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Spiking Neural Networks (SNNs) have high potential to process information efficiently

with binary spikes and time delay information. Recently, dedicated SNN hardware

accelerators with on-chip synapse memory array are gaining interest in overcoming the

limitations of running software-based SNN in conventional Von Neumann machines. In

this paper, we proposed an efficient synapse memory structure to reduce the amount

of hardware resource usage while maintaining performance and network size. In the

proposed design, synapse memory size can be reduced by applying presynaptic weight

scaling. In addition, axonal/neuronal offsets are applied to implement multiple layers on a

single memory array. Finally, a transposable memory addressing scheme is presented for

faster operation of spike-timing-dependent plasticity (STDP) learning. We implemented

a SNN ASIC chip based on the proposed scheme with 65 nm CMOS technology. Chip

measurement results showed that the proposed design provided up to 200X speedup

over CPUwhile consuming 53mWat 100MHzwith the energy efficiency of 15.2 pJ/SOP.

Keywords: neuromorphic system, spiking neural network, spike-timing-dependent plasticity, on-chip learning,

transposable memory

1. INTRODUCTION

Spiking neural networks (SNNs) have received attention mostly due to their biological plausibility.
It is known that biological neurons communicate with others by transmitting action potentials
or spikes which represent dramatic changes in membrane potential (Maass, 1997; Gerstner et al.,
2014). Although the performance of SNN such as accuracy in object recognition is lower than
that of state-of-the-art deep neural networks (DNNs), SNNs are gaining interest because of
their biological plausibility and unique characteristics such as time delay information and energy
efficiency (Izhikevich, 2006; Du et al., 2015).

Artificial neural network (ANN) commonly uses massive number of computations (neurons)
and parameters (synapses) in parallel, thereby causing a von Neumann bottleneck in conventional
machines. Several hardware accelerators have been introduced to efficiently handle the necessary
computations such as matrix multiplications. However, SNN contains time dimension in its
processing and uses binary spikes for internal communication between neurons. Hence, it does
not need enormous number of multiplications. These features cannot be utilized unless dedicated
hardware is made. Therefore, even more dedicated hardware system is preferable for SNN (Seo
et al., 2011; Arthur et al., 2012; Cassidy et al., 2013; Benjamin et al., 2014; Furber et al., 2014; Merolla
et al., 2014; Akopyan et al., 2015; Davies et al., 2018; Frenkel et al., 2018).

Many existing neuromorphic hardware have been built using analog or mixed-signal devices so
that electricity or charge of devices can directly model the functionality of neurons and synapses.
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However, it is not easy for analog devices to implement various
neuronal functions and reconfigure parameters such as synaptic
connections after the hardware is built. Furthermore, hardware-
software correspondence is preferred when the hardware is used
as a platform for theoretical or algorithmic study about SNNs
because we can test the functionality and performance of the
hardware even before it is built. Therefore, several fully digital
neuromorphic hardware systems have been developed recently.

Digital neuromorphic chips such as IBM’s TrueNorth
(Merolla et al., 2014; Akopyan et al., 2015) and Intel’s Loihi
(Davies et al., 2018) include dedicated logic and memory to
digitally simulate neurons and synapses. Although neurons with
relatively complex operations may need a significant amount of
computing logic, synapses that are several hundred to thousand
times more than neurons require more hardware for memory
than logic. Considering that neuromorphic hardware usually
holds all synaptic weights on chip, it is important to implement
efficient synapse memory to represent larger and more complex
network.

Analog or mixed-signal neuromorphic hardware may utilize
next-generation memory such as Resistive RAM (ReRAM) and
memristor to enable simultaneous addition of multiple synaptic
weights and efficient thresholding (Bichler et al., 2012; Querlioz
et al., 2013). On the other hand, for digital implementation,
static RAM (SRAM) is typically used as an on-chip memory for
synaptic parameters. On-chip SRAM can be used like a typical
buffer to store word-by-word. However, it can also be used as
a 2D crossbar array to represent synapses that exist between
neurons.

One of the most important features of SRAM crossbar arrays
is that they can only be accessed in a row or column direction
at a time. The direction of word line (WL) can be read at
the same time. However, the direction of bit line (BL) cannot
be read simultaneously. Row-wise access to synapse memory
is preferred for higher throughput because inference operation
which requires reading a row of synapses when a presynaptic
spike arrives is more frequent and important. We can use
column-wise memory access to read multiple synapses in a
column at once and sum all synapses in a single cycle, but
this requires much more complex hardware when the precision
of synapses is high. In addition, using column-wise access in
inference operation does not take advantage of input sparsity
because it also reads synapses connected to presynaptic neurons
without spikes. Park and Kim (2018) have suggested that using
neuromorphic cores with different (row/column) directions can
improve performance by reducing inter-core delay.

In spite of having higher throughput, SRAM crossbar arrays
suffer from large area and power consumption. Merolla et al.
(2014) have used crossbar architecture with column-wise access
to the memory and multiple cycles to sum synapses that are
read at once, thereby saving the area for the neuron module.
Some existing hardware did not use crossbar architecture.
Frenkel et al. (2018) have emulated the crossbar structure
by using the time-multiplexed structure without using real
crossbar array. Davies et al. (2018) have used routing tables
to efficiently implement sparse and more complex synaptic
connections.

Meanwhile, learning mechanism is very important in the
study of SNN for machine learning applications or biological
models. Spike-Timing-Dependent Plasticity (STDP) learning, the
most popular learning method for SNN, uses difference between
timing of a presynaptic spike and that of a postsynaptic spike.
It potentiates synaptic connection when postsynaptic spike is
emitted soon after the presynaptic spike is emitted (pre-then-post
or causal case). It depresses it when presynaptic spike occurs after
the postsynaptic spike is emitted (post-then-pre or acausal case).

The pre-then-post case requires the update of synapses
connected to the same postsynaptic neuron while the post-then-
pre case requires to update synapses connected to the same
presynaptic neuron. In other words, updating the weights in the
same row or same column is required when 2-D crossbar array is
used to represent dense synaptic connections between axons and
neurons. For memristive crossbar array, specific voltage pulse
signals can be provided to the entire row and column (Querlioz
et al., 2013). As the voltage across the memristive memory cell
changes the state of the memory cell, it is possible to update
any row/column of synaptic values simultaneously. However, for
SRAM that is typically used in digital implementations, we can
only access cells in either the row or column direction. Using one
direction of memory access can severely degrade performance of
either pre-then-post or post-then-pre STDP operation.

