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The functional role of high beta oscillations (20–35 Hz) during feedback processing
has been suggested to reflect unexpected gains. Using a novel gambling task that
separates gains and losses across blocks and directly compares reception of monetary
rewards to a ‘no-reward/punishment’ condition with equal probability we aimed to
further investigate the role of beta oscillations. When contrasting different feedback
conditions across rewards, we found that a late low beta component (12–20 Hz) had
increased in power during the omission of rewards relative to the reception of rewards,
while no differences were observed during the loss domain. These findings may indicate
that late low beta oscillations in the context of feedback processing may respond to
omission of gains relative to other potential outcomes. We speculate that late low beta
oscillations may operate as a learning mechanism that signals the brain to make future
adequate decisions. Overall, our study provides new insights for the role of late low beta
oscillations in reward processing.

Keywords: beta oscillations, EEG, time-frequency analysis (TFA), reward, risky decision making, feedback, gain
omission, prediction error

INTRODUCTION

Effective decision-making crucially relies on the ability to improve decisions based on the
evaluation of feedback. A learning (e.g., prediction-error) signal is computed after observing the
outcome generated by each choice which are used to improve the quality of future decisions (Rangel
et al., 2008). There is growing interest in the neural mechanisms associated with the processing of
rewarding feedback. Using electroencephalography (EEG), many studies attempt to explore the
neural mechanisms of feedback learning by examining neural oscillations. Specifically, many have
attempted to explore the functional role of high beta oscillations (20–35 Hz) between 200 and
400 ms which tend to increase in oscillatory power in response to monetary gains compared to
monetary losses (Marco-Pallerés et al., 2008).

A further exploration in a follow up experiment demonstrated that beta oscillations tend
to respond to rare rewarding events. When comparing cued gain and loss incentives with
high or low probability, beta oscillations were stronger in power when the probability of cued
rewards had a low relative to a high probability (HajiHosseini et al., 2012), suggesting that
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feedback-related beta oscillations are sensitive to the reception
of unexpected gains (Marco-Pallerés et al., 2015). However, a
further attempt to explore this hypothesis reveal no association
between probability of outcome, expected value nor reward
prediction errors manifested by beta band rhythm (HajiHosseini
and Holroyd, 2015b).

Perhaps one possible drawback to the above-mentioned
studies is that monetary gains are typically compared directly
with monetary losses, neither of which may serve as an adequate
baseline (Proudfit, 2015) since gains and losses typically induce
neural activity of distinct neural networks (see Mohr et al.,
2010 for meta-analysis). Therefore, the functional role of beta
oscillations is still open for debate and further investigation is
necessary (see Luft, 2014 for review).

For this study we aimed to investigate the functional role of
beta oscillations by comparing gains and losses separately with a
“no gain” and a “no loss” feedback condition. To achieve this goal,
we employed a novel risky decision-making task that allows one
to compare the reception and omission of monetary incentives
separately for gains and losses (Yaple et al., 2017, 2018). This
task requires participants to select between risky and safe options,
depending on whether to switch or repeat task-sets.

The purpose of this task design was to further explore
the functional role of beta oscillations using a risky decision-
making paradigm with gains and losses portrayed across
blocks. Rather than manipulating probability between
trials, this paradigm will allowed us to compare feedback
associated with uncertain (risk) outcomes relative to feedback
produced from certain (safe) outcomes separately across
gains and losses. Based on the prior study that shown how
frontal beta oscillations respond to reward valence but not
probability (HajiHosseini and Holroyd, 2015b), we predicted
a change in power within the high beta range specifically for
gains.

We aimed to compare feedback display representing the
reception and omission of gains and losses with an uncertain
outcome (±50 monetary units [MU] with a probability of 50%),
relative to a certain outcome (±25 MU with a probability of
100%). Moreover, using trial by trial analysis we aim to test
whether power of beta oscillations may predict risky decision
making. Together our analyses will allow us to explore whether
beta oscillations are responsive to gain or loss events and to
assess whether this signal may facilitate decisions in upcoming
trials.

MATERIALS AND METHODS

Participants
Twenty-five healthy participants (23 right-handed; 18 females;
mean age 21.61; age range 18–34 years; and SD = 4.49)
with normal or corrected to normal vision and with no
neurological disorders participated in the study. All participants
provided a written consent approved by The Higher School of
Economics Committee on Interuniversity Surveys and Ethical
Assessment of Empirical Research in accordance with the
Declaration of Helsinki. All participants were screened for

psychological/psychiatric disorders and none of them reported
use of drugs or alcohol in the days preceding the experiment.

