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Brain computer interfaces (BCIs) have been applied to sensorimotor systems for many
years. However, BCI technology has broad potential beyond sensorimotor systems.
The emerging field of cognitive prosthetics, for example, promises to improve learning
and memory for patients with cognitive impairment. Unfortunately, our understanding of
the neural mechanisms underlying these cognitive processes remains limited in part
due to the extensive individual variability in neural coding and circuit function. As a
consequence, the development of methods to ascertain optimal control signals for
cognitive decoding and restoration remains an active area of inquiry. To advance the
field, robust tools are required to quantify time-varying and task-dependent brain states
predictive of cognitive performance. Here, we suggest that network science is a natural
language in which to formulate and apply such tools. In support of our argument, we
offer a simple demonstration of the feasibility of a network approach to BCI control
signals, which we refer to as network BCI (nBCI). Finally, in a single subject example,
we show that nBCI can reliably predict online cognitive performance and is superior to
certain common spectral approaches currently used in BCIs. Our review of the literature
and preliminary findings support the notion that nBCI could provide a powerful approach
for future applications in cognitive prosthetics.

Keywords: network brain-computer interface, cognitive prosthetic, brain-computer interface (BCI), cognitive
performance, connectivity, network science

INTRODUCTION

The Success of Sensorimotor BCI Technology
Brain computer interfaces (BCIs) utilize neural input functions to control task-oriented systems
(Vidal, 1973). Motor BCIs highlight the translational success of this strategy. Motor or efferent
BCIs transform neural signals from motor regions into command signals for external effectors
such as robotic arms, or for internal effectors such as paralyzed forearm muscles. The success of
translating motor BCIs, now in clinical trials, may be attributed to several contributing factors.
First, motor decoding algorithms leverage decades of research characterizing the relationships
between neural activity and movement behaviors in animal models (Sanes and Donoghue, 1993;
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Rizzolatti et al., 1996; Hatsopoulos et al., 1998; Kakei et al.,
1999; Lu and Ashe, 2005; Li et al., 2015). Movement-related
features may be extracted from a number of input sources,
including single units, multi-units, and local field potentials
(LFP) (Hochberg et al., 2006; Leuthardt et al., 2006). Input
sources originate from brain regions with stable relationships
to the desired output functions, including limb movements
and muscle activations. Finally, movement-related features from
neural signals may be extracted during passive observation of
homologous movements – such as the movements of a robotic
arm – just as they would during movement of an intact arm
(Jeannerod, 1995; Decety, 1996; Pfurtscheller and Neuper, 1997;
Lacourse et al., 2005; Hanakawa et al., 2008; Miller et al., 2010).
Consequently, decoding algorithms may be calibrated from the
motor regions of a paralyzed patient even though the patient lacks
the ability to execute the movement him/herself.

The Challenges of Cognitive BCI
Technology
BCI technology may be applied to other areas of unmet
clinical need, such as restoring learning and memory for the
cognitively impaired. Unfortunately, the fundamental physiology
that underlies the development of sensorimotor BCIs is unlikely
to be directly applicable to higher-order cognition. This is due,
in part, to the fact that the processes underlying higher-order
cognitive functions such as executive function depend upon the
dynamic engagement and control of distributed neural circuits
(Luna et al., 2001; Gläscher and Büchel, 2005; FitzGerald et al.,
2012). Consequently, there is little agreement regarding the ideal
brain target from which to derive neural input signals for a
cognitive BCI. Nor is there agreement on the ideal input source
itself, whether single- or multi-unit spiking, evoked potentials, or
spectral profiles of sensor signals. Also, there is broad uncertainty
concerning the stability of input signals as they relate to cognitive
processes. These challenges are made even more acute by the
substratal fact that animal models do not faithfully represent the
complexities of human cognition.

