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The brain-derived neurotrophic factor (BDNF) is a protein mainly synthetized in the
neurons. Early evidence showed that BDNF participates in cognitive processes as
measured at the hippocampus. This neurotrophin is as a reliable marker of brain
function; moreover, recent studies have demonstrated that BDNF participates in
physiological processes such as glucose homeostasis and lipid metabolism. The BDNF
has been also studied using the exercise paradigm to determine its response to different
exercise modalities; therefore, BDNF is considered a new member of the exercise-
related molecules. The high-intensity interval training (HIIT) is an exercise protocol
characterized by low work volume performed at a high intensity [i.e., ≥80% of maximal
heart rate (HRmax)]. Recent evidence supports the contention that HIIT elicits higher
fat oxidation in skeletal muscle than other forms of exercise. Similarly, HIIT is a good
stimulus to increase maximal oxygen uptake (VO2max). Few studies have investigated
the impact of HIIT on the BDNF response. The present work summarizes the effects of
acute and long-term HIIT on BDNF.
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INTRODUCTION

Physical exercise (PE) is considered a subcategory of the physical activity domain (Caspersen et al.,
1985; Physical Activity Guidelines Advisory Committee , 2008). As opposed to physical activity, PE
is characterized for being planned, structured, and repetitive, with the inherent goal of improving
one or more components of the physical fitness, physical performance, or health (Caspersen et al.,
1985;Physical Activity Guidelines Advisory Committee , 2008). The PE prescription is usually
reported as exercise mode, intensity, frequency, and duration of the activity.

Several training modalities have been developed over the years with the aim of improving
cardiorespiratory fitness, musculoskeletal function, and metabolic activity. Among these, aerobic,
endurance, and/or resistance (i.e., strength exercise) are the most common exercise training
modalities (Kang and Ratamess, 2014). The aerobic exercise (AE) is also known as moderate-
intensity continuous training (MICT), and it is usually performed over long periods of time
(e.g., ≥30-min to moderate intensity, performing exercises such as walking, cycling, jogging, and
swimming) (Garber et al., 2011). Although the benefits of MICT on health related parameters
in humans are well studied (Aldred et al., 1995; Poehlman et al., 2000; Mador et al., 2004;
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Frøsig et al., 2007; Camargo et al., 2008; Bell et al., 2010; Fisher
et al., 2015; Daabis et al., 2017); currently, the world population
considers that lack of time as the main barrier to practice AE
regularly (Weston et al., 2014; Fisher et al., 2015).

Scientists and exercise professionals have focused on studying
the impact of short exercise bouts on human physiology with
the aim of optimizing time use (Gibala et al., 2006); for
instance, high-intensity interval training (HIIT). The HIIT refers
to exercise characterized by relatively short bursts of vigorous
activity, interspersed by rest or low-intensity recovery exercise.
In general, HIIT is performed on a training session lasting
≤30-min, including warm-up and cool down stages (Gibala
and Jones, 2013; Gillen and Gibala, 2013; Weston et al., 2014).
The high-intensity bouts should be performed at near maximal
effort, reaching intensities between 80 and 100% of the maximal
heart rate (HRmax) (Gibala et al., 2014; Saanijoki et al., 2018).
The exertion is performed no longer than 60-s (Gillen and
Gibala, 2013), and the recovery periods (low-intensity exercise
or rest) can be up to 4-min (Burgomaster et al., 2005, 2006;
Gibala and McGee, 2008). Besides Gibala’s protocols, others
have reported different high- and low-exercise bout durations
(Saucedo Marquez et al., 2015; Lira et al., 2017; Stöggl and
Björklund, 2017); however, the training session has been kept
within ≤30-min.

In addition, HIIT can be performed on cyclical exercises
such as bicycling (Saucedo Marquez et al., 2015), running (Lira
et al., 2017), swimming (Courtright et al., 2016), and whole-
body exercise (Machado et al., 2017; Schleppenbach et al., 2017).
Several physiological adaptations of HIIT have been reported to
improve physical performance in humans (Burgomaster et al.,
2005, 2006; Gibala et al., 2006; Talanian et al., 2007; Connolly
et al., 2017). The effects of HIIT on brain function have been also
reported; however, there available evidence is scarce (Afzalpour
et al., 2015; Lucas et al., 2015; Coetsee and Terblanche, 2017;
Santos-Concejero et al., 2017; So et al., 2017; Freitas et al., 2018;
Robinson et al., 2018). Indeed, the current evidence showed a
positive impact of HIIT in brain, specifically in neurotrophin
expression and function. In this context, the aim of this work
is to briefly describe the current knowledge regarding the acute
and long-term effects of HIIT on brain-derived neurotrophic
factor (BDNF) in brain. It is known that BDNF is a protein that
plays a key role to maintain or improve several brain functions
(Vaynman et al., 2003, 2004; Duman and Monteggia, 2006;
Duman and Li, 2012; Fernandes et al., 2017).