Stimuli and Procedure
We used a novel risky decision-making task – “rewarded
voluntary switch task” (see Yaple et al., 2017 for original design).
It combines the voluntary task switching paradigm (Arrington
and Logan, 2004, 2005; Arrington et al., 2014) with a two-
choice financial decision-making task (e.g., Selten et al., 1999;
Engelmann and Tamir, 2009; Harrison et al., 2013). This task
requires participants to select between risky or safe gambles,
depending on whether to voluntarily switch or repeat task-sets
(i.e., an Odd/Even game or a Higher/Lower game). The additional
rule of switching/repeating task sets is to ensure that participants
are motivated to attend to task rules. See Figure 1 for visual
representation of the paradigm.

Each trial begins with a centered fixation cross displayed
between 500 and 1000 ms followed by a screen containing a
single digit (1, 2, 3, 4, 6, 7, 8, or 9). To select between risky
and safe decisions participants must select one out of two task-
sets represented as an Odd/Even game or a Higher/Lower than 5
game by pressing one of the corresponding buttons (odd, even,
high, and low). For half of the blocks, repeating the same game
in successive trials would yield the safe decision while switching
between game types would yield a risky decision. In the other half
of the experiment, instructions are then counterbalanced such
that switching results in a safe decision and repeating leads to a
risky decision.

Gains and losses are separated across blocks. During gain
blocks, participants are instructed that safe decisions are defined
as “100% probability that you would receive 25 monetary units
(MU),” while risky decisions were defined as “50% probability
that you would receive 50 MU” (or alternatively 0 MU). In loss

FIGURE 1 | Switch-risk task. Risky decision making depends on voluntary
switching and repeating task-sets. Safe decisions yield 25 MU with a
probability of 100% whereas risky decisions yield 50 MU or 0 MU with a
probability of 50%. Figure represents trial in the “Switch = Risk” reward block.
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blocks, the safe decision are defined as “100% probability that
you would lose 25 MU” while risky decisions are defined as “50%
probability that you would lose 50 MU” (alternatively 0 MU).

For each response a feedback screen displayed for 2000 ms
indicated the amount of MUs rewarded or lost for that particular
trial. Positive feedback in gain blocks was 50 and 0 MU for
loss blocks. Negative feedback in gain blocks was 0 MU and
−50 MU for loss blocks. Neutral feedback was 25 and −25 MU
for gain and loss blocks, respectively. For risky choices, a random
generator displayed positive or negative feedback such that
the distribution of feedback type was not fixed but randomly
assigned. If response time exceeded 4000 ms or participants
responded erroneously participants viewed negative feedback
(e.g., 0 MU for gain block,−50 MU for loss blocks).

The experiment was programmed using E-Prime 2.0 software.
Stimuli were centered on the screen and remained on the screen
until a response was made. The text was displayed in black font
on a gray scale background and all participants were instructed
to use both hands. Participants received two rounds of training,
which consisted of eight blocks of 10 trials, resulting in 80 trials
in total. If accuracy was below 95% additional training sessions
were provided. This learning phase was reflected in the actual
experiment; accuracy for all except one participant (86%) was
above 92%.

Initially, nine participants received 16 blocks of 30 trials (480
trials total). Due to the notion that probability of feedback did
not vary between trials, choices varied between subjects, and that
a substantial amount of trials were removed from the analysis, a
potential problem with the analysis may be due to too few trials.
Therefore, the number of trials per block was increased to 40 trials
(640 trials total) for the remaining sixteen participants. After
performing the task, participants were shown the total cumulative
feedback on the computer screen. Participants received 500 MU
for participation (500 MU ≈ 7 USD) and an additional bonus,
between −300 and + 300 MU, based on the feedback outcomes
of six randomly selected trials to maintain an equal motivation
for risky decision making across blocks (see Krajbich et al.,
2012).

EEG Recording
The EEG data were recorded with BrainAmp amplifiers and
BrainVision Recorder software (Brain Products GmbH, Munich,
Germany) using silver ActiCap active scalp electrodes mounted
in an elastic cap located at 60 standard positions according
to the international 10–20 system. The electrophysiological
signals were filtered online using a sampling rate of 500 Hz
in the frequency range 0.2–100 kHz. Impedances were kept
<10 k�. Electrooculogram were recorded with electrodes placed
at both lateral canthi and below the left eye. EEG signals were
referenced to the mean of the activity at the two mastoid
processes.