A possible solution to this problem is to modify the SRAM
to enable bidirectional or transposable memory access. Seo
et al. (2011) have designed custom 8-transistor (8T) SRAM
with additional WL and BL for column-wise memory access.
However, additional transistors and signal lines (WL and BL) will
significantly increase the area of the memory cell and customized
memory design is required.

The learning algorithm itself can be also modified instead.
Pedroni et al. (2016) suggested to update synaptic weights when
the presynaptic spike arrives and the presynaptic spike timer
expires. However, with this algorithm, the exact timing can
be inferred and used for the pre-then-post case when there is
only one postsynaptic spike between two consecutive presynaptic
spikes. Therefore, a large refractory period needs to be set
to ensure such a condition. Davies et al. (2018) have used a
similar approach called epoch-based synaptic modification. At an
interval of several time steps, every presynaptic neuron’s routing
table is scanned to check spikes and update synapses. It also
needs to assume sparse spikes for accurate learning. In addition,
it needs to spend much time to scan all presynaptic neurons even
if there is no postsynaptic spike. Although neither study used a
crossbar array for synapse memory, the aforementioned learning
algorithms can be directly applied to crossbar architecture.

In this paper, we proposed several schemes for the
implementation of efficient synapse memory arrays to address
these aforementioned issues.

By exploiting per-axon presynaptic weight scaling factors to
synaptic weights, we reduced the total number of bits used for
synapses while maintaining computation accuracy.

Using the offset parameters to define connections between
axons and neurons, we can reduce the number of synapses
from each axon and prevent wasting synapses when complicated
network structure such as multi-layer network is implemented in
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FIGURE 1 | (A) Overall dataflow of the proposed design, (B) Presynaptic weight scaling scheme.

the system. Furthermore, with our novel transposable memory
addressing scheme, we can enable transposable access to the
synapse memory using conventional 6T SRAM and make the
throughput for learning with the same as the throughput for
inference. Based on the schemes, we also demonstrated a 65
nm CMOS neuromorphic core chip optimized in terms of
performance and area required for synapse memory.

2. MATERIALS AND METHODS

2.1. Spiking Neural Network (SNN)
In SNN, the membrane potential values of neurons can be
described by various differential equations. Spikes from other
neurons can directly modify the potential or change the amount
of current through the membrane. The amount of difference in
the potential is called Postsynaptic Potential (PSP). The leaky
integrate-and-fire (LIF) model is one of the most basic models
that considers the cell membrane as a capacitor with leakage
current. The LIF model in discrete time domain can be expressed
as

Vk(t) = Vk(t − 1)− α(Vk(t − 1)− Vrest)+ Vin, (1)

where Vk(t) is a membrane potential of neuron k at time t,
α is a leakage coefficient, Vrest is a resting potential, and Vin

is an external input from outside or other neurons. If there
is no disturbance, the potential is maintained at Vrest. I is the
summation of synaptic weights from presynaptic spiking neurons
in the simplest case. When the membrane potential exceeds
neuron’s threshold, action potential occurs. After the occurrence
of action potential, the neuron enters into a state during which it
no longer integrates synaptic input.

2.2. Proposed Hardware Design
2.2.1. System Configuration
Figure 1A shows a simple description of the overall architecture
and dataflow of the system. Executing one iteration of the
inference operation and the learning operation composes a
single time step that represents 1 ms in the simulation. In
the inference stage, a spike from the axonal memory accesses
the corresponding location of synapse memory. The amount
of the synaptic weight value is sent to the neuronal memory
for integration. To reduce the total number of memory bits
for synapses, we proposed a presynaptic weight scaling scheme
(Figure 1B). In the scheme, a presynaptic scaling factor of
each axon is multiplied by original synaptic weights to obtain
effective synaptic weights (Figure 1B). This concept will be
explained more in detail in section 2.2.2. In the proposed system,
membrane potential values of the neurons are changed as

Vj(t) = Vj(t − 1)− α(Vj(t − 1)− Vrest)+
∑

i

st,i × w
pre
i × wi,j,

(2)

where i is an index of the axon, j is an index of the neuron, st,i is
a binary presynaptic spike from axon i at time t, wi,j is a synaptic

weight between axon i and neuron j, and w
pre
i is a presynaptic

scaling factor of axon i. Each neuron processes its membrane
potential according to the Leaky Integrate-and-Fire (LIF) spike
model and emits spikes back to axons.

The axonal and neuronal modules have the axonal and
neuronal timers that count elapsed time steps from each axon
and neuron’s last spike. The axonal/neuronal timer values are
incremented by one when one iteration of the inference operation
and the learning operation is finished.When the maximum timer
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FIGURE 2 | Learning stage for (A) pre-then-post spikes and (B) post-then-pre

spikes.

value (15) defined by their bit precision (4 bits) is reached, they
no longer increase. The axonal timer value is set to zero when
the axon sends out a presynaptic spike to neurons at the current
time step, and the neuronal timer value is set to zero if the neuron
fires.

In the learning stage, based on current spikes and the
axonal/neuronal timers, the kernel function for STDP is applied
to the synaptic memory using a lookup table (LUT). For post-
then-pre spikes, the axonal timer is checked every time step
(Figure 2A). The zero value at the axonal timer means the
presynaptic spike has just occurred. Neuronal timer value at the
moment represents the timing difference between the presynaptic
spike and the postsynaptic spike. The neuronal timer value is
used to select kernel value from the kernel function defined for
each timing difference. Figure 2B shows the case for pre-then-
post spikes, in which the axonal timer value represents the timing
difference between the postsynaptic spike and the presynaptic
spike, when the neuronal timer value is zero.

In our design, the synapse module is composed of presynaptic
memory and synaptic memory. The system is designed to update
only synaptic weights in the learning stage. The amount of
synaptic weight change is obtained as kernel function value
divided by the presynaptic scaling factor. The presynaptic scaling
factors can be updated off-chip.

Meanwhile, by properly setting the kernel function, various
learning rules can be easily implemented. Our system can hold
eight different kernel functions at the same time, and each kernel
function consists of 16 different signed values. Figure 3 shows
some examples, including conventional STDP learning with an

exponential kernel function (Figure 3A), its simplified version
(Figure 3B), and symmetric STDP (Figure 3C).

