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Mild cognitive impairment (MCI) is the prodromal stage of Alzheimer’s disease (AD).
Identifying MCI subjects who are at high risk of converting to AD is crucial for effective
treatments. In this study, a deep learning approach based on convolutional neural
networks (CNN), is designed to accurately predict MCI-to-AD conversion with magnetic
resonance imaging (MRI) data. First, MRI images are prepared with age-correction and
other processing. Second, local patches, which are assembled into 2.5 dimensions,
are extracted from these images. Then, the patches from AD and normal controls (NC)
are used to train a CNN to identify deep learning features of MCI subjects. After that,
structural brain image features are mined with FreeSurfer to assist CNN. Finally, both
types of features are fed into an extreme learning machine classifier to predict the AD
conversion. The proposed approach is validated on the standardized MRI datasets from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. This approach achieves
an accuracy of 79.9% and an area under the receiver operating characteristic curve
(AUC) of 86.1% in leave-one-out cross validations. Compared with other state-of-the-art
methods, the proposed one outperforms others with higher accuracy and AUC, while
keeping a good balance between the sensitivity and specificity. Results demonstrate
great potentials of the proposed CNN-based approach for the prediction of MCI-to-AD
conversion with solely MRI data. Age correction and assisted structural brain image
features can boost the prediction performance of CNN.

Keywords: Alzheimer’s disease, deep learning, convolutional neural networks, mild cognitive impairment,
magnetic resonance imaging
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INTRODUCTION

Alzheimer’s disease (AD) is the cause of over 60% of dementia
cases (Burns and Iliffe, 2009), in which patients usually
have a progressive loss of memory, language disorders and
disorientation. The disease would ultimate lead to the death
of patients. Until now, the cause of AD is still unknown, and
no effective drugs or treatments have been reported to stop or
reverse AD progression. Early diagnosis of AD is essential for
making treatment plans to slow down the progress to AD. Mild
cognitive impairment (MCI) is known as the transitional stage
between normal cognition and dementia (Markesbery, 2010),
about 10–15% individuals with MCI progress to AD per year
(Grundman et al., 2004). It was reported that MCI and AD were
accompanied by losing gray matter in brain (Karas et al., 2004),
thus neuropathology changes could be found several years before
AD was diagnosed. Many previous studies used neuroimaging
biomarkers to classify AD patients at different disease stages or to
predict the MCI-to-AD conversion (Cuingnet et al., 2011; Zhang
et al., 2011; Tong et al., 2013, 2017; Guerrero et al., 2014; Suk et al.,
2014; Cheng et al., 2015; Eskildsen et al., 2015; Li et al., 2015;
Liu et al., 2015; Moradi et al., 2015). In these studies, structural
magnetic resonance imaging (MRI) is one of the most extensively
utilized imaging modality due to non-invasion, high resolution
and moderate cost.

To predict MCI-to-AD conversion, we separate MCI patients
into two groups by the criteria that whether they convert to
AD within 3 years or not (Moradi et al., 2015; Tong et al.,
2017). These two groups are referred to as MCI converters and
MCI non-converters. The converters generally have more severe
deterioration of neuropathology than that of non-converters.
The pathological changes between converters and non-converters
are similar to those between AD and NC, but much milder.
Therefore, it much more difficult to classify converters/non-
converters than AD/NC. This prediction with MRI is challenging
because the pathological changes related to AD progression
between MCI non-converter and MCI converter are subtle and
inter-subject variable. For example, ten MRI-based methods for
predicting MCI-to-AD conversion and six of them perform
no better than random classifier (Cuingnet et al., 2011). To
reduce the interference of inter-subject variability, MRI images
are usually spatially registered to a common space (Coupe et al.,
2012; Young et al., 2013; Moradi et al., 2015; Tong et al., 2017).
However, the registration might change the AD related pathology
and loss some useful information. The accuracy of prediction
is also influenced by the normal aging brain atrophy, with the
removal of age-related effect, the performance of classification
was improved (Dukart et al., 2011; Moradi et al., 2015; Tong et al.,
2017).

