',\' frontiers

in Neuroscience

MINI REVIEW
published: 06 November 2018
doi: 10.3389/fnins.2018.00811

OPEN ACCESS

Edited by:
Hari S. Sharma,
Uppsala University, Sweden

Reviewed by:

Alexander A. Mongin,

Albany Medical College, United States
Ayman EIA,

CHU de Québec Research Center,
Canada

*Correspondence:
Ana-Maria Zagrean
ana-maria.zagrean@umfcd.ro
Aurel Popa-Wagner
aurel.popa-wagner@
geriatricshealthyageing.com

T These authors have contributed
equally to this work

Specialty section:

This article was submitted to
Neural Technology,

a section of the journal
Frontiers in Neuroscience

Received: 02 July 2018
Accepted: 17 October 2018
Published: 06 November 2018

Citation:

Zagrean A-M, Hermann DM,

Opris I, Zagrean L and

Popa-Wagner A (2018) Multicellular
Crosstalk Between Exosomes

and the Neurovascular Unit After
Cerebral Ischemia. Therapeutic
Implications. Front. Neurosci. 12:811.
doi: 10.3389/fnins.2018.00811

Check for
updates

Multicellular Crosstalk Between
Exosomes and the Neurovascular
Unit After Cerebral Ischemia.
Therapeutic Implications

Ana-Maria Zagrean'*t, Dirk M. Hermann?3t, loan Opris*, Leon Zagrean' and
Aurel Popa-Wagner23°*

" Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,

2 Department of Neurology, Chair of Vascular Neurology, Dementia and Ageing Research, University Hospital Essen, Essen,
Germany, ° Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova,
Romania, * Department of Neurological Surgery, University of Miami, Miami, FL, United States, ® School of Medicine, Griffith
University, Gold Coast, QLD, Australia

Restorative strategies after stroke are focused on the remodeling of cerebral endothelial
cells and brain parenchymal cells. The latter, i.e., neurons, neural precursor cells and
glial cells, synergistically interact with endothelial cells in the ischemic brain, providing
a neurovascular unit (NVU) remodeling that can be used as target for stroke therapies.
Intercellular communication and signaling within the NVU, the multicellular brain-vessel-
blood interface, including its highly selective blood-brain barrier, are fundamental to the
central nervous system homeostasis and function. Emerging research designates cell-
derived extracellular vesicles and especially the nano-sized exosomes, as a complex
mean of cell-to-cell communication, with potential use for clinical applications. Through
their richness in active molecules and biological information (e.g., proteins, lipids, genetic
material), exosomes contribute to intercellular signaling, a condition particularly required
in the central nervous system. Cerebral endothelial cells, perivascular astrocytes,
pericytes, microglia and neurons, all part of the NVU, have been shown to release and
uptake exosomes. Also, exosomes cross the blood-brain and blood-cerebrospinal fluid
barriers, allowing communication between periphery and brain, in normal and disease
conditions. As such exosomes might be a powerful diagnostic tool and a promising
therapeutic shuttle of natural nanoparticles, but also a means of disease spreading (e.g.,
immune system modulation, pro-inflammatory action, propagation of neurodegenerative
factors). This review highlights the importance of exosomes in mediating the intercellular
crosstalk within the NVU and reveals the restorative therapeutic potential of exosomes
harvested from multipotent mesenchymal stem cells in ischemic stroke, a frequent
neurologic condition lacking an efficient therapy.

Keywords: exosome, nanovesicles, neurovascular unit, blood-brain barrier, miRNA, stroke, mesenchymal stem
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INTRODUCTION

At the interface with the bloodstream, neurovascular units
(NVUs) are structural and functional multicellular modules
consisting of neurons, perivascular astrocytes, microglia,
pericytes, extracellular matrix and the endothelial cells of
the brain microcirculation. They provide a coordinated
neurovascular coupling and maintain a highly selective blood-
brain barrier (BBB) (Abbott, 2002). The dynamic multicellular
crosstalk within the NVUs in physiological and pathological
conditions could reveal novel cell-targeted therapeutic strategies
with impact on the BBB, cerebral homeostasis and brain
functions (Attwell et al., 2010; Abbott and Friedman, 2012).