2.2.2. Presynaptic Weight Scaling
In the proposed system, a synaptic weight is multiplied by
another value called a presynaptic scaling factor when it is
used in the inference operation. Here we assume that the
scaling factor depends on the presynaptic cell (axon) only
while the ordinary synaptic weight depends on individual
connection between the presynaptic cell and the postsynaptic cell
(neuron).

The presynaptic weight scaling scheme was adopted based on
our observation that synapses from one axon might have more
significant values than synapses from another axon, whereas
synapses from an axon to different neurons have similar absolute
values on average. As an example, we take 784×240 weights
from a 784-240-10 multi-layer perceptron (MLP) that classifies
MNIST handwritten digit dataset. A group of synapses from the
same axon (Figure 4A, let us call this a pre-group) represents
how much the axon contributes to each higher-level feature. A
group of synapses that are connected to the same neuron (let us
call this a post-group, Figure 4B), commonly called a kernel or
a filter, tend to find distinctive patterns from pixels. Each pixel
in Figure 4C represents the average of absolute values of 240
synaptic weights from each pre-group.

Visualization showed that weights from some axons tended to
have higher absolute values than others. The average standard
deviations (σ ) of weights in a single pre-group/post-group was
0.0239/0.0291, meaning that weights in each group tended to
spread similarly. However, σ of the average absolute weight
values in a single pre-group/post-group was 0.0125/0.0024,
meaning that each pre-group’s average absolute weight value was
distributed 5 times more broadly than each post-group’s value.
Similarly, σ of the root mean square (RMS) of weights in a single
pre-group/post-group was 0.0174/0.0050, showing more than 3
times difference.

Using the scaling scheme, the number of memory bits
for synapses is changed from (#synapses × bits-per-synapse) to
(#synapses × bits-per-synapse + #axons × bits-per-scaling-factor).
However, because of a presynaptic scaling factor, we can use
fewer bits for each synaptic weight while maintaining the
accuracy of inference/learning. Therefore, the total number of
memory bits for synapses can be reduced. Detailed results from
experiments will be described in section 3.1. Note that, unlike
conventional weight decomposition methods such as low rank
approximation (Denton et al., 2014; Kim et al., 2016), 2D synaptic
weight memory which keeps its size and dimension can provide
flexibility and reconfigurability for on-line learning and manual
modification of weights.

2.2.3. Transposable Memory Addressing Scheme
Assuming that the synaptic weight memory is 2D array and
each row of it represents synapses from each axon to many
neurons while each column of it represents synapses from
many axons to each neuron, it only needs to be accessed
row-wise in the inference stage. However, it must be accessed
both row and column-wise in the learning stage because STDP
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FIGURE 3 | Examples of possible kernel functions for 5-bit synapse: (A) exponential STDP, (B) simplified STDP, and (C) symmetric STDP.

FIGURE 4 | Definition of (A) pre-group and (B) post-group, and (C) average of each pre-group synapses’ absolute values.

learning uses both pre-then-post and post-then-pre spikes.
Meanwhile, column-wise access to conventional SRAM-based
memory requires row-by-row accesses because multiple cells
attached to the same bit line cannot be read simultaneously. Such
multiple row-wise accesses for one column-wise access is very
wasteful in terms of both delay and energy. To address this issue,
a custom transposable memory has been introduced (Seo et al.,
2011). However, it requires non-standard customized memory
design. In addition, it suffers from significantly increased cell
area.

As an alternative, we propose a scheme to implement a
transposable synapse memory using conventional 6T SRAM
arrays. In this scheme, the memory is split into multiple blocks
and data are remapped so that each memory block does not
contain adjacent cells from the same column in the original
memory. Then both row-wise and column-wise access can be
done in a cycle by accessing dividedmemory blocks with different
addresses.

Let us assume that the number of columns in the original
weight matrix is C and the number of memory blocks is B. We
rearrange elements of the matrix so element (x, y) of the original
matrix (0 ≤ x, 0 ≤ y < C) goes to {(x + y) mod B}-th memory
block with address (Cx+y)/B. Accessing B consecutive cells from
element (x, y) in row direction requires elements (x, y+ b) while
accessing values in column direction requires elements (x + b,
y) (for both cases 0 ≤ b < B). To access these values in B split
memory blocks, an address we have to provide for k-th memory

block (0 ≤ k < B) becomes

Addrk =

{

⌊Cx+y+((k−x−y) mod B)
B

⌋

for row-wise access
⌊C(x+((k−x−y) mod B))+y

B

⌋

for column-wise access

(3)

Furthermore, B output values coming out from B blocks must be
rearranged to provide final output values in the right order. It can
be done by using a barrel shifter,

Outputfinall = Output
memory

l+x+ymod B
for 0 ≤ l < B (4)

One example case is shown in Figure 5, in which C = 4 and B =

4. As shown in Figure 5, column-wise access can be done in a
cycle by locating synaptic weights for the same neuron (the same
y) in different blocks. Hence, inference and learning speed can
be made the same with conventional 6T SRAM-based synapse
memory. This addressing scheme can significantly increase the
learning speed. Experimental results will be shown in section 3.2.

2.2.4. Axonal/Neuronal Offset
Conventional neuromorphic systems with 1K axons and 1K
neurons are typically built with 1M synapses to support arbitrary
synaptic connections between axon and neuron pairs. In contrast,
only 256K synapses are used in our design for the same number
of axons and neurons. As a result, the number of synaptic
connections from an axon to neurons is reduced to 256 from
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FIGURE 5 | Transposable addressing scheme (C = 4,B = 4).

FIGURE 6 | Network compositions with (A) different axonal offsets (Nf = 2) and (B) different neuronal offsets (Nf = 4), and (C) an example of implemented lateral

inhibitory layer (Nf = 3).

1K while the number of neurons remains at 1K. Let us define
the number of synaptic connections from one axon to neurons
as the axonal fan-out number (Nf ). Decreased Nf makes the
number of columns in the synaptic weight memory become less
than the number of neurons. Reducing the number of synaptic
connections from each axon is obviously helpful in terms of
memory reduction, but it needs to make sure that an axon can
be connected to any neuron among 1K candidates.