Notably, these challenges have not prevented investigators
from exploring putative cognitive prosthetic control signals.
The best examples are those that attempt to define the neural
signature of memory formation. Investigators have used changes
in regional LFP oscillatory activity before (Guderian et al., 2009;
Fell et al., 2011; Hanslmayr and Staudigl, 2014; Merkow et al.,
2014) and during encoding (Klimesch et al., 1997; Fell et al.,
2001; Sederberg et al., 2007), as well as temporally precise single
unit hippocampal activity (Rutishauser et al., 2010), to predict
subsequent recall. Utilizing multimodal analysis of event-related
potentials and event-related desynchronization, a recent study
was able to successfully predict depth of cognitive processing in
memory, language, and visual imagination task domains (Nicolae
et al., 2017). In other cognitive realms such as experiential
learning, executive control, and dynamic online cognitive
performance, less is known about local neural signatures. This
may in part be due to the fact that critical regions involved in
these higher-order functions are spatially distributed (Luna et al.,
2001; Gläscher and Büchel, 2005; FitzGerald et al., 2012) and

require coordinated activity (Friston, 1994; Tononi et al., 1994;
Büchel et al., 1999; Salinas and Sejnowski, 2001; Kahana, 2006;
Chennu et al., 2014; Voytek et al., 2015). Therefore, measuring
local, regional, or global metrics of neural activity alone may not
provide the ideal control signal for cognitive BCI technology.
Rather, the addition of quantitative measures of coordinated
activity – often referred to as functional connectivity – could
improve the reliability and generalizability of the control signal.

Network Analysis in Cognitive Function
Network neuroscience is an emerging discipline that enables
analysis of distributed, dynamical neural systems (Tononi et al.,
1994; Sporns, 2002; Bullmore and Sporns, 2009; Rubinov and
Sporns, 2010; Sporns, 2011) through a suite of flexible and
generalizable mathematical tools borrowed from mathematics
(graph theory), physics (statistical mechanics), computer science,
and engineering. Networks are described in terms of neural
elements (nodes) and the connections between them (edges).
Notably, any edge between node i and node j can be assigned
a continuous value of weight, which captures the strength of
the connection between node i and node j. The pattern of
weights across edges connecting nodes is frequently referred
to as the network’s topology (Rubinov and Sporns, 2010).
Network analysis tools can utilize structural (tractography) or
functional (physiology) data sources to construct different sorts
of networks. Networks composed of functional connections (or
edges) are referred to as functional networks, and networks
composed of structural connections (or edges) are referred to
as structural networks. Functional networks can be constructed
from data acquired either during the resting state or during the
performance of a task.

During the performance of increasingly cognitively
demanding tasks, oscillatory signals are thought to impart
critical information regarding task-relevant neural activity in
regions activated by the task (Friston, 1994; Rubinov and Sporns,
2010; Burke et al., 2015a). Functional connectivity (FC) can be
measured through frequency-specific synchronization, or phase-
locking (Luauté et al., 2015), of two oscillating neural sources
(Bamdad et al., 2015; Luauté et al., 2015; Ezzyat et al., 2017;
Jiang et al., 2017; Ezzyat et al., 2018). Two regions displaying
phase synchrony, a statistical relation between the instantaneous
phases of the signals in both areas, are often interpreted as being
functionally connected. Ensemble synchrony is thought to be an
important mechanism underlying cognitive processing (Salinas
and Sejnowski, 2001; deBettencourt et al., 2015; Kucewicz et al.,
2018), and the loss of synchrony is implicated in cognitive disease
states such as dementia and schizophrenia (Burke et al., 2015b;
Jacobs et al., 2016; Merkow et al., 2017; Ortner et al., 2017). More
generally, functional connectivity reflects pairwise statistical
relationships that can display complex patterns indicative of
non-trivial network topologies. The features of the functional
network can be quantified using numerous statistics commonly
referred to as graph statistics, network measures, or connectomic
metrics. The quantification of network architecture in patterns of
FC can provide robust estimates of task-dependent interregional
coordination, and its relation to multisensory processing,
cognition, memory, and learning (Friston, 1997; Tononi, 1998;
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Sporns et al., 2004; Miller et al., 2007; Canolty et al., 2009; Bassett
et al., 2015; McGregor and Gribble, 2017; Nicolae et al., 2017).