Data preprocessing of the EEG data was performed using
BrainVision Analyzer 2.0. First, signals in bad channels
were replaced using nearest-neighbor interpolation. Second,
a bandpass filter (0.1–40 Hz) was applied to the data,
after which eye-blink- and eye-movement-related activity was
suppressed in the data using independent component analysis.

Finally, intervals containing non-systematic artifacts produced
by electromyographic activity, skin potentials and other sources
were manually rejected from the data. Across subjects, 10.1%
(σ = 0.090) of trials were excluded from the analysis. For the
first group, the mean number of trials excluded from the analysis
was 15.6% (σ = 0.123); for the second group 8.0% (σ = 0.061) of
trials were excluded. The mean number of valid trials included
in EEG analysis across each condition for all subjects was
80.7 (range: 66–101 trials). The range of trials removed from
each group was: 0–40 (from 480 trials) and 0–63 (from 640
trials).

Time-Frequency Power Analysis
EEG analysis for each feedback (positive, neutral, and negative)
x valence (gain, loss) condition was performed using Brainstorm
(Tadel et al., 2011), which is documented and freely available for
download online under the GNU general public license1.

Single trial time-frequency analysis was performed on a time
window between −1000 and 2000 ms for each condition. For
each trial, the segmented EEG data was convolved with a complex
Morlet wavelet (from 1 to 40 Hz, linear increase). The frequency
and time resolution of were set at the default settings (temporal
resolution of 3 s at frequency 1 Hz) in Brainstorm, which
uniquely define the temporal and spectral resolution of the
wavelet for all other frequencies (Tadel et al., 2011). Changes
in time varying energy (i.e., event-related spectral perturbations:
(x−µ) / (µ∗100)) with respect to pre-stimulus baseline (−200
to −1 ms) were computed per condition and averaged for each
subject.

Statistical Analysis
Response times of risky and safe decisions were analyzed
across gains and losses using a repeated measures analysis of
variance (ANOVA) and a Bonferroni correction procedure.
To determine whether the percentage of selected risky
gambles was above or below chance level (µ = 50%), a
one sample t-test across all conditions was computed. In
addition, a paired sample t test was computed to assess
whether percentage of selected risky gambles differed
between gain and loss blocks. Cohen’s d was used as the
calculation for effect size for one-sample and paired t tests;
partial eta squared was used to estimate effect size for the
ANOVA tests. Incorrect trials and trials in which participants
responded longer than 4000 ms were excluded from the
analysis.

Mean beta power (12–20 Hz) was calculated for FCz, FC1,
FC2, Cz, C1, C2, CPz, CP1, and CP2 electrode positions
for each feedback and valence condition within the 700–
1000 ms post-response time window and entered into a repeated
measures ANOVA test. Greenhouse-Geisser correction was
applied.

The selection of the specific frequency band, latency
interval, and electrode positions was purely data-driven and
based on statistical analysis of the ERSP data averaged over
the experimental conditions (the analysis was orthogonal to

1http://neuroimage.usc.edu/brainstorm
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our main analysis). The ERSP data was tested against zero
using permutational statistics on t-score maps transformed
with the TFCE (threshold-free cluster enhancement)
algorithm (see Novikov et al., 2015, 2017 for prior examples;
also see Smith and Nichols, 2009). For more details, see
Supplementary Materials. The analysis was performed
using a custom-written Matlab scripts (The MathWorks,
Inc.).

Post hoc Testing
To assess whether the spectral power density of beta frequency
influenced risky decisions in the following trial, we included
several generalized linear models (GLMs) with a logit link
function, performed separately for gains and losses. Spectral
power density is characterized by the distribution of power
for each frequency range within a specified time series (Duff
et al., 2008). Predictors for these models included: positive
feedback (with neutral feedback as reference), negative feedback
(with neutral feedback as reference), beta (12–20 Hz), and theta
(4–8 Hz) power spectral density. To compare these results,
we also computed two GLMs with negative feedback as the
reference variable corresponding with gains and losses. Theta
power spectral density was included in the first two models
to control for frequency specificity of beta (Tables 1, 2),
yet in further analysis we also computed GLMs excluding
theta power as a predictor (see Supplementary Tables 1, 2),
corresponding to neutral and negative feedback as the reference
variable, respectively. Wald tests (Kuznetsova et al., 2016)
were performed on all levels up to 2 interactions. Analysis
of the GLMs were performed using R software (R Core
Team, 2016) with the software package lme4 (Bates et al.,
2014) and lmertest (Kuznetsova et al., 2016). Family-wise
error rate was controlled using a Holm-Bonferonni correction
procedure.