As a solution, we introduce axonal offset Oa which makes
synaptic weight Wij(j = 0, 1, ...,Nf ) from axon i is connected
to neuron j + Oa(i). It allows an axon to reach any neurons
with very small amount of additional resource for addressing.
Figure 6A shows some examples of network compositions with
different axonal offsets. A single layer (Figure 6A, left), a multi-
layer (center), and a reservoir-like complex network (right) can
be implemented with reduced number of synapses by changing
axonal offsets. With axonal offset, the description of synaptic
integration in the system is changed as

Vj(t) = Vj(t − 1)+
∑

i∈I

st,i × w
pre
i × w

post
i,j−Oa(i)

(5)

I = {i ∈ Z | 0 ≤ j− Oa(i) < Nf }, (6)

where i is the index of the axon and j is the index of the
neuron.

In addition, we use the neuronal offset (On) to implement
a complex network in a single core by allowing recurrent
connections from neurons to axons (Figure 6B). As shown in the
Figure 6B, the firstOn neurons have direct connections to the last
On axons in sequence. It can be described as follows.

st+1,Na−On+i = 1 if Vi(t) ≥ θi, 0 otherwise for 0 ≤ i < On

(7)

whereNa is the number of axons, i is the index of the neuron, and
θi is the threshold of neuron i.

With different On, for example, synapse memory can be
used to implement a single layer (Figure 6B, left), complete
connections between every neuron and every axon for recurrent
network (center), and intermediate choice to support both
hierarchical and recurrent structures (right).

It is known that the accuracy of SNN strongly depends on the
existence of a locally competitive layer commonly described as
lateral inhibition (Oster and Liu, 2006). In a lateral inhibitory
layer, a neuron which emits spikes immediately can prevent
spikes in other neurons by inducing negative change in their
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membrane potentials. In our design, lateral inhibition can be
implemented by using synapses with negative values and by
making recurrent connections between neurons in the same layer
with neuronal offset (Figure 6C).

In case the axonal fan-out number (Nf ) is smaller than the
required number of synaptic connections from one axon in a
specific network composition we want to implement, we can use
multiple axons having different axonal offsets but receiving the
same input. For example, if one axon is set to have the axonal
offset of zero and another axon is set to have the offset of Nf

(256), providing the same presynaptic spikes to those two axons
conceptually enables synaptic connections from one axon to 2Nf

(512) consecutive neurons.
In this case, we may have to allow one neuron to send one

spike to multiple axons. However, our current design using the
neuronal offset does not explicitly support this one-to-many
neuron-to-axon connections. Instead, we can utilize known
methods such as splitter (Merolla et al., 2014) or neuron copy
(Esser et al., 2016). The splitter method uses one additional
axon and multiple additional synapses/neurons so that the axon
redirects received presynaptic spikes to those neurons. Then
those neurons can send out the same spikes to different axons.
The neuron copy method simply uses multiple neurons for the
exact same neuronal states/functions so that they can produce
identical postsynaptic spikes. Also note that this scalability issue
will become a less burden when available hardware resources are
increased by implementing multiple cores in the same chip as in
Merolla et al. (2014) and Davies et al. (2018).

2.2.5. Parameterized Parallelization
For both inference and learning operations, parallelized
memory access, and computation provide higher throughput.
However, parallelization requires more execution units and
resources. We propose parameterized parallelization to define
the parallelization parameter P that controls the number of
divided memory parts and execution units for the whole
system (Figure 7). The architecture is designed to work with
any P. Considering both performance and resource, we can

FIGURE 7 | Dataflow of the design with parallelization number P. Learner

module is omitted for simplicity.

conveniently compare designs with various P-values in field
programmable gate array (FPGA) or simulation before deciding
the final value for application-specific integrated circuit (ASIC)
implementation.

The synaptic integration process can be parallelized by
dividing synaptic memory and neuronal memories into P
blocks (Figure 7). By dividing memories, P synaptic weights can
be simultaneously read and delivered to P different neurons.
Each separated neuronal memory block holds parameters of
(#Neurons/P) neurons. Although P synapses are connected to
different neurons, indices of neurons are consecutive. Thus, the
connection can be made by a single P × P barrel shifter. Then
P blocks of neuronal memories can independently perform the
fire process and send spikes to P axons using a barrel shifter with
neuronal offset.

P blocks of the axonal memory need to provide spikes one by
one. Each presynaptic spike can then access the synaptic memory
in the next time step. This parallelized integration process assures
identical functionality for any P-value.

For transposable memory addressing, the number of split
memory blocks (B) can be simply set equal to P. Then P synaptic
weights can be read in one cycle in both inference/learning
operations.

3. RESULTS

We implemented an application-specific integrated circuit
(ASIC) chip on a 65 nm CMOS process technology based
on the proposed schemes. Before we fabricated the ASIC
chip, we verified the effectiveness of the proposed schemes
through software simulation and Field Programmable Gate Array
(FPGA) implementation. We also used the flexibility of FPGA
to investigate effects of various reconfigurable parameters to
determine their optimal values for ASIC design.

3.1. Network Accuracy
3.1.1. Inference
To see the impact of presynaptic weight scaling scheme on
network accuracy, we tested different numbers of bits per synapse
in MNIST digit recognition task. Using the method of Diehl et al.
(2015), we built a rectified linear unit (ReLU) based network with
size of 784-240-10 to classify MNIST dataset and trained it using
back-propagation in MATLAB. After 15 epochs of training, we
transferred trained weights into a SNN with the same number
of neurons. Refractory periods and thresholds were empirically
determined to be the same for all neurons. We then measured
the inference accuracy for various number of bits per synapse
(Figure 8). Inference results were determined by the number
of spikes in the output neurons during 50 ms of simulation.
Without any preprocessing on input images, Poisson spike trains
with spike rates proportional to intensities were used as network
inputs.

For a given number of bits per synapse b, synaptic weights
were linearly quantized to 2b different levels. The largest and the
smallest quantization levels for each b were determined by grid
search to provide the best accuracy.
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FIGURE 8 | MNIST inference accuracy using different numbers of bits per synapse.

As the first step to apply the proposed weight scaling, a
presynaptic scaling factor value for each axon is determined
by statistical methods, such as Root-Mean-Square (RMS) of
weights from each axon or the average of absolute values of
those weights. In this work, presynaptic scaling factors were set
to be proportional to the RMS of the original synaptic weights
connected to each axon. Note that presynaptic scaling factor
value for each axon is also quantized based on the given bit
resolution.