Machine learning algorithms perform well in computer-aided
predictions of MCI-to-AD conversion (Dukart et al., 2011; Coupe
et al., 2012; Wee et al., 2013; Young et al., 2013; Moradi
et al., 2015; Beheshti et al., 2017; Cao et al., 2017; Tong et al.,
2017). In recent years, deep learning, as a promising machine
learning methodology, has made a big leap in identifying and
classifying patterns of images (Li et al., 2015; Zeng et al., 2016,
2018). As the most widely used architecture of deep learning,

convolutional neural networks (CNN) has attracted a lot of
attention due to its great success in image classification and
analysis (Gulshan et al., 2016; Nie et al., 2016; Shin et al., 2016;
Rajkomar et al., 2017; Du et al., 2018). The strong ability of CNN
motivates us to develop a CNN-based prediction method of AD
conversion.

In this work, we propose a CNN-based prediction approach
of AD conversion using MRI images. A CNN-based architecture
is built to extract high level features of registered and age-
corrected hippocampus images for classification. To further
improve the prediction, more morphological information is
added by including FreeSurfer-based features (FreeSurfer,
RRID:SCR_001847) (Fischl and Dale, 2000; Fischl et al.,
2004; Desikan et al., 2006; Han et al., 2006). Both CNN
and FreeSurfer features are fed into an extreme learning
machine as classifier, which finally makes the decision of
MCI-to-AD. Our main contributions to boost the prediction
performance include: (1) Multiple 2.5D patches are extracted
for data augmentation in CNN; (2) both AD and NC are
used to train the CNN, digging out important MCI features;
(3) CNN-based features and FreeSurfer-based features are
combined to provide complementary information to improve
prediction. The performance of the proposed approach was
validated on the standardized MRI datasets from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI – Alzheimer’s Disease
Neuroimaging Initiative, RRID:SCR_003007) (Wyman et al.,
2013) and compared with other state-of-the-art methods
(Moradi et al., 2015; Tong et al., 2017) on the same
datasets.

MATERIALS AND METHODS

The proposed framework is illustrated in Figure 1. The MRI
data were processed through two paths, which extract the CNN-
based and FreeSurfer-based image features, respectively. In the
left path, CNN is trained on the AD/NC image patches and then
is employed to extract CNN-based features on MCI images. In the
right path, FreeSurfer-based features which were calculated with
FreeSurfer software. These features, which were further mined
with dimension reduction and sparse feature selection via PCA
and Lasso, respectively, were concatenated as a features vector
and fed to extreme learning machine as classifier. Finally, to
evaluate the performance of the proposed approach, the leave-
one-out cross validation is then used.

ADNI Data
Data used in this work were downloaded from the ADNI
database. The ADNI is an ongoing, longitudinal study designed
to develop clinical, imaging, genetic, and biochemical biomarkers
for the early detection and tracking of AD. The ADNI study
began in 2004 and its first 6-year study is called ADNI1. Standard
analysis sets of MRI data from ADNI1 were used in this work,
including 188 AD, 229 NC, and 401 MCI subjects (Wyman
et al., 2013). These MCI subjects were grouped as: (1) MCI
converters who were diagnosed as MCI at first visit, but converted
to AD during the longitudinal visits within 3 years (n = 169);
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FIGURE 1 | Framework of proposed approach. The dashed arrow indicates the CNN was trained with 2.5D patches of NC and AD subjects. The dashed box
indicates Leave-one-out cross validation was performed by repeat LASSO and extreme learning machine 308 times, in each time one different MCI subject was
leaved for test, and the other subjects with their labels were used to train LASSO and extreme learning machine.

(2) MCI non-converters who did not convert to AD within
3 years (n = 139). The subjects who were diagnosed as MCI
at least twice, but reverse to NC at last, are also considered as
MCI non-converters; (3) Unknown MCI subjects who missed
some diagnosis which made the last state of these subjects was
unknown (n = 93). The demographic information of the dataset
are presented in Table 1. The age ranges of different groups are
similar. The proportions of male and female are close in AD/NC
groups while proportions of male are higher than female in MCI
groups.