Source Analysis
For the beta frequency component, source localization
for each feedback condition across gains and losses were
performed on single trials between 12 and 20 Hz between
the 700–1000 ms time window. A default anatomy of the
standard MNI brain was used to compute a head model
using OpenMEEG software (Gramfort et al., 2010) with a
symmetric boundary element model as an EEG forward
model of volume currents. Prior to source-localization, a noise
covariance matrix was calculated based on the prestimulus
interval between −500 and 0 ms to estimate the level
of noise among the electrodes. Cortically unconstrained
source-localization was performed on each trial using
the standardized low resolution brain electromagnetic
tomography (LORETA) technique. For each subject we
calculated sources using a low spatial resolution of 2000
vertices and projected the grand averages to 15000 vertices
to increase spatial resolution for the images. Resulting
source maps per subject were averaged across trials for
each condition. For visualization purposes, the source
activation maps were thresholded to only show activations

of 10 adjacent vertices or more with at least 40% of the maximum
amplitude.

RESULTS

Behavioral Analysis: Descriptive
Statistics
Participants performed the task correctly: mean accuracy was
96.7% (σ = 0.029). Overall subjects preferred risky decisions
(58.2%, σ = 0.121) more often than safe decisions (p = 0.003,
Cohen’s d = 0.672; one sample t-test). Additional one sample
t-tests on risky decisions also revealed a significant preference for
risky decisions compared to safe decisions for both gains (60.34%
risk) and losses (56.29% risk; See Figure 2A for individual
scores of risky decision-making). The number of risky decisions
across gains and losses blocks differed; the proportion of risky
decisions was significantly greater in loss blocks compared to
gain blocks (p = 0.020, Cohen’s d = 0.398; paired sample
t-test), indicating a trend to select risky decisions more in
loss blocks compared to gain blocks. On average participants
responded more slowly when they selected safe decisions than
risky decisions (F1,24 = 9.566, p= 0.005, and partial η2

= 0.285)
and more slowly in the loss condition compared to the gain
condition (F1,24 = 17.867, p < 0.001, and partial η2

= 0.427).
The interaction effect of valence and decision on reaction times
was not significant (p= 0.690).

Beta Power: Time-Frequency Analysis
Unexpectedly, a late low beta (12–20 Hz) frequency component
during the feedback display between 700 and 1000 ms was
shown. Individual scores for beta power are shown in Figure 2B.
Beta oscillations were significantly greater in power during the
negative feedback condition in gain blocks. This was reflected
in a three-way interaction effect between valence, feedback, and
electrode which had a moderate effect size (F16,384 = 2.481,
p= 0.001, and partial η2

= 0.094). Post hoc comparisons revealed
a significant increase in beta power during processing of negative
feedback as compared to positive and neutral feedback for gain

FIGURE 2 | Boxplots representing (A) risky decision making across valence
and (B) beta power across each condition for each individual.
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FIGURE 3 | Time-frequency power (total) across negative (+0 MU), neutral (+25 MU) and positive (+50 MU) feedback for gain blocks. (A) Time-frequency plots at
channel FCz displaying the changes in power from 700 to 1000 ms with respect to the pre-stimulus baseline (–200 to 0 ms). (B) Beta (12–20 Hz) source activity
corresponding to each feedback type displayed for top, left medial, right medial and frontal views. Source activation maps are based on a minimum of 30 vertices
with an amplitude threshold value is set to 30%. (C) Time-course of mean beta power with standard error bars in negative (red), neutral (green), and positive (blue)
feedback conditions. (D) Scalp topographies plotted at 800 ms post-feedback for 15 Hz.

blocks from all fronto-central electrode positions (all p < 0.05)
but not CPz, CP1, and CP2. No differences were observed
between neutral and positive feedback in the gain domain
and no differences were observed across feedback conditions
within the loss domain (all p > 0.05). Overall, these results
suggest that changes in beta power oscillations have a specific
role for gains, particularly during the omission of gains. See
Figures 3, 4 for time-frequency maps, separated across gains and
losses.

The repeated measures ANOVA also revealed a statistical
significant moderate effect of feedback on beta power
(F2,48 = 4.868, p = 0.012, and partial η2

= 0.169), indicating
an increase in mean power of beta oscillations for negative
compared to neutral feedback (p = 0.044) and positive feedback
(p = 0.029). No other differences were observed between neutral
and positive feedback (p= 0.530). The interaction effect between
electrode and feedback (F16,384 = 3.639, p < 0.001, and partial
η2
= 0.132) was significant, demonstrating greater oscillatory

power for negative feedback compared to neutral and positive
feedback at electrodes FCz, FC2, Cz, C1, and C2.