Here we propose that network approaches to distilling the
topology of functional connectivity patterns could offer an
improved framework for creating BCI control signals for the
cognitive domain. Below we discuss the approach taken by
current cognitive BCI systems and provide preliminary evidence
for the utility, feasibility, and potential superiority of a network
BCI (nBCI) approach.

CURRENT ADVANCES

Advances in Cognitive BCI
To date, experiments with cognitive BCIs have focused on
improving memory, attention, and consciousness (Bamdad et al.,
2015; Burke et al., 2015a; deBettencourt et al., 2015; Luauté
et al., 2015; Ezzyat et al., 2017, 2018; Jiang et al., 2017;
Ortner et al., 2017; Kucewicz et al., 2018). Burke et al. (2015a)
attempted an initial memory BCI system using theta (4–8 Hz)
and alpha (9–14 Hz) band spectral activity to trigger the
optimal timing of object presentation during memory encoding.
The authors found that features of theta and alpha band
spectral activity did not constitute reliable control signals across
sessions or across subjects (Burke et al., 2015a). Subsequent
improvements in defining the control signal have employed
supervised multivariate pattern analysis techniques to assess
global spectral activity that correlates with superior and inferior
encoding states within each subject (Ezzyat et al., 2017). Initial
stimulation paradigms delivered during randomly assigned
memory encoding epochs resulted in inconsistent behavioral
effects (Jacobs et al., 2016; Ezzyat et al., 2017; Merkow et al.,
2017). However, recent studies demonstrate that short bursts of
lateral temporal cortex stimulation delivered only during poor
encoding states are associated with a disruption of the innate
spectral activity and an improvement in memory performance
(Ezzyat et al., 2018; Kucewicz et al., 2018). In non-memory
cognitive systems, control signals utilizing blood-oxygen-level
dependent (BOLD), evoked potentials, or spectral analysis have
been incorporated as biofeedback therapy for self-optimization
of attentional networks (deBettencourt et al., 2015; Jiang et al.,
2017) and as communicative tools for patients with altered levels
of consciousness (Luauté et al., 2015; Ortner et al., 2017). These
approaches have also been used to assess and predict the depth
of cognitive processing, reflected by the level of task difficulty, in
memory, language, and visual task domains (Nicolae et al., 2017).

Though current systems provide a foundation for cognitive
BCI technology, there is difficulty extending these approaches to
other realms of cognitive function such as experiential learning
and executive control, or to adaptive contexts in which one
wishes to optimize dynamic online cognitive performance in a
singularly demanding task. This difficulty is due in part to a lack
of spatiotemporally resolved BOLD, evoked, or oscillatory neural
signals whose features reliably predict individual differences
in these other areas of cognitive function. Furthermore,
although a certain profile of spectral power, namely the
spectral tilt phenomenon, is thought to reflect cortical activation

(Miller et al., 2007; Burke et al., 2015b), analyzing multifocal
spectral activity is not a quantitative measure of regional
interactions. For dynamic cognitive tasks, precisely quantifying
these interactions may be more task relevant than the collective
regional pattern of activity (Varela, 1995; Friston, 1997; Tononi,
1998; Büchel et al., 1999; Sporns et al., 2004; Rypma et al.,
2006; Canolty et al., 2009; Brancucci, 2012; Bassett et al., 2015;
McGregor and Gribble, 2017).