HIGH-INTENSITY INTERVAL TRAINING
(HIIT): AN EFFICIENT TOOL TO IMPROVE
PHYSICAL PERFORMANCE,
METABOLISM, AND BRAIN FUNCTION

As described, HIIT refers to exercise characterized by relatively
short bursts of vigorous activity, interspersed by rest or low-
intensity recovery exercise (Gibala and Jones, 2013; Gillen and
Gibala, 2013; Weston et al., 2014). Previous scientific reports
have indicated that HIIT is perceived as an exercise modality

eliciting higher exhaustion compared to MICT (Saanijoki et al.,
2015, 2018). However, HIIT is considered more enjoyable than
MICT (Heisz et al., 2016); in agreement with this, HIIT has been
proposed as an excellent strategy aimed to increase adherence
to exercise programs in sedentary people (Heisz et al., 2016).
In this section, the impact of HIIT on the human physiology
(physical performance, metabolism, and brain function) will be
briefly described. In sport, scientific reports indicate that HIIT
was popularized by the runner Emil Zatopek around 1950 [see
Billat’s (2001) review on the historical analysis of HIIT]; in fact,
several coaches think that HIIT played a key role on Zatopek’s
successful sport career. Similarly, recent evidence indicates that
HIIT improves physical performance (e.g., speed, agility) in team
sport athletes such as soccer and basketball (Iaia et al., 2015;
Sanchez-Sanchez et al., 2018).

Regarding to metabolic dysfunctions in glucose and lipids
induced by sedentary lifestyle and hypercaloric diets, several
evidence showed that HIIT is an efficient stimulus to improve
lipid and glucose metabolism. Concretely, Talanian et al. (2007),
reported that seven sessions of HIIT increased fat oxidation
in skeletal muscle in recreationally active women. Similarly,
others demonstrated that HIIT interventions enhance insulin
sensitivity, glucose control, and cardiorespiratory fitness in
sedentary women (Connolly et al., 2016, 2017). In addition to
research on women, others reported that HIIT increases muscle
oxidative capacity in recreationally active men (Burgomaster
et al., 2005, 2006; Gibala et al., 2006).

The central nervous system (CNS) response to HIIT has
been reported in spinal cord (Astorino and Thum, 2018)
and brain studies (Coetsee and Terblanche, 2017; Santos-
Concejero et al., 2017; Robinson et al., 2018). For instance, a
16-week HIIT program elicited higher oxygen utilization and
cerebral oxygenation than MICT in older people (Coetsee and
Terblanche, 2017); similar results were found in younger adults
(Robinson et al., 2018). In these studies, the BDNF’s response
was dependent of the exercise intensity. However, the molecular
mechanisms explaining these brain adaptations to HIIT are yet to
be elucidated.

BRAIN-DERIVED NEUROTROPHIC
FACTOR (BDNF): A PROTEIN SENSITIVE
TO EXERCISE IN BRAIN

BDNF Function in Brain and Periphery
The BDNF is a protein member of the neurotrophin family,
and it is found in the nervous system and peripheral organs
such as skeletal muscle (Funakoshi et al., 1993; Conner et al.,
1997; Matthews et al., 2009). In the CNS, the neurons are the
principal source of BDNF (Mowla et al., 2001), and evidence
suggests that BDNF plays a key role in memory and learning
processes (Erickson et al., 2011). Moreover, molecular evidence
indicates that this neurotrophin through a tyrosine kinase b
receptor (TrkB) increases long-term potentiation, neurogenesis,
axonal growth, and synaptogenesis (Tyler and Pozzo-Miller,
2001; Vaynman et al., 2003, 2004; Fernandes et al., 2017). Besides
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FIGURE 1 | (A) Moderate-intensity continuous training (MICT) increases intracellular calcium (Ca2+) levels in neurons through the NMDA receptor. Intracellular Ca2+