To further support the claim that beta power oscillations
were specific to the omission of gains, we tested the differences
in beta frequency power across gains and losses producing no
monetary value (i.e., +0 MU for gains versus −0 MU for losses).
This contrast allowed us to deduce whether beta oscillations
were sensitive to gain omission, and not necessarily to the
monetary value. A direct comparison between negative feedback
during gain blocks (+0 MU) and positive feedback during loss
blocks (−0 MU) relieved a two-way interaction effect between
feedback and electrode (F8,192 = 3.279, p = 0.002, and partial
η2
= 0.120). Post hoc corrections revealed greater beta power

from negative feedback (−0 MU) in the gain context compared
to positive feedback in loss context for electrodes FCz, FC2,
Cz, C1, C2, and CPz. Overall, this finding demonstrated greater
beta power for “no gains” ( + 0 MU) compared to “no losses”
(−0 MU). In addition, the main effect of feedback was significant
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FIGURE 4 | Time-frequency power (total) across negative (–0 MU), neutral (–25 MU) and positive (–50 MU) feedback for loss blocks. (A) Time-frequency plots at
channel FCz displaying the changes in power from 700 to 1000 ms with respect to the pre-stimulus baseline (–200 to 0 ms). (B) Beta (12–20 Hz) source activity
corresponding to each feedback type displayed for top, left medial, right medial and frontal views. Source activation maps are based on a minimum of 30 vertices
with an amplitude threshold value is set to 30%. (C) Time-course of mean beta power with standard error bars in negative (red), neutral (green), and positive (blue)
feedback conditions. (D) Scalp topographies plotted at 800 ms post-feedback for 15 Hz.

(F1,24 = 5.488, p = 0.028, and partial η2
= 0.186) with greater

beta power for negative feedback in the gain context compared to
positive feedback in the loss context (p= 0.028).

We next determined whether there were differences between
negative feedback across gain and loss contexts (i.e., +0 MU for
gains versus −50 MU for losses). No differences were observed
for this contrast. Finally, we compared neutral feedback across
domains (i.e.,+25 MU for gains versus−25 MU for losses). This
contrast also revealed no significant effects.

For all feedback conditions beta oscillations were localized to
the right frontal cortex, left parietal cortex, and medial frontal
structures, possibly overlapping with the medial frontal cortex
and the striatum. These source estimations seem to correspond
with prior lesion studies (Pujara et al., 2015) and fMRI studies
(Wrase et al., 2007; Pedroni et al., 2011) and when comparing the
reception and omission of gains and losses.

Beta Oscillations and Risky Decisions
Since beta oscillations were specific to gain blocks, corresponding
to previous studies showing an increase in beta power during
gains compared to losses (Cohen and Ranganath, 2007; Marco-
Pallerés et al., 2008, 2015; Cunillera et al., 2012; HajiHosseini
et al., 2012), we aimed to perform a series of GLMs to predict
whether beta power in the current trial (t) can predict the
selection of risky decisions in the following trial (t + 1) within
gain (Table 1A) and loss blocks (Table 1B). The rationale
for this analysis is that if beta power density on the current
trial can predict an increasing trend to select risky decisions
in the following trial yet specifically for gain blocks, then
perhaps changes in beta oscillations may shed light on the
differences between decision making within gain and loss blocks.
GLMs were performed with neutral feedback as a reference
variable for positive and negative feedback. For comparison, two
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TABLE 1 | Generalized Logistic Model (GLM) predicting risk decision making in the following trial for rewards (A) and losses (B) with neutral feedback as the reference
variable.