Figure 8 shows accuracy results from MNIST inference task
using different numbers of bits per synapse. It was observed
that 5-bit fixed-point weights provided similar accuracy to 32-
bit floating point weights. The accuracy decreased as the number
of weight bits decreased. While using 3-bit weights resulted in
significant accuracy loss, the accuracy was substantially recovered
if the weight scaling scheme was applied by adding 3-bit
presynaptic scaling factor to the 3-bit synaptic weight (3b + 3b-
pre). It can be observed that the accuracy of 3b + 3b-pre case
is even better than the 4-bit weight case. In addition, with the
scaling scheme, 2-bit synaptic weights with 4-bit presynaptic
scaling factors provided higher accuracy than 3-bit synapses.
While the weight scaling scheme showed better accuracy, the
amount of required synapse memory was reduced. For example,
the memory requirement for 2b + 4b-pre synapses is 4 × (784 +
240)+ 2× (784× 240+ 240× 10) = 385, 216 bits in total. It is
33% smaller than that for 3-bit synapses which is 3×(784×240+
240× 10) = 571, 680 bits. The 3b + 3b-pre synapses require 25%
less amount of memory than 4-bit synapses.

3.1.2. STDP Learning
Similarly, we also examined the impact of weight precision
on STDP learning. We built a network with a single layer
of 784–256 neurons and applied STDP while providing input
spikes representing MNIST images. These 256 neurons have
lateral inhibitory connections to each other for more effective
unsupervised learning. The role of STDP in this example is to
train synaptic weights so that each of 256 neurons becomes
sensitive to a unique input pattern. At the same time, lateral
inhibition prevents other neurons from becoming sensitive to the
pattern. It is important to make sure that synapses connected to

each neuron learn different patterns. On the other hand, these
synapses should not be too responsive to a single image or a
particular pixel.

From this perspective, using low-precision synaptic weights
for STDP learning is difficult because the magnitude of the
minimum weight change becomes relatively large and the
sensitivity to a particular pattern increases rapidly, making it
difficult to learn various patterns using thousands of different
images. In contrast, synaptic weights with high numerical
precision can gradually increase the sensitivity to specific
patterns.

To maintain the amount of weight changes on average, weight
updates must be applied in stochastic manner. By using STDP
kernel value as the probability of weight change, relatively stable
learning can be achieved with even extremely low-precision
weights such as binary weights (Seo et al., 2011). In this case,
the proposed weight scaling method helps more accurate STDP
learning. In our scheme, the effective synaptic weight is obtained
by the product of presynaptic scaling factor and synaptic weight.
To keep the largest weight of the network the same with the
presence of presynaptic scaling factor, the relative magnitude
of original synaptic weight decreases, resulting in a smaller
minimum weight change. In our hardware design, it is possible
to increase neuronal threshold to effectively lower synaptic
weights.

Figure 9 shows results from STDP learning with the scaling
scheme. Using a customized STDP kernel function (Figure 9A),
an example of changes in an effective weight during STDP
is shown in Figure 9B. For given presynaptic spikes and
postsynaptic spikes (+ and × signs at the bottom), a synaptic
weight with 32-bit floating-point (FP) precision is changed
as shown in the black line with circle markers. Using the
weight with 5-bit precision (blue and triangle), possible weight
values are restricted to few levels. With 2-bit presynaptic
scaling factors, the minimum weight change is smaller up to
four times (red and square). With 4-bit presynaptic scaling
factors, the minimum weight change is smaller up to 16
times (green and diamond), thereby making weight changes
much more similar to weight changes using floating-point
precision.
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FIGURE 9 | (A) STDP kernel function used, (B) Example of effective weights changed through STDP learning with different synaptic weight precision, and (C,D)

MNIST accuracy results from using STDP + SVM classifier.

To see its influence on accuracy as we used STDP as an
unsupervised learning method, we added and trained a linear
Support Vector Machine (SVM) classifier after the STDP layer

as in Kheradpisheh et al. (2018). At each training iteration, one
training image was shown to the network. At every 100 iterations,
we trained a new SVM classifier using only images that we had

Frontiers in Neuroscience | www.frontiersin.org 9 November 2018 | Volume 12 | Article 829

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kim et al. Efficient Synapse Memory Structure

FIGURE 10 | Computation time with different P values for (A) random network with STDP learning, (B) with (+) and without (−) the transposable addressing scheme,

and (C) MNIST inference task.

used to train STDP layer. We did not restrict the precision of
parameters in SVM classifier to only see the effectiveness of STDP
layer. Similar to section 3.1.1, input spikes were given as Poisson
spike trains during STDP while only 30 ms was given for each
image to prevent over-fitting.

As a result, for different cases of synaptic precision, we
were able to get test accuracy results as 0–15,000 training
iterations are processed (Figure 9C). In floating-point (FP)
case, the best accuracy was achieved at 15000 iterations and
the accuracy kept increasing. Cases with 3-bit synapse also
showed similar results, but the accuracy reaches the highest
point before 15,000 iterations. However, the accuracy of 2-bit
synapses began to degrade significantly at about 3,000 iterations.
Lower synaptic precision leads to largerminimumweight change,
making learning more unstable and hard to converge. Therefore,
adding presynaptic scaling factors to scale down the minimum
weight change can reduce accuracy degradation due to this
unconvergence.

Figure 9D shows the best accuracy results achieved by each
case until 15,000 iterations and the accuracy after 15,000
iterations. The presence of presynaptic scaling factors slightly
increased the best accuracy for both 3-bit and 2-bit synapses. The
difference became noticeable for accuracy at 15,000 iterations.

3.2. Performance
To compare the performance of the system with conventional
machines, we wrote an optimized software program. It works
exactly the same way as the hardware implementation does in
C++. Intel Xeon E5-2609 v3 (1.90 GHz clock) was used to
measure CPU performance. To see the difference caused by
changing the parallelization parameter P as explained in section
2.2.5, we measured computation time in FPGA implementation
of our design (Figure 10). The result from P = 128 was identical
to our chip measurement result (red figure). The design was
synthesized and placed at clock frequency of 100 MHz.