The endothelial cells of the BBB are interconnected by
tight and adherens junctions and form a continuous layer.
This layer selectively buffers the impact of fluctuations in
blood composition on brain interstitial fluid, regulating the
brain microenvironment and neuronal signaling (Abbott, 2013).
Various transcellular transport systems across the BBB have
been described, as carrier mediated transport, receptor-mediated
transport, ion transfer, efflux carriage, adsorptive-mediated
passage, and fluid-phase endocytosis (Zlokovic, 2008).

Apart from the classical modes of intercellular
communication, such as ligand-receptor interactions, direct
cell-cell contacts (e.g., gap junctions) or paracrine signaling
(Goodenough et al., 1996), a significant experimental evidence
has confirmed that several physiological and pathophysiological
processes are controlled by the extracellular membrane vesicles,
such as exosomes and microvesicles, secreted from various
cellular sources into the body fluids and interconnecting cells
without direct cell-to-cell contact (Valadi et al., 2007). This
type of signaling occurs mainly through exosomes, which are
nano-sized vesicles that easily transfer biological information
from cell to cell. This is achieved by means of exosomal molecules
that would usually not cross membrane barriers. This shows
the capability of inducing functional changes in target cells and
modulating local and systemic crosstalk (Krimer-Albers and
Hill, 2016). In the brain, exosomes are released from all types of
cells (Frithbeis et al., 2013) and are bidirectionally transported
through the blood-brain communication interfaces, blood-brain
and blood-cerebrospinal fluid barriers (Balusu et al., 2016). These
blood-brain interfaces are potential pathways for therapeutically
administered exosomes.

Given their capacity to easily reach body compartments
and connect origin cells with target cells, exosomes have
a promising potential to be used in clinical applications.
Indeed, exosomes have shown the capacity to serve both as
biomarkers and novel therapeutic tools in the nervous system
pathologies lacking efficient therapies, such as stroke (Barile
and Vassalli, 2017). The cellular interactions within NVU might
contribute to (i) the restoration of a well-organized cerebral
microvasculature by providing trophic support and a stimulating
brain microenvironment (Hermann and ElAli, 2012), and (ii) the
remodeling of parenchymal tissue, including axonal sprouting,
dendritic growth and synaptic reorganization (Hermann and
Chopp, 2012). However, there is still more to explore about
the diagnostic benefits and therapeutic roles of exosomes, their
production, release, transport, uptake, signaling potential, change

of their cargo proteins profile and miRNAs (Zhang and Chopp,
2016). Here, we review the roles of exosomes in mediating
the intercellular crosstalk within the NVU and the therapeutic
potential of exosomes derived from multipotent mesenchymal
stem cells (MSCs) in stroke.

EXOSOMES’ AS A BIOLOGICAL
COMMUNICATION TOOL

Exosomes are defined as 30-100 nm sized membrane vesicles
derivatives of the endosomal compartment and correspond to
the intraluminal vesicles of multivesicular bodies (MVBs) that
upon fusion of the MVBs with the plasma membrane are released
as exosomes into the extracellular environment (Lener et al.,
2015), where they act as signaling organelles for intercellular
communication. From the extracellular milieu, exosomes may
contact target cells by (i) receptor-mediated adhesion to the
cellular plasma membrane, followed by endocytic uptake and
internalization, (ii) direct fusion of the exosome membrane
with the target cell membrane and subsequent exosomal content
release into the recipient cell (Bang and Thum, 2012).

Exosomes’ vesicles are homogenous in shape, surrounded
by a phospholipid membrane displaying membrane proteins,
such as cell-specific receptors, and containing cell-type specific
combinations of lipids, metabolites, coding and non-coding
RNAs (miRNA, sRNA), single- and double stranded DNA,
cytosolic and membrane proteins including enzymes, growth
factors, receptors and cytokines (Théry et al., 2001; Lener et al.,
2015). Exosomal lipids (e.g., phosphoglycerides, sphingomyelin,
cholesterol, ceramide) are important for providing structural
stability. Proteins of the exosomes are characteristic for
their endosomal origin, and include membrane transport and
fusion proteins (annexins, flotillin), proteins involved in cell
targeting (tetraspanins, mostly CD9 and CD63) or other
proteins correlated with their biogenesis from MVBs, as the
tumor susceptibility gene 101 (TSG101) (Andras and Toborek,
2016). Exosomes also contain heat-shock proteins (Hsp60,
Hsp70, Hsp90), known for their neuroprotective potential.
Also, they expose low levels of phosphatidylserine and cell-
type-specific proteins. One of the most important function of
the exosomes is targeting cellular pathways in the recipient
cells through their RNAs and miRNAs cargo (Ling et al,
2013).