Image Preprocessing
MRI images were preprocessed following steps in Tong et al.
(2017). All images were first skull-stripped according to Leung
et al. (2011), and then aligned to the MNI151 template using
a B-spline free-form deformation registration (Rueckert et al.,
1999). In the implementation, we follow the Tong’s way to
register images (Tong et al., 2017), showing that the effect of
deformable registration with a control point spacing between
10 and 5 mm have the best performance in classifying AD/NC
and converters/non-converters. After that, image intensities of

TABLE 1 | The demographic information of the dataset used in this work.

AD NC MCIc MCInc MCIun

Subjects’ number 188 229 169 139 93

Age range 55–91 60–90 55–88 55–88 55–89

Males/Females 99/89 119/110 102/67 96/43 60/33

MCIc means MCI converters. MCInc means MCI non-converters, MCIun means MCI unknown.
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the subjects were normalized by deform the histogram of each
subject’s image to match the histogram of the MNI151 template
(Nyul and Udupa, 1999). Finally, all MRI images were in the same
template space and had the same intensity range.

Age Correction
Normal aging has atrophy effects similar with AD (Giorgio et al.,
2010). To reduce the confounding effect of age-related atrophy,
age correction is necessary to remove age-related effects, which
is estimated by fitting a pixel regression model (Dukart et al.,
2011) to the subjects’ ages. We assume there are N healthy
subjects and M voxels in each preprocessed MRI image, and
denote ym∈R1 × N as the vector of the intensity values of N
healthy subjects at mth voxel, and α∈R1 × N as the vector of the
ages of N healthy subjects. The age-related effect is estimated by
fitting linear regression model ym = ωmα+ bm at mth voxel. For
nth subject, the new intensity of mth voxel can be calculated as
y′mn = ωm(C−αn) + ymn, where ymn is original intensity, αn is
age of nth subject. In this study, C is 75, which is the mean age of
all subjects.

CNN-Based Features
A CNN was adopted to extract features from MRI Images of
NC and AD subjects. Then, the trained CNN was used to
extract image features of MCI subjects. To explore the multiple
plane images in MRI, a 2.5D patch was formed by extracting
three 32 × 32 patches from transverse, coronal, and sagittal
plane centered at a same point (Shin et al., 2016). Then, three
patches were combined into a 2D RBG patch. Figure 2 shows
an example of constructing 2.5D patch. For a given voxel point,
three patches of MRI are extracted from three planes and then
concatenated into a three channel cube, following the same way
of composing a colorful patch with red/green/blue channels that
are commonly used in computer vision. This process allows
us to mine fruitful information form 3D views of MRI by
feeding the 2.5D patch into the typical color image processing
CNN network. Data augmentation (Shin et al., 2016) was used
to increase training samples, by extracting multiple patches at
different locations from MRI images. The choice of locations has
three constraints, (1) The patches must be originated in either
left or right hippocampus region which have high correlation
with AD (van de Pol et al., 2006); (2) There must be at least
two voxels distance between each location; (3) All locations
were random chosen. With these constraints, 151 patches were
extracted from each image and the sampling positions were fixed
during experiments. The number of samples was expanded by a
factor of 151, which could reduce over-fitting.

Typically extracted patches are presented in Figure 3.
Figure 3A shows four 2.5D patches obtained from one
subject. These patches are extracted from different positions
and show different portions of hippocampus, which means
these patches contain different information of morphology of
hippocampus. When trained with these patches that spread
in whole hippocampus, CNN learns the morphology of whole
hippocampus. Figure 3B shows patches extracted in same
position from four subjects of different groups, demonstrating
that the AD subject has the most severe atrophy of hippocampus

and expansion of ventricle. This implies that obvious differences
are existed between AD and NC. However, the MCI subjects have
the medium atrophy of hippocampus, and non-converter is more
like NC rather than AD, and converter is more similar to AD. The
difference between converter and non-converter is smaller than
the difference between AD and NC.