Network Analysis Applied to Current BCI
Systems
The concept of using phase-based FC as a putative control signal
for BCI technology has been examined in a limited number
of studies focused on motor imagery (Brunner et al., 2006;
Carreiras et al., 2012; Billinger et al., 2013), motor execution
(Billinger et al., 2015), and the visually evoked P300 speller
response(Kabbara et al., 2016). All of these systems utilize non-
invasive electroencephalography (EEG) as their neural input
signal and phase-locking (Lachaux et al., 1999) as their FC
metric; and all report improvement in BCI functionality with
the incorporation of FC features. In a simple reach and
saccade cognitive task Courellis et al. (2017), extract statistical
dependencies of EEG region of interest time series data to
demonstrate the plausibility of cognitive network detection
using a non-invasive BCI. Using intracranial EEG, phase-based
network analysis of high gamma (>70 Hz) synchrony has
recently been shown to accurately distinguish wakeful versus
sleep states (Mikulan et al., 2018). The potential to also
incorporate complex network metrics has been examined in a
simple finger-tapping task (Daly et al., 2012). This study assessed
the discrimination ability between tap versus no-tap trials using
the clustering coefficient, a graph metric of local network
integration. The authors report a superior detection capability
of tap versus no-tap trials when compared to traditional event-
related EEG metrics of synchronization or desynchronization.
However, this study was only a feasibility study of the analytical
technique and did not actually utilize complex network metrics
in a BCI system.

FUTURE DIRECTIONS

Proposing nBCI for the Cognitive Domain
Here we propose the incorporation of network analysis as
a potential control signal for cognitive BCI systems. Global
measures of network organization can provide insight into
brain states during cognitive tasks (Palva et al., 2005; Besserve
et al., 2008). One noted example of such a measure is network
strength, which can be calculated by averaging the sum of edge
weights from each node in a network. Furthermore, metrics
quantifying the mesoscale integration or segregation states of
functional circuits or networks include the clustering coefficient
and the modularity. These two metrics have been shown to
correlate with learning and cognitive performance over long
time-scales (Husken et al., 2002; Bullmore and Sporns, 2009;
Bassett et al., 2011; Hermundstad et al., 2011; Ellefsen et al., 2015).
Anatomically, there is evidence for flexible hubs in dorsal and
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ventral frontoparietal networks and cingulo-opercular networks
that have strong influence on saliency and cognitive control
(Corbetta and Shulman, 2002; Cole et al., 2010, 2013; Power et al.,
2011; Power and Petersen, 2013). Network metrics that account
for the paths by which information can be transmitted in the
network, such as betweenness centrality and communicability,
may also provide meaningful insight regarding these types of
regional influences on network information flow and brain state
transitions (Borgatti, 2005; Newman, 2005; Estrada and Hatano,
2008; Crofts and Higham, 2009; Betzel et al., 2016). Therefore,
these metrics may hold promise as a potential feature vector for
predicting high performing brain states in otherwise difficult-
to-decode neural data. For network metrics to constitute a
plausible control signal, dynamic changes in network metrics
must occur on short time-scales and must predict upcoming
cognitive performance, allowing for real-time control of a
neuromodulatory system.

Preliminary Results
Using single-trial phase locking statistics (Lachaux et al., 2000)
we provide preliminary evidence in a single human subject
on the use of dynamic changes in functional brain network
statistics as a predictive signal for online cognitive performance.
This subject was undergoing clinical monitoring for refractory
epilepsy with stereotactically placed intracranial EEG (sEEG).
A total of 122 electrode contacts located diffusely within bilateral
frontal, temporal, and parietal cortical and subcortical regions,
as well as deep limbic structures were used as individual nodes
in our network analysis. We used a simple temporal expectancy
reaction time (RT) task to assess online cognitive performance.
Temporal expectancy engages several distinct cognitive processes
such as those involved in saliency (Coull and Nobre, 1998),
attention (Tecce, 1971, 1972; Colombo and Richman, 2002),
temporal processing (Onoe et al., 2001; Mauk and Buonomano,
2004), and plasticity (Dallérac et al., 2017); with induced changes
in regional electrophysiology (Walter et al., 1964; Funderud
et al., 2012) and network-wide functional imaging (Onoe et al.,
2001; Nagai et al., 2004). Trials consisted of a visual cue
signal (a white box presented on a black screen), an instructed
delay period (500 or 1500 ms randomly chosen with equal
probability), and a go signal (a color change of box from white
to yellow) after which the subject made a keypress to indicate
the perception of the go signal. The RT was defined as the
time between go and keypress. For the purposes of this report,
only trials with a 1500-ms delay period were analyzed (n = 57
trials).