increases the activity of calmodulin dependent kinase II (CaMKII), triggering the activation of the MAPK/ERK/MSK cascade signaling, resulting in the increase of the
(Continued)
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FIGURE 1 | Continued
expression and phosphorylation of cAMP response element-binding protein (CREB). Finally, CREB enhance the Bdnf transcription. This molecular mechanism
described above result in a higher BDNF protein, the neurotrophin is released by the neuron to induce transcription of cognitive genes. The present model is based
on Gomez-Pinilla’s studies (Fernandes et al., 2017). (B) MICT enhances the mitochondrial activity in neurons. Higher mitochondrial activity increases reactive oxygen
species (ROS) from complexes I and III. The change in ROS levels modify and regulate a wide of signaling process including the CREB-BDNF signaling pathway.
Once activated, BDNF regulates a positive feedback mechanism to induce the cognitive genes transcription. Additionally, the aerobic exercise increases the calcium
concentration in neurons; this ion through the calpain and xanthine oxidase increases the ROS that consequently increase the CREB’s activation and Bdnf
expression. (C) Exercise performed at high intensity (≥80% HRmax) activates several metabolic pathways in muscle (including glycolysis), this condition generates a
higher systemic blood lactate concentration reaching the brain, this metabolite can be oxidized by astrocytes or neurons to produce glucose (Dienel and Hertz,
2001). In addition, experimental evidence indicates that lactate increase NMDA activity and intracellular Ca2+ levels in neurons. Indeed, it is possible that the lactate
in neurons enhance the CaMKII activity and the MAPK/ERK/MSK signaling to induce the CREB’s activation and Bdnf expression. Finally, the BDNF activate a
positive loop to induce the expression of cognitive genes (Yang J. et al., 2014).

the local effect of BDNF in the brain, some authors suggest that
the brain is the major source of circulating BDNF at rest and
during exercise (Rasmussen et al., 2009; Seifert et al., 2010). In the
periphery, studies performed in rodent and human tissues have
revealed that BDNF regulates other physiological pathways such
as glucose metabolism (Hanyu et al., 2003; Jiménez-Maldonado
et al., 2014), and fat oxidation (Matthews et al., 2009).

Molecular Mechanism Induced by
Physical Exercise Increasing Brain BDNF
Several stimuli can increase BDNF’s expression and function.
In rodents, the kainic acid exposure increased hippocampal
BDNF (protein) levels (Rudge et al., 1998), resulting from an
enhancement in glutamatergic signaling. Other evidence suggests
that intermittent hypoxia increases BDNF levels in neurons of
the primary motor cortex (Satriotomo et al., 2016). In addition
to these findings, it is widely known that PE is an effective
stimulus to increase BDNF synthesis in the brain (Oliff et al.,
1998; Vaynman et al., 2003, 2004; Erickson et al., 2011), and the
periphery (Dinoff et al., 2016, 2017).

Regarding to the impact of the PE on increasing BDNF in
brain, different molecular mechanisms have been proposed to
explain how PE (mainly MICT) enhances BDNF synthesis in
neurons. The Gomez-Pinilla’s group suggests that PE increases
the intracellular Ca2+ levels in neuronal cells (Fernandes et al.,
2017). This ion activates CaMKII indirectly; and once active,
this kinase increases the MAP-K pathway to phosphorylate
CRE-binding protein and activate the CREB transcription,
and consequently Bdnf transcription (Vaynman et al., 2004;
Fernandes et al., 2017; Figure 1A). Another model suggests that
PE induces BDNF synthesis in the brain by enhancing the activity
of reactive oxygen species (ROS) (Radak et al., 2016). Based on
Radak et al’s. proposal, PE increases the mitochondrial activity
in neurons; and it is known that higher mitochondrial activity
produce excessive ROS. Thus, ROS enhance the activity of CRE-
binding protein, to activate the CREB and Bdnf transcription
(Radak et al., 2016; Figure 1B). Additionally, the Radak’s model
indicates that the exercise increases the Ca2+ in neurons;
this ion through the calpain and xanthine oxidase induces
higher ROS production in brain as well (Takuma et al., 1999;
Kahlert et al., 2005). In addition to the previous mechanism,
it has been suggested that systemic molecules such as the
lactate synthesized during intensive PE (≥80% HRmax) can
activate the BDNF production (Bergersen, 2015). However,