The architecture of the CNN is summarized in Figure 4. The
network has an input of 32 × 32 RGB patch. There are three
convolutional layers and three pooling layers. The kernel size of
convolutional layer is 5× 5 with 2 pixels padding, and the kernel
size and stride of pooling layers is 3 × 3 and 2. The input patch
has a size of 32× 32 and 3 RBG channels. The first convolutional
layer generates 32 feature maps with a size of 32 × 32. After max
pooling, these 32 feature maps were down-sampled into 16× 16.
The next two convolutional layers and average pooling layers
finally generate 64 features maps with a size of 4 × 4. These
features are concatenated as a feature vector, and then fed to full
connection layer and softmax layer for classification. There are
also rectified linear units layers and local response normalization
layers in CNN, but are not shown for simplicity.

The CNN was trained with patches from NC and AD subjects,
and there are 62967 (subject number 417 times 151) patches
which are randomly split into 417 mini-batches. Mini-batch
stochastic gradient descent was used to update the coefficients
of CNN. In each step, a mini-batch was fed into CNN, and then
error back propagation algorithm was carried out to computer
gradient gj of jth coefficient θj, and update the coefficient as
θ′j = θj + Oθn j, in which Oθn j = mOθn−1 j− η(gj + λθj) is the
increment of θj at nth step. The momentum m, learning rate η

and weight decay λ are set as 0.9, 0.001, and 0.0001, respectively,
in this work. It is called one epoch with all mini-batches used
to train CNN once. The CNN was trained with 30 epochs. Once
the network was trained, CNN will be used to extract high level
features of MCI subjects’ images. The 1024 features output by the
last pooling layer were taken as CNN-based features. Thus, CNN
generates 154624 (1024× 151) features for each image.

FreeSurfer-Based Features
The FreeSurfer (version 4.3) (Fischl and Dale, 2000; Fischl et al.,
2004; Desikan et al., 2006; Han et al., 2006) was used to mine
more morphological information of MRI images, such as cortical
volume, surface area, cortical thickness average, and standard
deviation of thickness in each region of interest. These features
can be downloaded directly from ADNI website, and 325 features
are used to predict MCI-to-AD conversion after age correction.
The age correction for FreeSurfer-based features is similar as
described above, but on these 325 features instead of on intensity
values of MRI images.

Features Selection
Redundant features maybe exist among CNN-based features,
thus we introduced the principle component analysis (PCA)
(Avci and Turkoglu, 2009; Babaoğlu et al., 2010; Wu et al., 2013)
and least absolute shrinkage and selection operator (LASSO)
(Kukreja et al., 2006; Usai et al., 2009; Yamada et al., 2014) to
reduce the final number of features.
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FIGURE 2 | The demonstration of 2.5D patch extraction from hippocampus region. (A–C) 2D patches extracted from transverse (red box), coronal (green box), and
sagittal (blue box) plane; (D) The 2.5D patch with three patches at their spatial locations, red dot is the center of 2.5D patch; (E) Three patches are combined into
RGB patch as red (red box patch), green (green box patch), and blue (blue box patch) channels.

FIGURE 3 | (A) Four random chosen 2.5D patches of one subject (who is normal control, female and 76.3 years old), indicating that these patches contain different
information of hippocampus; (B) The comparison of correspond 2.5D patches of four subjects from four groups, the different level of hippocampus atrophy can be
found.
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FIGURE 4 | The overall architecture of the CNN used in this work.

PCA is an unsupervised learning method that uses an
orthogonal transformation to convert a set of samples consisting
of possibly correlated features into samples consisting of linearly
uncorrelated new features. It has been extensively used in data
analysis (Avci and Turkoglu, 2009; Babaoğlu et al., 2010; Wu et al.,
2013). In this work, PCA is adopted to reduce the dimensions
of features. Parameters of PCA are: (1) For CNN-based features,
there are 1024 features for each patch. After PCA, PC features
were left for each patch, since there are 151 patches for one
subject, there are still PC × 151 features for each subject; (2)
For FreeSurfer-based features, PF features were left for each MCI
subject.