Novel research supports exosomes as a fundamental
mechanism of communication in the nervous system, with
roles in brain homeostasis and plasticity (Holm et al., 2018),
acting as bidirectional cargo in brain-periphery communication
and within the brain, in between neurons, glia, vascular and
perivascular cells (Figure 1). Exosome secretion has been
described from (i) depolarized/stimulated cortical neurons,
mainly from the somato-dendritic compartments (Faure
et al,, 2006; Lachenal et al., 2011; Von Bartheld and Altick,
2011), (ii) oligodendrocytes (Frithbeis et al., 2013), (iii)
microglia (Potolicchio et al., 2005), (iv) astrocytes when
activated by oxidative and heat stress (Taylor et al., 2007), (v)
endothelial cells (Dozio and Sanchez, 2017), and (vi) pericytes
(Mayo and Bearden, 2015), known to generate MSCs in the
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FIGURE 1 | Exosomes as a fundamental mechanism of communication between components of the neurovascular unit.

1. Pericytes-derived exosomes:

- trophic and neuroprotective activity

- promote angiogenesis, neurogenesis,
brain recovery

2. Astrocyte-derived exosomes:
- support neuronal survival & growth
- regulate synaptic transmission

3. Neuronal-derived exosomes:

- trans-synaptic communication

- modulate local synaptic plasticity

- post-stroke regeneration and remodeling

4. Olygodendrocyte-derived exosomes:

- trophic action for neurons

- regulate synthesis of myelin

- released activated by axonal glutamate release
- bidirectional neuron-glial integrity

5. Microglial-derived exosomes:

- modulate and spread inflammation
- carry growth factors

- regulate synaptic activity

6. MSC -derived exosomes:
- angiogenesis & neurite growth
- tissue repair and remodeling
- suppress inflammation
- therapeutic use / drug vehicle
(exosomes harvested from hypoxic MSCs)

7. Endothelial-derived exosomes:

- modulate inflammatory and immune response

- present receptors for macromolecules transport
across BBB (transferrin, insulin)

perivascular area of the lesioned or inflamed vessels (Caplan,
2008; Caplan, 2016).

The complex and versatile signaling was
shown to impact the synaptic activity (e.g., neuronal
origin exosomes exhibiting neurotransmitter receptors bind
neurotransmitters within the synapse to stop signaling), trans-
synaptic communication, synaptic plasticity, maintenance of
myelination, angiogenesis, neurovascular integrity, but also on
neuroregeneration and neuroprotection in response to disease
conditions (Holm et al., 2018). For example, angiogenesis
could be stimulated both by activation of signaling pathways
PI3K, ERK1/2, Wnt4/{3-catenin or NF-kB and transfer of
the transcription factors STAT3, STATS, transfer of lipids
like SIP, transfer of proteins including VEGF, FGF-2, PDGE,
metalloproteases, but also by the transfer of micro-RNA-126,
miR-214, miR-296, and miR-150 (for a review, see Todorova
et al., 2017). Likewise, after experimental stroke, treatment
with exosomes isolated from miR-133b-overexpressing MSCs,
significantly increased functional improvement and neurite
remodeling/brain plasticity in the ischemic boundary area
compared with control animals (Xin et al.,, 2017b). Recently, it
was also reported that miR-26a is a physiological regulator of
mammalian axon regeneration by targeting glycogen synthase
kinase 3p (GSK3p) in adult mouse sensory neurons in vitro and
in vivo (Tsenkina et al., 2015).

Exosomes can also propagate inflammation across the BBB
and within the brain, as brain endothelial cells activated by
systemic inflammation further activate the neighboring cells

exosomal

in the NVU via secreted exosomes (Balusu et al., 2016;
Holm et al., 2018). The pathogenic role of microglia-derived
exosomes in the inflammatory response was demonstrated in
a model of traumatic brain injury (TBI) i.e., in vitro activated
microglia-derived exosomes induced neuroinflammation at the
site of injection and around the lesion. Furthermore, circulating
enriched exosomes or CD11b-isolated microglia from the TBI
brain ex vivo, initiated neuroinflammation following intracortical
injection in naive animals (Verderio et al.,, 2012; Kumar et al,,
2017). The pathogenic effects of microglia-derived exosomes
could be mediated by pro-inflammatory mediators TNF-alpha,
IL-1B and miR-155 (Kumar et al., 2017).