To fully utilize these implemented features, we made two
example cases for the experiment: one with parameters that
were randomly set throughout the system (Figures 10A,B) while
another from a real application (Figure 10C). For both cases,
total numbers of axons/neurons were 1K/1K and Nf = 256. The
number of bits for a presynaptic scaling factor was fixed at 4-bit
and that for a synaptic weight was fixed at 5-bit.

The first example network was a random network made of
5-layer of 256-256-256-256-256 neurons. STDP using a simple
exponential kernel function was applied to the second layer. An
average spike rate of neurons was 54.74 Hz. The speed increased
in proportion to P. At P = 128, it provided 130× speedup against
CPU (0.364 ms vs 47.43 ms, Figure 10A).

The inference stage consists of two sub-stages: integrate and
fire. The execution time of the sub-stages could be overlapped
to some degree by pipelining, but integrate and fire stages often
use the same memory and execution units. Therefore, we did not
pipeline them for simpler control logic. Computation time can
be divided into three different components: learning, integrate,
and fire. In Figure 10A, most of computation time is consumed
for integration while learning also takes a considerable amount
of time. Note that time taken for learning is reduced significantly
by the proposed transposable addressing scheme.We synthesized
another design without using the proposed addressing scheme
to compare the performance between designs with and without
the transposable access scheme (Figure 10B). For three different
P values, the proposed transposable addressing scheme provided
6.55× speedup in the learning stage and 2.75× speedup in the
total delay on average.

As the second example network, we pre-trained 784-240-10
MLP to classify MNIST dataset and converted those parameters
into a SNN for the experiment based on the scheme proposed by
Diehl et al. (2015). Simulation was done for 30 ms for each image.
The inference speed for one image is shown in Figure 10C. The
speedup increased up to 205× when P = 128 because of its
smaller spike rate (8.71 Hz on average) compared to the first
example.

Another key feature of our design is its event-driven nature
enabled by the priority encoder and the spike buffer (Figure 7).
Zero inputs can be easily skipped by checking P axons in one
cycle. Therefore, regardless of input sparsity, the system can
provide high throughput constantly. We measured computation
time with different input sparsity, using a single layer (1, 024 ×

256) SNNwith randomweight values without learning operation.
P was fixed to 128. Computation time was linearly proportional
to the amount of non-zero input (Figure 11A).

Using the measured computation time, we can calculate
effective throughput of the system. Ideally, our system can
provide a maximum of 12.8 GSOPS (Giga Synaptic Operations
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FIGURE 11 | (A) Computation time with different input sparsities (P = 128, 1024× 256 random network) and (B) Corresponding effective throughput of the system.

FIGURE 12 | Resource utilization in FPGA (A) vs. P and (B) overhead for the transposable addressing scheme.

Per Second) when P = 128 at 100 MHz clock because it can
process P synaptic operations by reading P synapses in a single
cycle. The weight sparsity is assumed to be zero in this case.
However, not every cycle is used for synaptic integration. The
most reliable way to calculate effective throughput is to divide
the number of total synaptic operations by the total processing
time (Figure 11B). The throughput of the system remains almost
constant until the input sparsity becomes too high (>95%). The
maximum throughput was 8.73 GSOPS when the input sparsity
is zero.

3.3. Resource Utilization
Although larger P provides significant speedup, it requires more
execution units running at the same time. We measured resource
utilization in FPGA implementation to compare different options
using Xilinx ZC706 evaluation board with Zynq-7000 XC7Z045.
There are three different measures of the resource: look-up table
(LUT), flip-flop (FF), and block random access memory (BRAM).
ZC706 board has a total of 218,600 slice LUTs, 437,200 FFs, and
545 36 Kb BRAMs. LUTs are mostly used for logic. FFs are mostly
used for registers while BRAMs are used for memories.

Figure 12A shows relative resource utilization in FPGA for
different P-values. Utilization for both LUTs and FFs increased
proportionally to P. When P = 128, 34.79% of LUTs and 5.72% of

FFs were used. Utilization for BRAM also increased when P ≥ 32
because each instance of divided memories takes at least a half
BRAMblock due to I/O issue. Note that total bits of memory used
are not changed when P changes.

As explained in section 2.2.3, the proposed transposable access
to the synaptic memory requires additional hardware resource
to calculate addresses and rearrange output values. Additional
resource utilization for the proposed scheme was also measured
(Figure 12B). Note that only small amounts (<1%) of additional
LUTs are needed when P is larger than 8.

3.4. Power Consumption and Area
Based on the proposed schemes and experimental studies, we
fabricated a neuromorphic core using a 65 nm CMOS process
technology. The number of neurons is 1K and the number of
synapses is 256K. P was set to 128. The number of bits per
presynaptic scaling factor/synaptic weight was set to 4b/5b.

Figure 13A shows chip power measurement results at 1.2V
operating voltage. The power was measured while running the
network with STDP and lateral inhibition which was described
in section 3.1.2. We measured four different cases by changing
maximum input spike rate (10/100 Hz) and turning on/off STDP
learning (STDP/inf). For all four cases, the power consumption
increased linearly as clock frequency increased from 30 to 100
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FIGURE 13 | (A) Measured power with different clock frequencies and (B) Power breakdown by functional module.

FIGURE 14 | (A) Die microphotograph and layout of the design (65 nm CMOS) and (B) Demo & measurement environment.

MHz. At clock frequency of 100 MHz, the chip consumed
53.10/53.07 mW for inference only and 53.70/53.58 mW for
STDP learning with 100/10 Hz input spike rate. Note that neither
higher input spike rate nor the existence of learning stage made a
noticeable difference in power consumption. More computations
due to more spikes or the learning stage are handled by increased
computing cycles as explained in section 3.2. The throughput
for accessing the synapse memory in the learning stage becomes
the same as the throughput in the inference stage by using the
proposed transposable memory access.

Note that the energy consumption for the learning operation
is still larger than that for the inference operation due to the larger
number of cycles.

The power efficiency of our chip is 65.9 GSOPS/W and the
energy efficiency is 15.2 pJ/SOP. The power/energy efficiency
was calculated using the power measurement results and the
effective throughput. In section 3.2, the effective throughput
of the system was calculated using performance measurement
data (Figure 11B). When the input sparsity is 0.9 (90%), the
effective throughput was 6.99 GSOPS. In case the weight sparsity

is 0.5 (50%) as described in Akopyan et al. (2015), the effective
throughput is reduced to 3.50 GSOPS.