LASSO is a supervised learning method that uses L1 norm in
sparse regression (Kukreja et al., 2006; Usai et al., 2009; Yamada
et al., 2014) as follows:

min
α

0.5||y −Dα||22 + λ||α||1 (1)

Where y∈R1 × N is the vector consisting of N labels of training
samples, D∈RN × M is the feature matrix of N training samples
consisting of M features, λ is the penalty coefficient that was set
to 0.1, and α∈R1 × M is the target sparse coefficients and can
be used for selecting features with large coefficients. The LASSO
was solved with least angle regression (Efron et al., 2004), and
L features are selected after L iterations. Parameters of LASSO
are: (1) For CNN-based features, LC features were selected from
PC × 151 features for each MCI subject; (2) For FreeSurfer-based
features, LF features were selected from PF features. After PCA
and LASSO, there were LC + LF features.

Figure 5 shows more details of CNN-based features. 151
patches are extracted from all MRI images, including AD,
NC, and MCI. First, the CNN is trained with patches of all
AD and NC subjects. After that, the trained CNN is used to
output 1024 features from each MCI patch. The 1024 features

of each patch are reduced to PC features by PCA, and then
features of all 151 patches from one subject are concatenated,
and Lasso is used to select LC most informative features from
them.

Extreme Learning Machine
The extreme learning machine, a feed-forward neural network
with a single layer of hidden nodes, learns much faster than
common networks trained with back propagation algorithm
(Huang et al., 2012; Zeng et al., 2017). A special extreme learning
machine, that adopts kernel (Huang et al., 2012) to calculates the
outputs as formula (2) and avoids the random generation of input
weight matrix, is chosen to classify converters/non-converters
with both CNN-based features and FreeSurfer-based features. In
formula (2), the � is a matrix with elements Ωi,j = K(xi, xj),
where K(a, b) is a radial basis function kernel in this study,
[x1,. . ., xN ] are N training samples, y is the label vector of training
samples, and x is testing sample. C is a regularization coefficient
and was set to 1 in this study.

f (x) =

 K (x, x1)
...

K (x, xN)


T

(�+ 1/C)T y (2)

Implementation
In our implementation, CNN was accomplished with Caffe1,
LASSO was carried out with SPAMS2, and extreme learning
machine was performed with shared online code3. The
hippocampus segmentation was implemented with MALPEM

1http://caffe.berkeleyvision.org/
2http://spams-devel.gforge.inria.fr/
3http://www.ntu.edu.sg/home/egbhuang/
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FIGURE 5 | The workflow of extracting CNN-based features. The CNN was trained with all AD/NC patches, and used to extract deep features from all 151 patches
of MCI subject. The feature number of each patch is reduced to PC (PC = 29) from 1024 by PCA. Finally, Lasso selects LC (LC = 35) features from PC × 151 features
for each MCI subject.

4(Ledig et al., 2015) for all MRI images. Then all hippocampus
masks were registered as corresponding MRI images, and then
overlapped to create a mask containing hippocampus regions.
All image features were normalized to have zero mean and
unit variance before training or selection. To evaluate the
performance, Leave-one-out cross validation was used as (Coupé
et al., 2012; Ye et al., 2012; Zhang et al., 2012).

RESULTS

Validation of the Robustness of 2.5D
CNN
To validate the robustness of the CNN, several experiments
have been performed with the CNN. In experiments, the binary
decisions of CNN for 151 patches were united to make final
diagnosis of the testing subject. We compared the performance
in four different conditions: (1) The CNN was trained with
AD/NC patches and used to classify AD/NC subjects; (2) The
CNN was trained with converters/non-converters patches and
used to classify converters/non-converters; (3) The CNN was

4http://www.christianledig.com/

trained with AD/NC patches and used to classify converters/non-
converters; (4) The condition is similar with (3), but with
different sampling patches in each validation run.

The results are shown in Table 2. The CNN has a poor
accuracy of 68.49% in classifying converters/non-converters
when trained with converters/non-converters patches, but CNN
has obtained a much higher accuracy of 73.04% when trained
with AD/NC patches. This means that the CNN learned
more useful information from AD/NC data than that from
converters/non-converters data. And the prediction performance
of CNN is close when different sampling patches are used.

Effect of Combining Two Types of
Features
In this section, we present the performance of CNN-based
features, FreeSurfer-based features, and their combinations. The
PC, PF , LC, and LF parameters were set to 29, 150, 35, and 40,
respectively, which were optimized in experiments. Finally, 75
features were selected and fed to the extreme learning machine.