Also, exosomes contribute to disease spreading by acting like
Trojan horses for neurodegenerative agents (e.g., toxins, such
as tetanus toxin, protein aggregates, such as phosphorylated
Tau, amyloid AP or synuclein) (Bellingham et al., 2012; Holm
et al., 2018). Through their non-coding RNA cargo and miRNA
transfer, exosomes are involved in epigenetic regulation of neuro-
glial communication within the nervous system, but also in brain-
body epigenetic interconnection (Lai and Breakefield, 2012).

NEUROVASCULAR UNIT REMODELING
IN RESPONSE TO STROKE

Following the failure of acute neuroprotection therapies, major
efforts are currently made worldwide to promote neurological
recovery and brain plasticity in the subacute and post-acute
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phases of stroke. For over more than two decades, therapeutic
efforts in the stroke field have focused on the promotion of
neuronal survival, which failed to succeed in clinical trials in
humans until now (Savitz and Fisher, 2007; Ginsberg, 2008).
From failure to translate successful neuroprotection therapies
from animal models to humans, it may be concluded that
the stimulation of survival alone is without prospect, as long
as no successful remodeling of brain tissue stimulated by a
permissive microenvironment takes place. Indeed, studies done
recently have shown that extensive remodeling occurs in the
brain following an ischemic event (Hermann and Zechariah,
2009; Hermann and Chopp, 2012). Currently, there is hope that
stroke recovery might be promoted through pharmacological or
cell-based therapies. Indeed, promising results from experimental
studies have led to clinical trials, the results of which are currently
awaited (Lener et al., 2015).

Remodeling of ischemic brain tissue involves interactions
between neurons, glial and microvascular cells that create a
microenvironment in which neurological recovery may ensue.
Neurons and brain capillaries sprout. Neuronal outgrowth
enables the formation of functional axons and synapses in the
brain both over long [e.g., along pyramidal tract (Andres et al.,
2011; Reitmeir et al., 2011)] and short (e.g., within motor cortex
(Clarkson et al., 2010; Hermann and EIAli, 2012) distances,
thus allowing for the restitution of neuronal networks that were
damaged by the stroke event. The remodeling of ischemic brain
tissue also includes responses of immature cells, namely of
endothelial progenitor cells (EPC), neural progenitor cells (NPC),
and inflammatory cells. New blood vessels are formed, and EPC
and NPC are attracted to the stroke lesion. Glial cells contribute
to the remodeling of the extracellular matrix, enabling neuronal
plasticity.

In the process of brain remodeling, proliferating
microvascular cells play a supportive role, enabling the migration
of neural precursor cells and promoting the remodeling of
neurons and glial cells via secretion of growth factors (Hermann
and Zechariah, 2009). This rearrangement of cell-cell interactions
is followed by the recovery of the BBB, leading to the restoration
of brain homeostasis (Hermann and EIAli, 2012).

The remodeling potential of the NVU serves as an
important therapeutic target in stroke and other acute neurologic
conditions. After stroke, damaged and inflamed endothelium
release pro-inflammatory factors and extracellular vesicles (EVs)
that pass through the leaky BBB and activate astrocytes
and microglia to release pro-inflammatory cytokines (TNFa,
IL1B) (Norden et al, 2014). Microglia also release the anti-
inflammatory cytokine IL-10 that acts on reactive astrocytes to
modify their cytokine secretion from a pro-inflammatory profile
toward a pro-recovery one, represented mainly by TGFp. During
the post-stroke BBB repair and parenchymal remodeling process,
NVU cells cooperate and release pro-recovery factors (e.g., IL-
4, IL-10, TGFpP) that switch microglia into a pro-remodeling
phenotype that release growth factors (Norden et al,, 2014).
Moreover, IL-10 acts on the endothelial and vascular cells to
modulate vascular repair and remodeling, diminishes leukocyte-
endothelial interactions, decreases expression and activation of
cytokine receptors, promotes NO-induced vasodilatation and

diminish ROS production and oxidative stress by inhibiting a
NADPH oxidase subunit (Nox1) with impact on degenerative
vascular remodeling (Dammanahalli et al.,, 2011; Garcia et al.,
2017). Overall, IL-10 secreted from the NVU cells, but also from
MSCs and their exosomes (Nakajima et al, 2017), is a pro-
survival factor for neurons and glial cells that diminishes the
post-lesional inflammatory response and limits the secondary
damage during the resolution phase (Mosser and Zhang, 2008).