The phase-locking value (PLV) (Lachaux et al., 1999) for
high gamma (70–100 Hz) activity between all pairs of electrodes
was computed on each trial in sliding 500 ms time bins, using
the Hilbert transform to extract instantaneous phase. For the
network analysis, each sEEG electrode represented a network
node and the edge weight between nodes was defined by the high
gamma (70–100 Hz) PLV for that pair. Global network strength,
a measure of ensemble synchrony, was computed by taking the
average edge weight across all pairwise nodal interactions in the
network. We divided trials based on ‘good’ (fast RT, n = 19) and
‘poor’ (slow RT, n = 19) performance such that the mean RT was

significantly different in the two conditions (Figures 1A,B; one-
sided Wilcoxon rank sum test, z = −5.2, p = 1.1 × 10−7). We
compared global network strength across four 500-ms time bins
between the two conditions: pre-cue (-500 to 0 ms relative to cue),
early delay (0–500 ms), mid-delay (500–1000 ms), and late-delay
(1000–1500 ms). We found that in the pre-cue period, fast-RT
trials were characterized by significantly higher global network
strength than slow-RT trials (Figure 1C; two-sided Wilcoxon
rank sum test, z = 2.6, p = 0.008, multiple comparison threshold
p = 0.0125). There was no significant difference in global network
strength between performance conditions for the three delay time
bins.

Next, we compared the performance discrimination ability of
nodal strength (network strength per node) to traditional spectral
control signals for the pre-cue period: (i) high-frequency activity
(HFA; 70–100 Hz power), and (ii) spectral tilt (70–100 Hz z score
power minus 3–12 Hz z score power). We found that for nearly
all sEEG channels, pre-cue nodal strength was significantly higher
for fast-RT trials than for slow-RT trials (Figure 2A; t(35) = 3.83,
p = 5.1 × 10−4 for the node with maximum difference). This
predictive discriminatory ability of subsequent performance was
not present for HFA or spectral tilt (Figures 2B,C). Trials were
then separated into ‘early’ (first third of trials, n = 19) versus ‘late’
(last third of trials, n = 19) conditions. There was no significant
difference in strength between these conditions at any node
(Figure 2D; t(41) = 1.71, p = 0.09 for the node with maximum
difference).

Finally, we computed single-trial pre-cue global network
strength and compared it to single-trial reaction time. There
was a significant correlation between these two variables
(Figure 2E; r = −0.49, p = 1.3 × 10−4). We then calculated
the communicability (Qexp), a network metric given by the
normalized matrix exponential of each single-trial weighted
connectivity matrix (Estrada and Hatano, 2008; Crofts and
Higham, 2009). Intuitively, communicability is the sum of
all possible walks (and thus paths) between two nodes,
exponentially down-weighted as length increases (accounting
for the decreasing statistical relationship as length increases).
The average communicability for a particular node k therefore
quantifies the relative degree to which each node k contributes to
walks (and thus paths) of different lengths (Estrada and Hatano,
2008; Crofts and Higham, 2009). We found that communicability
was dynamic, and that high Qexp in the left anterior cingulate
depth electrode during the pre-cue period was significantly
correlated with the average difference in fast versus slow RT
trials (Figure 2F, highlighted region ‘LI 1-8’, maximum nodal
F-S difference ‘LI4’ t(35) = 2.50, p = 0.02). We then found that
the single-trial communicability in the left anterior cingulate
lead ‘LI4’ independently predicted RT (Figure 2G; r = −0.45,
p = 4.6× 10−4).