Performance was evaluated by calculating accuracy (the
number of correctly classified subjects divided by the total
number of subjects), sensitivity (the number of correctly
classified MCI converters divided by the total number of
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TABLE 2 | The performance of the 2.5D CNN.

Classifying: AD/NC
Trained with: AD/NC

Classifying: MCIc/MCInc
Trained with: MCIc/MCInc

Classifying: MCIc/MCInc
Trained with: AD/NC

Different patch
Sampling

Accuracy 88.79% 68.68% 73.04% 72.75%

Standard deviation 0.61% 1.63% 1.31% 1.20%

Confidence interval [0.8862, 0.8897] [0.6821, 0.6914] [0.7265, 0.7343] [0.7252, 0.7299]

MCIc means MCI converters. MCInc means MCI non-converters. The results were obtained with 10-fold cross validations, and averaged over 50 runs.

TABLE 3 | The performance of different features used, and the performance without age correction.

Method Accuracy Sensitivity Specificity AUC

Proposed method (both features) 79.9% 84% 74.8% 86.1%

Only CNN-based features 76.9% 81.7% 71.2% 82.9%

Only FreeSurfer-based features 76.9% 82.2% 70.5% 82.8%

Without age correction 75.3% 79.9% 69.8% 82.6%

Bold values indicate the best performance in each column.

MCI converters), specificity (the number of correctly classified
MCI non-converters divided by the total number of MCI
non-converters), and AUC (area under the receiver operating
characteristic curve). The performances of the proposed method
and the approach with only one type of features are summarized
in Table 3. These results indicates that the approaches with
only CNN-based features or FreeSurfer-based features have
similar performances, and the proposed method combining both
features achieved best accuracy, sensitivity, specificity and AUC.
Thus, it is meaningful to combine two features in the prediction
of MCI-to-AD conversion. The AUC of the proposed method
reached 86.1%, indicating the promising performance of this
method. The receiver operating characteristic (ROC) curves of
these approaches are shown in Figure 6.

Impact of Age Correction
We investigated the impact of age correction on the prediction
of conversion here. The prediction accuracy in Table 3 and
the ROC curves in Figure 6 implied that age correction can
significantly improve the accuracy and AUC, Thus, age correction
is an important step in the proposed method.

Comparisons to Other Methods
In this section, we first compared the extreme learning
machine with support vector machine and random forest. The
performances of three classifiers are shown in Table 4, indicating
that extreme learning machine achieves the best accuracy and
AUC among three classifiers.

Then we compared the proposed method with other state-
of-the-art methods that use the same data (Moradi et al., 2015;
Tong et al., 2017), which consists of 100 MCI non-converters
and 164 MCI converters. In both methods, MRI images were
first preprocessed and registered, but in different ways. After that,
features selection was performed to select the most informative
voxels among all MRI voxels. Moradi used regularized logistic
regression algorithm to select a subset of MRI voxels, and
Tong used elastic net algorithm instead. Both methods trained
feature selection algorithms with AD/NC data to learn the most

discriminative voxels and then used to selected voxels from MCI
data. Finally, Moradi used low density separation to calculate
MRI biomarkers and to predict MCI converters/non-converters.
Tong used elastic net regression to calculate grading biomarkers
from MCI features, and SVM was utilized to classify MCI
converters/non-converters with grading biomarker.

For fair comparisons, both 10-fold cross validation and
leave-one-out cross validation were performed on the proposed
method and method of Tong et al. (2017) with only MRI data was
used. Parameters of the compared approaches were optimized
to achieve best performance. Table 5 shows the performances of
three methods in 10-fold cross validation and Table 6 summarizes
the performances in leave-one-out cross validations. These two
tables demonstrate that the proposed method achieves the best
accuracy and AUC among three methods, which means that the
proposed method is more accurate in predicting MCI-to-AD
conversion than other methods. The sensitivity of the proposed
method is a little lower than the method of Moradi et al.
(2015) but much higher than the method of Tong et al. (2017),
and the specificity of the proposed method is between other
two methods. Higher sensitivity means lower rate of missed
diagnosis of converters, and higher specificity means lower
rate of misdiagnosing non-converters as converters. Overall, the
proposed method has a good balance between the sensitivity and
specificity.