Pericytes behavior in different phases of ischemic stroke
were recently described (Yang et al, 2017). Briefly, during
the stroke hyperacute phase, pericytes constriction causes
capillary occlusion (no-reflow phenomenon). Then, during
the acute phase, pericytes have a pro-inflammatory and
immune-modulatory action, with consecutive increase in BBB
permeability and brain edema. By protecting the endothelium
on its abluminal side and through release of neurotrophins,
pericytes stabilize the BBB and protect brain parenchyma.
Further, during post-stroke recovery phase, pericytes have a
neuroprotective activity, promoting angiogenesis, neurogenesis,
and brain recovery. The complex multifaceted, multistage
pericytes intervention in ischemic-reperfusion injury and repair
processes, recommend them for new targeted therapeutic
strategies (Cai et al., 2017).

NEUROVASCULAR UNIT-DERIVED
EXOSOMES IN RESPONSE TO STROKE

Pericytes are important players in post-stroke NVU remodeling.
Thus, they were shown to become activated and gain multipotent
stem cell phenotype after brain ischemia and express the
neuroepithelial stem cell marker nestin, with a potential
to differentiate into neural and vascular precursor lineages
(Nakagomi et al, 2015). Cooperation between endothelial
cells and pericytes occurs both through paracrine interaction,
but also through an exosomal bidirectional communication
and is essential for preserving the microvascular functionality
and stability. For example, endothelium or pericyte-derived
hypoxic exosomes were shown to induce an angiogenic program
(Fan, 2014; Mayo and Bearden, 2015). Secondary to local
injury and perivascular inflammation, MSCs are released from
their perivascular location and secrete bioactive molecules
and exosomes with immunomodulatory and trophic effects,
supporting the regenerative microenvironment needed for the
post-injury recovery (Caplan and Correa, 2011). A recent work
even suggests that perivascular MSCs are adventitial cells, acting
as precursors of pericytes and other stromal cells during tissue
homeostasis (de Souza et al., 2016). Not all pericytes can generate
MSCs. It has been recently shown that from the various sub-
population of existing pericytes, not all of them can act like stem
cells, and some act like fibroblasts.

Neuronal exosomes are present at synaptic level, both within
pre- and postsynaptic compartments, and transport synaptic
receptors (e.g., AMPA receptors, GPCRs) (Koniusz et al., 2016)
contributing to synaptic plasticity, both locally and within
broader neuronal networks (Chen and Chopp, 2018). The
activity within glutamatergic synapses, which is increased in
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post-stroke excitotoxic conditions, stimulates neuronal release of
exosomes that preferentially bind to adjacent neurons, impacting
on interneuronal communication (Chivet et al., 2014). The
exosomes released secondary to neuronal depolarization are rich
in miRNAs, potentially promoting synaptic plasticity by enabling
the rapid translation of associated proteins (Goldie et al., 2014).

The interactions between neurons, glial cells and
microvascular cells are finely tuned. They involve mutual
cell to cell communication via release of growth factors as well as
physical cell-cell interactions across the extracellular matrix that
is itself subjected to remodeling processes after stroke (Rosell
and Lo, 2008). Considering the complexity of these systems and
considering both the structural and functional heterogeneities of
brain structures and the heterogeneities of ischemic strokes with
regard to their size, etiology, and localization (Hermann and
Chopp, 2012), the development of neurorestorative therapies is a
true challenge (Hermann et al., 2015).

THE POTENTIAL USE OF
MESENCHYMAL STEM CELLS AND
THEIR EXOSOMES FOR STROKE
THERAPY

Ischemic stroke is a leading cause of death and long-term
disability in industrialized countries, with thrombolysis and
interventional vascular recanalization being the only treatments
available. Due to severe side effects and a narrow therapeutic time
window, only a small proportion of stroke patients receive this
therapy. Thus, additional therapeutic concepts are mandatory
(Hermann and Chopp, 2012). Strategies that promote neuronal
survival in the acute stroke phase have successfully been studied
in experimental stroke models, but were not successful in clinical
trials. Therefore, the research focus has recently shifted from
the acute to post-acute stroke phase (Hermann and Chopp,
2012). After acknowledging that transplanted cells integrate
poorly into existing neural networks and that they induce brain
remodeling in a paracrine way by secreting a heterogeneous
group of nanovesicles, these EVs have been identified as key
players that mediate restorative effects of stem and progenitor
cells in ischemic brain tissue. Neuroprotection as observed after
EV infusion in experimental stroke models is related to stem
cell application in stroke. As a matter of fact, stem cell-induced
neurological recovery after stroke is not a consequence of cell
regeneration but due to paracrine mechanisms of grafted cells,
among which stem cell-derived EVs are key mediators (Doeppner
etal., 2018).