this molecular mechanism of BDNF production is still poorly
understood. Experimental evidence has shown higher NMDA
receptor activity in the presence of lactate; furthermore, high
lactate concentrations are associated to increased neuronal Ca2+

levels (Yang J. et al., 2014) and higher Bdnf transcription (Yang
J.L. et al., 2014). It is likely that lactate synthesized during PE
reach the neurons and increase the NMDA receptor activity to
increase the Ca2+ concentration in neurons, and Ca2+ activates
CaMKII, and consequently, the kinase phosphorylates activating
the MAPK/ERK signaling pathway to enhance Bdnf transcription
(Figure 1C).

THE EFFECTS OF HIIT ON BDNF

Animal Models
As previously described, HIIT is characterized by exercise bouts
of high-intensity and low volume. Regarding exercise intensity,
evidence in healthy rodents has shown that brain BDNF synthesis
was higher in animals performing a high-intensity training
compared to those animals performing a low-intensity training
and sedentary rodents (de Almeida et al., 2013). However, the
authors used a continuous training protocol; the training time
was similar in both models (low- and high-intensity training,
30-min/session), which means that the HIIT characteristics were
unattained.

There is evidence regarding the long-term effects of HIIT
on BDNF synthesis in rodents (Afzalpour et al., 2015; So et al.,
2017; Freitas et al., 2018). Thirty HIIT sessions significantly
increased BDNF levels (protein) in the brain compared with
continuous training protocol and a control group (Afzalpour
et al., 2015). The authors discussed that HIIT increased hydrogen
peroxide (H2O2) and Tumor Necrosis Factor Alpha (TNF-
α) concentration in brain; and these molecules could activate
the BDNF synthesis (Wang et al., 2006; Bałkowiec-Iskra et al.,
2011) or CREB (Pugazhenthi et al., 2003), a transcription factor
positively regulating BDNF synthesis. However, although the
previous paper found a positive effect of HIIT on BDNF, the
authors did not report a specific anatomical region sensitive to
elevations on the neurotrophin following HIIT. Consequently,
others evaluated with more detail the impact of HIIT on BDNF
in the hippocampus (Freitas et al., 2018). In the study by Freitas
et al. (2018), 36 sessions of HIIT elevated BDNF levels in the
hippocampal region of healthy rats. However, the molecular
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FIGURE 2 | Mechanism proposed about the High Intensity Interval Training (HIIT) impact on BDNF synthesis in brain. (A) HIIT increases mitochondrial activity (not
reported) and ROS concentration in neurons (Afzalpour et al., 2015) compared with MICT. ROS induce higher Creb-Bdnf transcription and signaling than MICT (not
reported). (B) HIIT causes greater Ca2+ concentration in neurons than MICT (not reported); this condition enhances the CaMKII activity and MAPK/ERK/MSK
signaling to activate the Creb-Bdnf transcription and neuronal plasticity. Additionally, the intracellular calcium can increase the ROS generation in neurons. Once
synthetized, ROS can activate Creb-Bdnf transcription. Currently, there is not experimental evidence to indicate that HIIT triggers more this mechanism than MICT.
(C) HIIT elevate systemic blood lactate concentration, and consequently enhance the NMDA receptor activity to increase intracellular Ca2+ concentration in neurons
(not reported). The ion activates the CaMKII activity and MAPK/ERK/MSK signaling to induce the Creb-Bdnf transcription and neuronal plasticity (not reported). (?):
not reported.

mechanism responsible for increasing BDNF synthesis was not
demonstrated in the study. In agreement with their results, the
authors suggested that 36 HIIT sessions increased BDNF levels
and attenuated hippocampal oxidative damage (Freitas et al.,
2018).