β SE z-value p-value p′

(A) GLM for rewards with neutral feedback as reference

Theta PSD −0.155 0.058 −2.672 0.007 0.063

Beta PSD 0.094 0.046 2.025 0.042 0.378

Fb (+50) 0.246 0.066 3.693 2.2 × 10−4 0.002

Fb (+0) 0.271 0.066 4.065 4.8 × 10−5 4.32 × 10−4

Theta∗Beta PSD 0.019 0.025 0.756 0.449 >0.999

Theta PSD∗Fb (+50) 0.112 0.069 1.616 0.106 0.954

Theta PSD∗Fb (+0) 0.008 0.069 0.124 0.901 >0.999

Beta PSD∗Fb (+50) −0.390 0.080 −4.883 1.05 × 10−6 9.45 × 10−6

Beta PSD∗Fb (+0) −0.130 0.074 −1.751 0.079 0.711

(B) GLM for losses with neutral feedback as reference

Theta PSD −0.050 0.056 −0.891 0.372 >0.999

Beta PSD 0.061 0.052 1.184 0.236 >0.999

Fb (−0) 0.606 0.658 9.197 <2 × 10−16 1.8 × 10−15

Fb (−50) 0.494 0.066 7.438 1.02 × 10−13 9.18 × 10−13

Theta∗Beta PSD 0.024 0.025 0.977 0.328 >0.999

Theta PSD∗Fb (−0) 0.123 0.074 1.654 0.098 0.882

Theta PSD∗Fb (−50) −0.079 0.078 −1.020 0.307 >0.999

Beta PSD∗Fb (−0) −0.197 0.080 −2.453 0.014 0.126

Beta PSD∗Fb (−50) −0.116 0.072 −1.601 0.109 0.981

Spectral power density was extracted from each trial between 4 and 8 Hz (Theta PSD) and 12 and 20 Hz (Beta PSD). Bold font indicates statistical significance after
Holm-Bonferroni correction. β, Beta coefficient represent standardized effect sizes; SE, Standard error of the mean; z-value based on Wald test; PSD, Power Spectral
Density; p′, corrected p value; and Fb, Feedback.

additional GLMs were performed using negative feedback as a
reference variable for feedback, separately for gains and losses
(see Tables 2A,B). This statistical procedure was performed to
cross-check the validity of the GLM analysis, as was done in a
previous study (see Yaple et al., 2017).

First of all, our results reveal main effects of positive and
negative feedback for both GLMs reflecting gain and loss blocks.
Within the gain blocks, positive compared to neutral feedback
(β = 0.271; p′ = 4.32× 10−4), and negative compared to neutral
feedback (β = 0.246; p′ = 0.002) predicted risky decisions in the
next trial (Table 1A). For the loss blocks, positive compared to
neutral feedback (β = 0.606; p′ = 1.8 × 10−15), and negative
compared to neutral feedback (β = 0.494; p′ = 9.18 × 10−13)
predicted risky decisions in the next trial (Table 1B). These effects
may suggest that risky decisions (positive and negative feedback)
promote the tendency to select risky decisions in the next trial.

Furthermore, GLMs representing gain blocks (Tables 1A, 2B)
revealed significant interaction effects between beta power
density × positive feedback. This is confirmed in both the GLM
using neutral feedback as a reference variable (β = −0.390;
p′ = 9.45 × 10−6; Table 1A) and the GLM using negative
feedback as a reference variable (β = −0.260; p′ = 0.036;
Table 2A). This interaction effect suggests that a decrease in beta
power during positive feedback corresponds to an increase of
number of risky decisions in the following trial.

In summary, power of beta oscillations increased during gain
omission and predicted a decrease in risky taking in next trials
within the gain blocks. Taken together, beta oscillations may
signify a reward learning mechanism which modulates future

decisions. Perhaps this learning mechanism plays a specific
role in risky decision making in the context of uncertain
gains.

DISCUSSION

Previous studies have revealed a mid-frontal beta oscillatory
activity between 20 and 35 Hz elicited by gain compared to loss
outcomes (Cohen and Ranganath, 2007; Marco-Pallerés et al.,
2008; Cunillera et al., 2012; HajiHosseini et al., 2012). Marco-
Pallerés et al. (2015) suggested that beta oscillatory activity
underlies the cross-talk between reward, memory and attention
processes following rewarding events. The aim of this research
was to further test the specificity of beta oscillations to gains.

We recorded EEG while participants performed a task that
yielded reception and omission of monetary incentives separately
for gains and losses. Rather than demonstrating a high beta
component, the results demonstrated a significant moderate
effect of late low beta band (12–20 Hz) for negative feedback
in the gain context, but not for the loss context. Specifically,
when participants selected risky gambles a significant increase
in beta power during the omission of gains (negative feedback)
compared to the reception of gains (positive feedback) was found.
This increase in beta power during the omission of gains was also
significant when compared to reception of gains after selecting
the safe option (neutral feedback).

Additional analysis was performed to test whether beta
oscillations during the omission of gains differed from the

Frontiers in Neuroscience | www.frontiersin.org 7 October 2018 | Volume 12 | Article 776

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00776 October 27, 2018 Time: 17:17 # 8

Yaple et al. Power Beta Reflect Gain Omission

TABLE 2 | Generalized Logistic Model (GLM) predicting risk decision making in the following trial for rewards (A) and losses (B) with negative feedback as the reference
variable.