Blood-brain barrier may block or diminish the access of
therapeutic agents within the central nervous system and
therefore many nervous system diseases lack an efficient
treatment because of a deficient drug delivery vehicle.
Considering this important issue, research is nowadays
developing nanocarriers for brain targeted drug delivery and
exploit the potential use of stem cells to secrete exosomes, as
natural nanovesicles rich in biological active molecules. As
lipid-bound nanoparticles, exosomes easily interconnect cells

and cross selective-permeable membranes such as BBB, thus
emerging as versatile tools for new therapeutic strategies (e.g.,
regenerative, immune-modulatory or anti-tumor therapies),
either acting through their biochemically active constituents
(e.g., proteins, lipids, genetic material), or serving as natural
nonimmunogenic vehicles for drug delivery (Lener et al., 2015).

Non-exosomal Effects of Mesenchymal
Stem Cells

The human brain contains reservoirs of neural stem and
precursor cells in the subventricular zone (SVZ) surrounding
the lateral ventricles (Bacigaluppi et al., 2009). Although cerebral
ischemia triggers the activation of these cells and promotes
their migration toward ischemic lesion sites, their siblings hardly
survive and differentiate within the ischemic milieu (Doeppner
etal., 2012, 2014b). To improve brain remodeling and plasticity,
and to bypass limitations of endogenous neurogenesis following
ischemic stroke, a variety of approaches started to focus on the
transplantation of NPCs or somatic stem cell entities, such as
MSCs (Popa-Wagner et al., 2006, 2007, 2011). MSCs secretome
comprises growth factors, cytokines, chemokines, extracellular
matrix components, genetic material, but also EVs (exosomes and
microvesicles), recommending them as versatile tools in clinical
applications (Gaceb et al., 2018).

Mesenchymal stem cells, known as “sentinel and safe-guards
of injury” (Caplan, 2016), were shown to produce neurotrophic
factors such as nerve growth factor, brain-derived neurotrophic
factor, or glial-derived neurotrophic factor, explaining their
therapeutic potential (Lopatina et al., 2011).

Initially, it was assumed that transplanted NPCs and MSCs
home to affected sites and, upon expansion and differentiation,
directly replace the lost brain cells to restore tissue functions.
In this context, our lab has comprehensively characterized
the therapeutic effects of SVZ-derived adult NPCs in a
mouse model of ischemic stroke, i.e., transient proximal (i.e.,
intraluminal) middle cerebral artery occlusion (MCAO).
We observed that systemic NPC delivery induces profound
brain tissue remodeling, reflected by reduced secondary
neurodegeneration, reduced neuroinflammation, reduced
astrogliosis and reduced microglial activation, that was associated
with functional neurological recovery (Bacigaluppi et al., 2009;
Doeppner et al,, 2012, 2014a,b). Remarkably, it turned out that
systemic intravenous administration of adult NPCs was more
effective than intracerebral transplantation. Indeed, systemic
administration effectively resulted in the stabilization of BBB
integrity. However, just 0.1-0.3% of intravenously transplanted
NPCs were detected in the brain and most of them were in an
undifferentiated state (Bacigaluppi et al., 2009). These findings
imply that NPCs act in a paracrine rather than a cellular mode.

Exosomal Effects of Mesenchymal Stem
Cells

The exosomes database ExoCarta' reports more than 900
species of proteins associated with MSCs-derived exosomes, but

'http://www.exocarta.org/
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recent data from proteomic analysis, identified more than 2000
proteins in MSC-exosome, many of them being involved in
brain repair (Otero-Ortega et al., 2017). These were shown to
increase glial production of anti-inflammatory and immuno-
regulatory mediators, TGFB1 and IL-10 (Burrello et al., 2016),
with significant roles in NVUs’ recovery and remodeling. Also,
it was recently shown that IL-10 is one of the neuroprotective
factors through which transplanted MSCs act after an ischemic
stroke. Thus, MSCs overexpressing IL-10 improved neuronal
survival in the ischemic hemisphere (Nakajima et al., 2017).
Interestingly, MSCs-derived exosomes were shown to exhibit
post-stroke changes in their miRNA profile, mostly in the
miRNAs actively involved in the repair process by altering
gene expression and promoting brain recovery (Liu et al,
2013).