DISCUSSION

The CNN has a better performance when trained with AD/NC
patches rather than MCI patches, we think the reason is that
the pathological changes between MCI converters and non-
converters are slighter than those between AD and CN. Thus,
it is more difficult for CNN to learn useful information directly
from MCI data about AD-related pathological changes than from
AD/NC data. The pathological changes are also hampered by
inter-subject variations for MCI data. Inspired by the work in
Moradi et al. (2015) and Tong et al. (2017) which use information
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FIGURE 6 | The ROC curves of classifying converters/non-converters when different features used or without age correction.

TABLE 4 | Comparison of extreme learning machine with other two classifiers.

Method Accuracy Sensitivity Specificity AUC

SVM 79.87% 83.43% 75.54% 83.85%

Random forest 75.0% 82.84% 65.47% 81.99%

Extreme learning machine 79.87% 84.02% 74.82% 86.14%

Implementation of SVM was performed using third party library LIBSVM (https://www.csie.ntu.edu.tw/~cjlin/libsvm/), and the random forest was utilized with the third
party library (http://code.google.com/p/randomforest-matlab). Both classifiers used the default settings.

TABLE 5 | Comparison with others methods on the same dataset in 10-fold cross validation.

Method Accuracy Sensitivity Specificity AUC

MRI biomarker in Moradi et al., 2015 74.7% 88.9% 51.6% 76.6%

Global grading biomarker in Tong et al., 2017 78.9% 76.0% 82.9% 81.3%

Proposed method 79.5% 86.1% 68.8% 83.6%

The performances of MRI biomarker and global grading biomarker are described in Moradi et al. (2015) and (Tong et al., 2017). The results are averages over 100 runs,
and the standard deviation/confidence intervals of accuracy and AUC of the proposed method are 1.19%/[0.7922, 0.7968] and 0.83%/[0.8358, 0.8391]. Bold values
indicate the best performance in each column.

TABLE 6 | Comparison with others methods on the same dataset in leave-one-out cross validation.

Method Accuracy Sensitivity Specificity AUC

MRI biomarker in Moradi et al., 2015 – – – –

Global grading biomarker in Tong et al., 2017 78.8% 76.2% 83% 81.2%

Proposed method 81.4% 89.6% 68% 87.8%

The global grading biomarkers was download from the web described in Tong et al. (2017) and the experiment was performed with same method as in Tong et al. (2017).
Bold values indicate the best performance in each column.
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TABLE 7 | The 15 most informative FreeSurfer-based features for predicting
MCI-to-AD conversion.

Number FreeSurfer-based feature

1 Cortical Thickness Average of Left FrontalPole

2 Volume (Cortical Parcellation) of Left Precentral

3 Volume (Cortical Parcellation) of Right Postcentral

4 Volume (WM Parcellation) of Left AccumbensArea

5 Cortical Thickness Average of Right CaudalMiddleFrontal

6 Cortical Thickness Average of Right FrontalPole

7 Volume (Cortical Parcellation) of Left Bankssts

8 Volume (Cortical Parcellation) of Left PosteriorCingulate

9 Volume (Cortical Parcellation) of Left Insula

10 Cortical Thickness Average of Left SuperiorTemporal

11 Cortical Thickness Standard Deviation of Left PosteriorCingulate

12 Volume (Cortical Parcellation) of Left Precuneus

13 Volume (WM Parcellation) of CorpusCallosumMidPosterior

14 Volume (Cortical Parcellation) of Left Lingual

15 Cortical Thickness Standard Deviation of Right Postcentral

of AD and NC to help classifying MCI, we trained the CNN
with the patches from AD and NC subjects and improved the
performance.

