systems struggle (Kim et al., 2016;
Vidal et al., 2018), we expect that this will lead to increasing
demand for efficient event-based post-processing systems. Fully
event-based systems are not only energy-efficient, but could
also better exploit the rich temporal dynamics of the real
world than frame-based approaches, which artificially introduce
time steps through sensing or processing components. For
agents interacting with the real world, temporal information
on different time-scales plays an important role, because
critical situations require short reaction times hardly accessible
by frame-based perception. Deep SNNs have the important
property of providing good early estimates, which improve
when given more processing time (see Figure 1F). Although
mechanisms to provide early estimations are also proposed
for conventional DNNs (e.g., Teerapittayanon et al., 2016),
their implementations are rather artificial and not as seamlessly
integrated as in SNNs. Fischer et al. (2018) proposed a hybrid
solution between conventional DNNs and deep SNNs, called
streaming rollouts, which are conventional synchronous DNNs
that share a dense temporal integration and fast response times
with deep SNNs.

A future direction of research may be the incorporation
of recurrence into deep SNNs improving the storage and
integration of temporal information. Recurrent SNNs have
shown remarkable performance in sequence recognition (Zhang
et al., 2015; Panda and Srinivasa, 2018) and generation tasks
(Rajan et al., 2016; Panda and Roy, 2017). In these cases, instead
of a deep or structured recurrent architecture the networks were
configured as liquid state machines (Maass et al., 2002), which
consist of a reservoir of randomly and recurrently connected
neurons, followed by a linear readout. Recent work (e.g., Diehl
et al., 2016; Bellec et al., 2018) have shown how standard
recurrent network architectures such as long short-termmemory
networks (LSTMs, Hochreiter and Schmidhuber, 1997) can be
ported into the spiking domain, whereas Neil et al. (2016b)
have shown a way to process event-based data with otherwise
standard recurrent networks. Combining recurrent architectures
with the intrinsic short-time memory of spiking neurons appears
as a promising route for efficiently solving real-world pattern
recognition tasks.

As deep SNNs become larger and capable of solving tasks
that are more complex, training time is likely to become a
bottleneck due to the more complex training methods compared
to conventional DNNs, as well as inefficient spiking simulations
on conventional computing platforms. It is therefore important
to advance neuromorphic hardware systems for large-scale deep
SNNs, and not only consider energy-efficient inference, but
also training. Efficient training can be either realized via on-
chip learning rules like STDP as discussed in section 4.2, by
using neuromorphic systems in-the-loop, i.e., computing weight
updates on the host computer and then re-configuring the
hardware system, or by hybrid solutions. However, contemporary
neuromorphic systems share a comparably low bandwidth to
the host computer, usually sufficient for spike input and output,
but inappropriate for a frequent re-configuration of the device.
This is why the development and investigation of hierarchies of
learning rules both on algorithmic and hardware level, ranging
from in-memory plasticity rules like STDP to global reward
signals, would be a valuable topic for future studies. Friedmann
et al. (2017) and Lin et al. (2018) already proposed architectures
that go into this direction, and it will be interesting to see first
large-scale experimental results and further developments in the
near future. Although such systemsmay allow for the exploration
of networks with a size and complexity not accessible with
current hardware systems, their development is time consuming,
costly, and will most likely not offer the flexibility to catch up
with the latest algorithmic developments. Compared to digital
systems, analog systems promise a higher energy-efficiency.
However, the training of analog systems requires additional
efforts (see section 4.1) and the short- and long-term variations in
their parameters and computations, e.g., caused by temperature
fluctuations, pose great challenges.
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