Classically, paracrine effects were thought to be mediated
by soluble molecules such as growth factors, cytokines,
chemokines and hormones. More recent data, however,
demonstrate that several physiological and pathophysiological
processes are controlled by exosomes (Cramer et al, 2017).
In experimental stroke models, evidence was provided
that exosomes exert neuroprotective, proangiogenic and
neuronal plasticity-promoting functions (Xin et al., 2013).
Thus, systemic administration of MSC-derived exosomes in
a rat model of stroke improved functional recovery and
enhanced neurite remodeling, neurogenesis, and angiogenesis
(Xin et al., 2013). Furthermore, administration of combined
xenogenic (from mini-pig) adipose-derived mesenchymal
stem cell (ADMSC) and ADMSC-derived exosome therapy
has been shown to reduce brain-infarct zone (BIZ) and
enhance neurological recovery in rat after acute ischemic
stroke (Chen et al., 2016). At molecular level the beneficial
effects of MSC-derived exosomes could be mediated by
the miR-17-92 cluster. Thus, rats subjected MCAO and
treated with miR-17-92 cluster-enriched exosomes, performed
significantly better than the control rats treated with MSC
exosome alone (Xin et al, 2017a). Similarly, administration
of exosomes isolated from miR-133b-overexpressing MSCs
lead to increased mneural plasticity and improvement
of functional recovery after stroke in rats (Xin et al,
2017b).

Based on these observations, we performed a direct
head-by-head comparison of the therapeutic effects of
MSCs and their exosomes in a murine model of transient
intraluminal MCAO, which predominantly affects the
striatum and most lateral parts of the overlying cerebral
cortex, showing that systemic MSCs and MSC-derived
exosomes are equally effective in enhancing stroke-related
motor and coordination recovery thereby confirming the
beneficial effects of the exosome therapy reported by
Chopp and colleagues who observed a significant reduction
in neurological impairment that improved gradually over
4 weeks after systemic delivery of MSC-derived EVs
(MSC-EVs) in a model of transient MCAO in rats (Xin
et al, 2013). Both therapies promoted post-ischemic
endogenous neurogenesis and angiogenesis and reversed

the stroke-associated immunodepression (Doeppner et al,
2015).

CONCLUSION AND PERSPECTIVES

Ischemic stroke is a leading cause of death and long-
term disability for which no restorative therapy is available.
After stroke, the NVU is compromised and has become a
major target for restorative therapies in the central nervous
system. Emerging research has revealed that the nano-sized
exosomes could be used for the NVU remodeling after stroke,
due to their ability to mediate cell-to-cell communication.
Considering the side effects typically attributed to cell-
based therapies, in particular, malignant transformation of
the transplanted cells, MSC-derived exosomes are attractive
candidates for stroke therapy, as emphasized by a recent
position paper (Lener et al, 2015). Indeed, systemic
administration of MSC-derived exosomes is effective in
enhancing stroke-related motor and coordination recovery
in experimental stroke models, fueling the hope for clinical
studies. Nevertheless, for clinical applications we need further
studies to shed light on (i) mechanisms of the interaction
between exosomes and target cells, (ii) circulation kinetics
and biodistribution; (iii) biogenesis mechanism; (iv) potential
side effects. For example, tumor-secreted exosomes may
act as mediators in cancer metastasis by maintenance and
enhancement of tumor microenvironment (Salido-Guadarrama
et al., 2014; Cheng et al, 2017; Li et al, 2018). Likewise,
several studies have reported high levels of cholesteryl ester
(CE), triacylglycerol (TAG) and cardiolipin in exosomal
preparations fueling concerns about increasing the risk of
stroke instead of having a beneficial effect (Llorente et al,
2007; Van Meer et al., 2008; Strauss et al., 2010; Record
et al, 2014; Skotland et al, 2017; Popa-Wagner et al,
2018).

Furthermore, considering that ischemic stroke mainly affects
elderly patients, experimental data in aged rodents are urgently
required before a clinical proof-of-concept study in human
patients should be envisaged (Popa-Wagner et al., 2006, 2007,
2018; Balseanu et al., 2014).
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