After non-rigid registration, the differences between all
subject’s MRI brain image are mainly in hippocampus (Tong
et al., 2017). So we extracted 2.5D patches only from
hippocampus regions, that makes the information of other
regions lost. For this reason, we included the whole brain
features calculated by FreeSurfer as complementary information.
The accuracy and AUC of classification are increased to 79.9
and 86.1% from 76.9 to 82.9% with the help of FreeSurfer-
based features. To explore which FreeSurfer-based features
contribute mostly when they are used to predict MCI-to-
AD conversion, we used Lasso to select the most informative
features, and the top 15 features are listed in Table 7, in
which the features are almost volume and thickness average of
regions related to AD. The thickness average of frontal pole
is the most discriminative feature. The quantitative features
of hippopotamus are not listed, indicating they contribute less
than these listed features when predicting conversion. The

CNN extract the deep features of hippopotamus morphology,
rather than the quantitative features of hippopotamus, which
are discriminative for AD diagnosis. Therefore, The CNN-based
features and FreeSurfer-based features contain different useful
information for classification of converters/non-converters, and
they are complementary to improve the performance of classifier.

Different from the two methods used in Moradi et al. (2015)
and Tong et al. (2017), which directly used voxels as features,
the proposed method employs CNN to learn the deep features
from the morphology of hippopotamus, and combined CNN-
based features with the globe morphology features that were
computed by FreeSurfer. We believe that the learnt CNN features
might be more meaningful and more discriminative than voxels.
When comparing with these two methods, only MRI data was
used, but the performances of these two methods were improved
when combined MRI data with age and cognitive measures, so
investigating the combination of the propose approach with other
modality data for performance improvement is also one of our
future works.

We have also listed several deep learning-based studies in
recent years for comparison in Table 8. Most of them have
an accuracy of predicting conversion above 70%, especially the
last three approaches (including the proposed one) have the
accuracy above 80%. The best accuracy was achieved by Lu et al.
(2018a), which uses both MRI and PET data. However, when
only MRI data is used, Lu’s method declined the accuracy to
75.44%. Although an accuracy of 82.51% was also obtained with
PET data (Lu et al., 2018b), PET scanning usually suffers from
contrast agents and more expensive cost than the routine MRI.
In summary, our approach achieved the best performance when
only MRI images were used and is expected to be improved by
incorporating other modality data, e.g., PET, in the future.

In this work, the period of predicting conversion was set to
3 years, that separates MCI subjects into MCI non-converters and
MCI converters groups by the criterion who covert to AD within
3 years. But not matter what the period for prediction is, there
is a disadvantage that even the classifier precisely predict a MCI
non-converters who would not convert to AD within a specific
period, but the conversion might still happen half year or even
1 month later. Modeling the progression of AD and predicting the
time of conversion with longitudinal data are more meaningful

TABLE 8 | Results of previous deep learning based approaches for predicting MCI-to-AD conversion.

Study Number of MCIc/MCInc Data Conversion time Accuracy AUC

Li et al., 2015 99/56 MRI + PET 18 months 57.4% –

Singh et al., 2017 158/178 PET – 72.47% –

Ortiz et al., 2016 39/64 MRI + PET 24 months 78% 82%

Suk et al., 2014 76/128 MRI + PET – 75.92% 74.66%

Shi et al., 2018 99/56 MRI + PET 18 months 78.88% 80.1%

Lu et al., 2018a 217/409 MRI + PET 36 months 82.93% –

Lu et al., 2018a 217/409 MRI 36 months 75.44% –

Lu et al., 2018b 112/409 PET – 82.51% –

This study 164/100 MRI 36 months 81.4% 87.8%

MCIc means MCI converters. MCInc means MCI non-converters. Different subjects and modalities of data are used in these approaches. All the criteria are copied from
the original literatures. Bold values indicate the best performance in each column.
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(Guerrero et al., 2016; Xie et al., 2016). Our future work would
investigate the usage of CNN in modeling the progression of AD.

CONCLUSION

In this study, we have developed a framework that only use
MRI data to predict the MCI-to-AD conversion, by applying
CNN and other machine learning algorithms. Results show that
CNN can extract discriminative features of hippocampus for
prediction by learning the morphology changes of hippocampus
between AD and NC. And FreeSurfer provides extra structural
brain image features to improve the prediction performance as
complementary information. Compared with other state-of-the-
art methods, the proposed one outperforms others in higher
accuracy and AUC, while keeping a good balance between the
sensitivity and specificity.
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