To assess the decoding ability of a feature space consisting
of pre-cue high gamma global network strength and ‘LI4’
communicability, a support vector machine (SVM) was trained
and cross-validated for binary classification of ‘Fast’ versus
‘Slow’ RT trials. Significance of 10-fold cross-validated classifier
performance was assessed using a permutation test in which
binary (‘Fast’ versus ‘Slow’) class labels were randomly generated,
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FIGURE 1 | Behavioral performance and correlative network strength over time. (A) Simple temporal expectancy task reaction time (RT) per trial. Fastest third
(green) and slowest third (magenta) of trials were determined. (B) Mean RTs for the fast versus slow trial groups were significantly different. (C) Global network
strength (PLV) over time for fast (first plot) versus slow (second plot) trials. Box plots indicate median and interquartile range, whiskers indicate 95% data coverage.
Timing is centered around cue presentation (0 ms). First time bin signifies pre-cue period (-500 to 0 ms), followed by three 500 ms delay period bins. After a 1500 ms
delay, the cue changes color which designates the go signal. There was a significant difference in the pre-cue period for global network strength between the
distribution of fast and slow trials. Asterisk denote degree of significance coinciding with p values.

area under the curve (AUC) of classifier performance was
calculated, and the randomization was repeated 1000 times
to create a null distribution of AUCs. The SVM classifier for
this single subject achieved reliable subsequent performance
prediction (AUC = 0.72, p = 0.03).

These are the first data reporting single-trial ensemble
synchrony and network metrics as predictive features for
online cognitive performance; and they demonstrate superiority
over certain common spectral approaches for quantifying
behaviorally relevant neural activity. Interestingly, high
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FIGURE 2 | Pre-cue period network analysis. (A–C) Comparison of mean +/− std for fastest (blue) versus slowest (black) trials. Metrics used are (A) nodal strength,
(B) high frequency (70–100 Hz) spectral power, and (C) spectral tilt (HFA-LFA), respectively. Nodal strength, a network statistical measure of average synchrony
between that node and all others, shows significantly and globally increased pre-cue values in fast compared to slow trials. (D) Comparison of mean +/− std for
latest (blue) versus earliest (black) trials using nodal strength. No significant difference for any particular node, however, there was a trend toward increasing mean
nodal strength for latest compared to earliest trials (p = 0.08). (E) Global network strength in the pre-cue period corresponding to each upcoming trial and
associated trial reaction time. There was a significant predictive correlation. (F) Difference in network communicability during the pre-cue period averaged across all
fast-slow RT trials; the most significant increase was seen in the left anterior cingulate lead (highlighted box, max channel ‘LI4’ F-S difference t(35) = 2.50, p = 0.02).
(G) Single-trial RT as a function of left anterior cingulate node ‘LI4’ single-trial communicability demonstrating independent predictive correlation.

gamma synchrony has been shown to be correlated with
increased wakefulness (Mikulan et al., 2018), providing a
possible mechanistic link for the enhanced performance
predicted by high gamma ensemble synchrony in our subject.
Further, we find dynamic communicability in the left anterior
cingulate lead is also predictive of subsequent performance,
perhaps consistent with previous evidence of a primary
role for cingulo-opercular network influence on cognitive
control (Corbetta and Shulman, 2002; Cole et al., 2010;
Power and Petersen, 2013).

CONCLUSION

Though disorders of cognition are vast, network analyses of
functional connectivity may provide meaningful quantifications
and correlates of functional impairments as well as ready
classifications of aberrant underlying neural processes
(Voytek and Knight, 2015; Cohen and D’Esposito, 2016).
We find that in this single human subject example of
online cognitive performance, the network analysis approach
(nBCI) outperforms certain traditional spectral approaches in
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antecedent, dynamic performance discrimination. Furthermore,
using the Hilbert transformation-based PLV to create
single-trial weighted networks provides a computationally
lightweight methodology for potential real-time decoding
and feature extraction. These data preliminarily support our
proposed notion that network analysis could be applied
as a control signal in cognitive BCI systems. As a rapidly
quantifiable analysis of network interactions, nBCI may enable
increased generalizability of BCI technology for cognitive
rehabilitation.
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