Power breakdown by functional module was also obtained
by post-place and route power estimation using PrimeTime PX
(Figure 13B). More than half of the total power is consumed
in neuron module. Note that power consumption for synaptic
integration is mostly counted as neuron module since neuronal
values are updated using synaptic values.

The layout and the die photo of the design are shown
in Figure 14A. Total core area was 12.9 mm2. Figure 14B

shows real-time demo and measurement environment
(Supplementary Video).

4. DISCUSSION

4.1. Comparison With Other Neuromorphic
Systems
Due to different design goals and approaches, it is not
straightforward to quantitatively evaluate performance or
efficiency of different neuromorphic hardware systems.
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TABLE 1 | Comparison with other neuromorphic hardware systems in terms of

energy efficiency and throughput.

Hardware Process Energy

efficiency

[pJ/SOP]

Throughput

[GSOPS]

TrueNorth (Akopyan

et al., 2015)

28 nm CMOS 26 58

Loihi (Davies et al.,

2018)

14 nm CMOS 23.7 N/A

Frenkel et al., 2018
28 nm CMOS 9.8 0.035

Ours 65 nm CMOS 15.2 8.73

Nevertheless, let us compare the energy efficiency and
the throughput between our design and some well-known
neuromorphic systems (Table 1). TrueNorth (Merolla et al.,
2014; Akopyan et al., 2015) consists of 4,096 neurosynaptic cores
with total 1 million neurons and 256 million synapses using
28 nm CMOS process. Loihi (Davies et al., 2018) was designed
for more reconfigurability using on-chip x86 cores and 128
neuromorphic cores with total 128 thousands neurons and 2.1
million synapses in 14 nm CMOS process. Frenkel et al. (2018)
implemented a neuromorphic core with 256 neurons and 64
thousands synapses in 28 nm CMOS process. Reported energy
efficiencies of those systems are 26 pJ/SOP (TrueNorth), 23.7
pJ/SOP (Loihi), and 9.8 pJ/SOP1 (Frenkel’s), respectively.

The energy efficiency of our chip (15.2 pJ/SOP) seems better
than that of TrueNorth and Loihi, but we do not intend to
claim that our system has better energy efficiency than TrueNorth
and Loihi because of different synaptic precisions and neuronal
functions. Especially, both TrueNorth and Loihi have more
neurons and larger networks so the required hardware for
routing is much more complicated and inevitably consumes
more energy.

One of the main focuses in our design was to have high
throughput using the parallelized dataflow. The maximum
throughput of our design is 8.73 GSOPS when the input/weight
sparsity is 0/0. The throughput of our design for typical operation
condition (input/weight sparsity = 0.9/0.5) is 3.5GSOPS. In
comparison, TrueNorth reported the throughput of 58 GSOPS
(Akopyan et al., 2015), which can be translated to 14 MSOPS
per each neurosynaptic core. However, each core in TrueNorth
spends significant amount of time for routing spikes to
other cores through Network-on-Chip (NoC). If the time for
processing spikes inside the core is considered only, then the
maximum throughput of each TrueNorth core is increased up to
988 MSOPS with 1 GHz local clock. With input/weight sparsity
0.9/0.5, it is reduced down to 49.4 MSOPS.

The main reason for the difference in throughput between
TrueNorth and our design is that our design explicitly parallelizes
the neuronal module into P blocks (section 2.2.5) for larger
throughput. In contrast, in a single TrueNorth core, only one

1the exact condition of power measurement (ex. input/weight sparsity) is not

known.

synaptic weight is read and used for integration at each cycle. In
addition, the reason why there is larger difference between the
throughput of the two designs for higher input sparsity case is
that our design has zero input skipping capability in the axon
module while TrueNorth does not.

Loihi did not explicitly report measured/estimated
throughput, but since it does not exploit crossbar memory
to store sparse synaptic connections more efficiently, it may not
be easy to handle many synaptic weights in a single cycle. Frenkel
et al. (2018) also did not implement an actual crossbar array for
synaptic connections so that the design also reads and uses only
one synaptic weight at each cycle, which results in relatively low
throughput (35 MSOPS) at 100 MHz clock frequency.

4.2. Necessity and Overhead of Barrel
Shifter
Because of the parallelized dataflow as explained in section
2.2.5, multiple (P) synaptic weights are read simultaneously
for synaptic integration. The membrane potential values of P
neurons are then updated at once and the addresses of neurons
being updated are determined by the sum of column indices of
synaptic weights and the axonal offset. Since column indices of
weights are consecutive, the addresses of these updated neurons
are also consecutive. To handle these neurons in a single cycle,
each of P divided neuronal memory blocks holds values of a non-
overlapping group ofNn/P neurons (Nn: total number of neurons
in the system). In this case, if addresses of neurons covered by
each memory block are different by P, then any consecutive P
neurons can be processed by using all memory blocks at the same
time (i.e., the first block holds values for the neuron 0, P, 2P, ...,
Nn − P).

If the axonal offset is zero or a multiple of P, the first synaptic
weight is always used for the first neuron memory block. In
that case, each synapse weight only needs to have signal lines
connected to one of the P neuron memory blocks. However,
the axonal offset value may not be a multiple of P, especially
when we want to use one neuromorphic core to configure
various network compositions. For example, if the axonal offset
is one, the first synaptic weight is used to update the neuron
in the second neuron memory block. Therefore, depending
on the axonal offset, P synaptic weights must be circularly
shifted so that a P × P barrel shifter is used to deal with this
issue.

To precisely analyze overhead of adding barrel shifter, we
analyzed different design scenarios of synapse memory for 1K
axons/neurons (Figure 15). As explained in section 2.2.4, the
axonal offset exists to reduce the total memory size for synapse
while enabling flexible synaptic connections between neurons in
hardware. Without the axonal offset, 1K × 1K crossbar array
is required for 1K axons/neurons (Figure 15A). We designed
1K×1K memory using a memory compiler and measured its
area (SRAM cells + peripheral components). To be more specific,
because SRAMmacro configuration such as maximum word size
is constrained by the technology library, we designed 8 different
crossbars each having 80-bit (5-bit synapse × 16) word size and
8,192 word lines. By doing so, 128 different synapses can be
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FIGURE 15 | Different SRAM crossbar synapse memory design scenarios for 1K axons/neurons: (A) 1K × 1K crossbar, (B) 1K × 256 crossbar with a barrel shifter for

the axonal offset concept, and (C) Split memory blocks (128 blocks) of 1K × 256 crossbar for the transposable addressing scheme.

read/written at once. The memory area for this case was 4.191
mm2.