β SE z-value p-value p′

(A) GLM for rewards with negative feedback as reference

Theta PSD −0.146 0.061 −2.365 0.018 0.162

Beta PSD −0.035 0.067 −0.519 0.603 >0.999

Fb (+50) −0.025 0.071 −0.357 0.721 >0.999

Fb (+25) −0.271 0.066 −4.065 4.8 × 10−5 4.32 × 10−4

Theta∗Beta PSD 0.019 0.025 0.756 0.449 >0.999

Theta PSD∗Fb (+50) 0.103 0.072 1.426 0.154 >0.999

Theta PSD∗Fb (+25) −0.008 0.069 −0.124 0.901 >0.999

Beta PSD∗Fb (+50) −0.260 0.092 −2.828 0.004 0.036

Beta PSD∗Fb (+25) 0.130 0.074 1.751 0.079 0.711

(B) GLM for losses with negative feedback as reference

Theta PSD −0.130 0.065 −1.979 0.047 0.423

Beta PSD −0.054 0.070 −0.776 0.437 >0.999

Fb (−0) 0.111 0.071 1.555 0.120 >0.999

Fb (−25) −0.494 0.066 −7.438 1.02 × 10−13 9.18 × 10−13

Theta∗Beta PSD 0.024 0.025 0.977 0.328 >0.999

Theta PSD∗Fb (−0) 0.203 0.083 2.439 0.014 0.126

Theta PSD∗Fb (−25) 0.079 0.078 1.020 0.307 >0.999

Beta PSD∗Fb (−0) −0.081 0.089 −0.915 0.360 >0.999

Beta PSD∗Fb (−25) 0.116 0.072 1.601 0.109 0.981

Spectral power density was extracted from each trial between 4 and 8 Hz (Theta PSD) and 12 and 20 Hz (Beta PSD). Bold font indicates statistical significance after
Holm-Bonferroni correction. β, Beta coefficient represent standardized effect sizes; SE, Standard error of the mean; z-value based on Wald test; PSD, Power Spectral
Density; p′, corrected p value; and Fb, Feedback.

omission of losses; i.e., we compared neural responses to
omission of gain (+0 MU) and loss blocks (−0 MU; see
Holroyd et al., 2004; Nieuwenhuis et al., 2005 for a similar
approach). This analysis revealed a significant increase in
beta power during the omission of gains compared to the
omission of losses. We independently tested whether beta
activity during negative feedback in the gain domain was
significantly different compared to negative feedback in the
loss domain. This contrast revealed no effect of valence or
feedback. Finally, we also compared neutral feedback under
gains and losses. This contrast revealed significantly greater
power in losses compared to gains, which corroborates the
low power of beta oscillations in the gain-neutral feedback
condition.

Supplementary to the time-frequency analysis, we calculated
source estimates of the low late beta component. Beta oscillations
across all conditions were localized within the right prefrontal
cortex, medial frontal cortex, left parietal cortex, and the striatum,
corresponding to previous studies (Wrase et al., 2007; Pedroni
et al., 2011; Pujara et al., 2015), which suggests that beta
oscillations in the current study were not exclusively related to
motor activity. Overall, our results support specificity of low
late beta oscillations for processing of gains yet emphasize that
beta-activity may be associated with the omission of gains.

An important distinction between the current results and
prior studies relate to the spectral and temporal counterparts
of beta oscillations. In the current study, beta oscillations were
relatively low in frequency (12–20 Hz) and late in time (700–
1000 ms) compared to previous studies (Marco-Pallerés et al.,

2008, 2015; HajiHosseini et al., 2012; Leicht et al., 2013; Mas-
Herrero et al., 2015; see Luft, 2014 for review). To date, only
few studies investigating feedback processing have reported an
increase in low beta power at around 800 ms (HajiHosseini
et al., 2012; Leicht et al., 2013; Luft, 2014; Pornpattananangkul
and Nusslock, 2016; Novikov et al., 2017). For example, when
comparing low to high probable rewards HajiHosseini et al.
(2012) revealed an increase in low beta power between 700
and 000 ms, resembling a similar pattern of activity in the
current experiment. In another study, late low beta oscillations
increased in power during the ‘no-reward’ compared to a ‘reward’
condition using a delayed discounting task (Pornpattananangkul
and Nusslock, 2016).