Human Models
There are reports on the effect of a single HIIT session on BDNF
(Saucedo Marquez et al., 2015; Cabral-Santos et al., 2016; Slusher
et al., 2018). For instance, a single session of supramaximal HIIT
elevated serum BDNF levels (Slusher et al., 2018), suggesting
increases in BDNF secretion of the platelets unrelated to brain
secretion (Slusher et al., 2018). Saucedo Marquez et al. (2015),
found that HIIT was a more powerful stimulus to elevate systemic
(serum) BDNF compared to MICT. The exercise modality
employed in their study (cycle-ergometer) did not induce muscle
damage (Saucedo Marquez et al., 2015). Therefore, the higher
BDNF levels were not caused by platelet activation to increase
the BDNF secretion (Saucedo Marquez et al., 2015), suggesting
that PE itself is enough stimuli that lead to higher circulating
BDNF levels. Thus, the higher serum BDNF levels following HIIT

resulted from a greater synthesis of BDNF in the brain. The
authors discussed that a single bout of HIIT induced higher brain
H2O2 and TNF-α levels. These molecules activate the signaling of
peroxisome proliferator-activated receptor-γ coactivator (PGC-
1α) to enhance neuron BDNF synthesis (Saucedo Marquez et al.,
2015). Similarly, a single session of HIIT significantly increased
peripheral plasmatic BDNF levels immediately following the
exercise (Cabral-Santos et al., 2016). However, after 60-min
that the HIIIT session ended, BDNF concentrations returned
to baseline levels (Cabral-Santos et al., 2016). Regarding that
plasmatic BDNF levels reflect the BDNF secretion from the brain
(Lommatzsch et al., 2005); the Cabral-Santos data reflect the
HIIT impact on BDNF in brain. The authors suggested that brain
hypoxia induced by HIIT was the main factor explaining their
results (Cabral-Santos et al., 2016).

Finally, the long-term effects of HIIT on systemic
(serum) BDNF levels have been also reported (Murawska-
Cialowicz et al., 2015). In the study, participants
performed whole-body exercises for 3 months, and
the protocol was effective at increasing serum BDNF
concentrations. However, the BDNF source was not elucidated.
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PERSPECTIVES AND CONCLUDING
REMARKS

Studies performed in rodents (Tsuchida et al., 2001; Hanyu et al.,
2003; Yamanaka et al., 2006; Jiménez-Maldonado et al., 2014)
and humans (Bulloì et al., 2007; Krabbe et al., 2007; Li et al.,
2016) have demonstrated that BDNF participates in glucose
and lipid metabolism (Matthews et al., 2009). Therefore, this
molecule also is known as metabotrophin (Gomez-Pinilla et al.,
2008). Several health conditions such as type 2 diabetes, obesity,
metabolic syndrome, and cardiovascular diseases are mainly
caused by dysfunctional metabolic mechanisms and sedentary
lifestyle. Therefore, it is important to identify efficient stimuli
to increase the BDNF function in population with high risk
to suffer metabolic diseases or in people who are suffering
metabolic diseases. Thus, HIIT seems be a good stimulus to
enhance the BDNF action. However, the impact of HIIT on
BDNF and its effect on glucose and lipid metabolism is poorly
studied. Further experimental studies are necessary to elucidate
the impact of HIIT on BDNF and its effect on glucose and lipid
metabolism in humans with metabolic or cardiovascular diseases.
In addition, during modern-life diseases (Type II diabetes,
obesity, and metabolic syndrome); the brain function is also
affected (Cisternas et al., 2015; Agrawal et al., 2016). Therefore,
studies are needed to assess the impact of HIIT interventions on
BDNF synthesis and signaling pathways in brain under morbid
conditions. The current work proposes a model about the impact
of HIIT on BDNF expression in the brain (Figure 2). It will be
reasonable to use previous HIIT protocols that reported a positive
impact in peripheral BDNF when thinking about the design of
HIIT protocols aimed at increasing BDNF synthesis and brain

signaling. For example, sprint interval training (60-s run at 100%
VO2max, interspersed with 60-s passive recovery) (Cabral-Santos
et al., 2016). In addition, the peak power output (PPO-Watts-)
can also be used to design a HIIT protocol (Saucedo Marquez
et al., 2015); for instance, the protocol could consist in pedaling
for 60-s at 90% of PPO, alternating with 60-s of active rest at
60 Watts (total duration of HIIT is 20-min) (Saucedo Marquez
et al., 2015). Finally, a recent report performed in overweight
subjects showed that a HIIT protocol designed using heart rate
as the main variable to establish the workload intensities is not
a good stimulus to increase the peripheral BDNF (Domínguez-
Sanchéz et al., 2018). Further studies are needed to determine
whether heart rate may be considered as a reliable physiological
variable used to design a HIIT protocol aimed at increasing
circulating BDNF in non-obese subjects.
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