By reducing the crossbar size to 1K × 256 (Figure 15B, 8
crossbars with 80-bit word size and 2,048 word lines), the area of
memory was reduced down to 1.225 mm2. For the axonal offset
concept, a 128 × 128 barrel shifter is required and its area is
0.169 mm2. Then total area becomes 1.394 mm2. It means that
the barrel shifter occupies only 12.1% of the total area. In all, by
applying the axonal offset concept we can reduce thememory size
by 3.01× (4.191 vs. 1.394).

On the other hand, in the proposed transposable memory
addressing scheme (section 2.2.3), the index of the memory
block in which the first element exists is changed depending on
the direction of memory access (row/column) and the address
which needs to be accessed. Synaptic values read from multiple
memory blocks must be rearranged or circularly shifted using
a barrel shifter. Note that the axonal offset concept and the
transposable addressing scheme require the same P × P barrel
shifter between the synapse memory and the neuron memory
for different reasons. Hence, the existing barrel shifter can
be used for transposable memory addressing without extra
overhead. Figure 12B shows that the amount of additional
resource required for transposable addressing is negligible when
a barrel shifter already exists for the axonal offset concept.

4.3. Additional Overhead for Transposable
Memory
In addition to the overhead of the barrel shifter, splitting the
synaptic memory into multiple blocks for the transposable
addressing may incur an additional overhead.

Split memory blocks are allowed to turn on word lines for
different rows. Thus, it works as if an additional word line is
added in diagonal direction. Existing word line can be used to
access the row direction, and conceptually additional one can be
used to access data diagonally. No additional transistor or signal
lines are needed inside a memory block.

However, physical area of the design may increase because
every split memory block uses its own peripheral circuits.
Without the transposable access, using 1K × 256 crossbar
array with the barrel shifter (Figure 15B) required 1.394 mm2.
Splitting this crossbar into 128 different blocks (Figure 15C, 128
crossbars with 5-bit word size and 2,048 word lines) does not
increase the area for SRAM bit-cells, but the increase of area
due to the duplicated peripheral components in each block is
not negligible. The total memory area including the barrel shifter
increases up to 2.556 mm2, which is 1.83× larger than original
memory. We further improved it by designing semi-custom
SRAM array that removes redundant peripheral circuits from
each memory block without hurting the functionality, which
resulted in only 1.20× larger area compared to ordinary SRAM
array. Note that using custom 8T SRAM for transposable access
is usually known to require > 2× area. In our investigation with
the cell layout, the custom 8T SRAM bit-cell based on Seo et al.
(2011) was 2.48× larger than common 6T SRAM bit-cell.

4.4. Weight Decomposition in Neural
Network
To reduce the memory size for parameters or the number
of computations, many studies have proposed the idea to
decompose a single weight value into a multiplication of two or
more values (Denton et al., 2014; Kim et al., 2016). The biggest
difference between existing methods and our scaling scheme is
that ours does not reduces the number of parameters. In common
approaches including low-rank approximation, aM×N matrix is
decomposed into a multiplication of aM×K matrix and a K×N
matrix (M,N > K) to reduce the total number of parameters.
However, our presynaptic scaling uses aM×1matrix and aM×N
matrix. Thus, the number of parameters is slightly increased.
Instead, we lowered the precision of values to reduce the total
number of memory bits.

Since the conventional decomposition method determines a
single synapse weight as the sum of multiplications of multiple
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values, it is difficult to modify some weights using on-chip
learning algorithms such as STDP. Our scaling method also
obtains a single weight value by multiplying multiple values,
but only two values are used for each weight. Thus, it is
relatively easy to modify specific weight values. Changing a single
synaptic weight affects only one effective synaptic weight whereas
in conventional decomposition methods changing a value in
the decomposed matrix affects the whole row or column of
weights.

4.5. Overhead for Weight Scaling
The proposed weight scaling scheme reduces the total number of
memory bits significantly as described in section 3.1.1. However,
the scheme incurs one additional burden. To obtain the effective
synaptic weight, the presynaptic weight scaling factor and the
synaptic weight must be multiplied. This multiplication was not
needed without the scaling scheme, andmoreover SNN hardware
generally does not require any multiplication.

However, overhead for this multiplication is not significant.
It is known that the power consumption for fixed-point
multiplication is an order of magnitude smaller than that for
SRAM memory access (Horowitz, 2014). Furthermore, the bit
precision of presynaptic scaling factor/synaptic weight is only
4b/5b in our system, which is much smaller than common cases
of 8-bit fixed-point numbers so that power consumption for
multiplication is even smaller.

In terms of area overhead, without the scaling scheme, a
single accumulator that accumulates 5-bit synapses into 16-
bit potentials consumes 221 µm2 whereas a single multiply-
and-accumulate that multiplies 4-bit and 5-bit weights and
accumulates consumes 492 µm2. This clearly shows that the
multiplication requires additional components, but the area
overhead is negligible when compared to the area of a single
synapse memory block, which is 18,402 µm2. Note that the
required numbers of accumulators and the memory blocks in our
system are exactly the same as P.

5. CONCLUSION

In this work, we designed an optimized SNN hardware
accelerator architecture exploiting efficient synapse memory
structure. The proposed presynaptic weight scaling provides 1.4%
improvement in MNIST test accuracy using almost the same
number of memory bits for synapse.

By reducing the bit precision of synapses, the scaling scheme
achieved ∼30% reduction in the number of memory bits while
providing the same accuracy result.

Neuronal/axonal offset parameters were proposed for
reconfigurabiltiy of network composition. Transposable
addressing scheme for divided memory blocks was also
exploited for 6× faster STDP learning. Lastly, to consider
performance/resource trade-off, we proposed parameterized
parallelization scheme in the architecture. When fabricated in
65 nm CMOS process, ASIC implementation of our design
provided 200× speedup over general CPU in MNIST inference
task while consuming 53 mW with the energy efficiency of 15.2
pJ/SOP.
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