Although no explanation has been provided to explain the
functional role of this late beta frequency component, others have
offered the possibility that multiple beta frequency components
may co-occur during feedback processing (Luft, 2014). For
example, Luft (2014) suggest that an additional beta component
between 17 and 24 Hz may reflect a learning mechanism
that orchestrates sensorimotor processing in response to errors
by strengthening responses associated with wins and weaken
responses associated with losses. However, it is unlikely that low
beta oscillations in the current study are strictly attributed to
sensorimotor processing since they were localized to the right
frontal and left parietal regions, corresponding to the topographic
distribution of a late beta frequency component at around 15 Hz
after losses (Leicht et al., 2013).

Secondly, the source localization of the current study showing
activity within the right lateralized frontal area corresponds
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with high-beta oscillations in an earlier study (HajiHosseini
and Holroyd, 2015a), which may indicate that high and low
frequency oscillations reflect intersecting oscillating processes.
Modeling studies have suggested that low beta might be the result
of cross-frequency interactions between high beta and gamma
oscillations (Kramer et al., 2008; also see Roopun et al., 2008).
Finally, while in previous studies the monetary gambling task was
used to induce positive (reward) and negative (loss) feedback,
our experiment used a novel task design that induces positive
and negative feedback separately across gain and loss blocks by
means of a risk-taking component. Due to the differences in
study designs it is unclear whether our results reveal similar
or different mechanism as prior studies reveal. Hence, further
testing is necessary to explore the role of the late low beta
component.

Importantly, probability, expected value, and magnitude of
outcomes remained constant throughout the entire experiment
and thus cannot account for the increase of beta oscillatory
activity observed during the omissions of gains. This finding
corresponds with the previous study demonstrating no change
in beta power synchrony under manipulations of probability
and expected value (see HajiHosseini and Holroyd, 2015b).
Instead, we suggest that changes in beta power may reflect
the subjective experience of relative feedback in which the
omission of gains is compared in hindsight to other potential
outcomes. This interpretation coincides with a recent fMRI
study that demonstrated successful avoidance of losses is
processed as a positive value because this value is computed
relative to the value of its choice context (Palminteri et al.,
2015). In contrast, an unsuccessful event in the gain domain
(reward omission) may be valued as a negative monetary
value since this value is computed relative to other alternative
outputs. Therefore, higher power of late low beta component
may be functionally related to negative monetary value. This
premise accounts for our results since the power of beta
oscillations were most robust for feedback conditions in which
no monetary outcome was rewarded (+0, −0, −25, and
−50).

To explore the functional role of beta oscillations on risky
decision making, we also investigated whether beta power density
on each trial would predict the tendency to select risky decisions
on the following trial. The GLM predicting risky decision making
in the following trial demonstrated an interaction effect between
beta oscillatory power and positive feedback, yet specifically
for gain blocks. The relationship between the interaction (beta
PSD× positive feedback) and risky decision making was negative
(i.e., β = −0.390), suggesting that during positive feedback
a decrease in beta oscillatory power reflects an increase in
risky decision making in the following trial. This suggests
that the reduction in beta power during the negative feedback
display motivates one to select risky decisions in following
trials.

To interpret this result, we propose a reward learning
mechanism marked by changes in beta oscillations between
trials. When receiving positive feedback, an increase in
beta power reinforces the decision maker to continue to
select risky gambles. However, during the absence of gains,

a violation of rewards occurs in which the gain omission
relative to alternative prospective outcomes results to an
increase in beta oscillatory power as the result of perceiving
gain omission as a “loss” (see Palminteri et al., 2015 for
more details). In turn, this reward violation decreases
the tendency to select future risky gambles. Perhaps this
reward learning mechanism concurs with the anticipatory
affect model of choice proposed by Knutson and Greer
(2008). The anticipatory affect as marked by various events
(including unexpected positive versus negative events) influences
subsequent choice.

Perhaps this proposed reward learning mechanism may also
explain the observed results in a prior experiment in which
induced 20 Hz transcranial electric current stimulation increased
risky decision making (Yaple et al., 2017). As the result of
perturbing the endogenous beta oscillations underlying this
mechanism, participants had not experienced a sense of reward
violation, and henceforth overcompensated by increasing the
tendency to select risky gambles.

CONCLUSION

In the current study we showed that late low beta oscillations
between 12 and 20 Hz are functional sensitive to gain omission
relative to other potential gains. Furthermore, beta oscillations
elicited by positive feedback in the gain domain were negatively
associated with risky decision making in the following trial.
From these two novel findings, we propose a reward learning
mechanism by which the power of beta oscillations manifested by
outcome violation, motivates responders to change subsequent
choices as a means to compensate for reward omission
on the current trial. We further contend that due to the
novelty of this finding, further work is necessary to determine
whether late low beta oscillations reflect a similar or alternative
feedback-related beta component reported in the high beta
range.
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