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A novel low cost interconnected architecture (LCIA) is proposed in this paper, which
is an efficient solution for the neuron interconnections for the hardware spiking neural
networks (SNNs). It is based on an all-to-all connection that takes each paired input
and output nodes of multi-layer SNNs as the source and destination of connections.
The aim is to maintain an efficient routing performance under low hardware overhead.
A Networks-on-Chip (NoC) router is proposed as the fundamental component of the
LCIA, where an effective scheduler is designed to address the traffic challenge due
to irregular spikes. The router can find requests rapidly, make the arbitration decision
promptly, and provide equal services to different network traffic requests. Experimental
results show that the LCIA can manage the intercommunication of the multi-layer neural
networks efficiently and have a low hardware overhead which can maintain the scalability
of hardware SNNs.

Keywords: interconnected architecture, spiking neural networks, Networks-on-Chip, system scalability,
arbitration scheme

INTRODUCTION

The current understanding from neuroscience research is that the mammalian brain is composed
of dense and complex interconnected neurons and exhibits many surprising properties, e.g.,
pattern recognition, decision making, and so on (Cios and Shields, 1997). One key outcome is
a computational neural model of spiking neural network (SNN), which offers a closer approach
to model biological neurons than previous artificial neural network (ANN) models (Gerstner
and Kistler, 2002). SNN attempts to emulate information processing based on massively parallel
arrays of neurons that communicate through the timing of the spikes (Carrillo et al., 2013).
A spiking neuron consists of a cell body (soma), a neuron output (axon), dendrites, and synapses,
and so on. When the post-synaptic membrane potential of a neuron exceeds a firing threshold
value, it fires and generates an output spike to the connected synapses/neurons. This leads to a
strong computing capability of SNN and the SNN is widely used to solve problems in various
fields, e.g., forecasting (Park et al., 1999; Kulkarni and Simon, 2012), image processing (Perrinet,
2008; Charleston-Villalobos et al., 2011), retinal coding (Rast et al., 2008), multi-view pattern
recognition (Wu et al., 2008; Wysoski et al., 2008), and so on. These applications generally
require an SNN system containing a large number of neurons for the information processing
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and computation (Akopyan et al., 2015; Sabour et al., 2017).
These neurons are interconnected in a complex pattern and
communicate by the spike events (Carrillo et al., 2012), where
the interconnected strategies, e.g., Networks-on-Chip (NoC),
are usually used for the communications between neurons of
the hardware SNNs. Research shows that the communication
mechanism should be carefully considered during the hardware
development (Schuman et al., 2017). These interconnected
strategies should be efficient in hardware and also support
various SNN traffic statuses, e.g., regular and irregular spike
events (Gerstner and Kistler, 2002). In addition, the required
hardware area of the interconnected fabrics generally increases
proportionally with the number of neurons and synapses. Thus
a low cost interconnected architecture (LCIA) is very crucial
for an SNN hardware system in order to support the system
scalability, and is also very beneficial for the SNN to implement
the models at high abstract level such as hierarchical temporal
memory (Billaudelle and Ahmad, 2016; Walter et al., 2017).

The NoC paradigm was introduced in the approaches of Dally
and Towles (2001); Benini and De Micheli (2002), and Jovanovic
et al. (2009) as a promising solution to address the on-chip
communication problems. It uses the computer network concept
to achieve a similar network structure in hardware (Harkin
et al., 2009). In general, the NoC system is composed of a set
of processing elements, routers and links, which are arranged
in a specific topology depending on the applications (Carrillo
et al., 2013). It has been used for the hardware SNNs where
the processing elements represent the neurons of the SNN and
are connected by the routers and channel links (Emery et al.,
2009; Harkin et al., 2009; Carrillo et al., 2012; Liu et al., 2015;
Schuman et al., 2017). For example, the TrueNorth (Merolla
et al., 2014) and Liohi (Davies et al., 2018) architectures use the
routing networks (similar to NoC) for transmitting spike events.
These approaches used either the baseline or some variations
of the well-known mesh topology. The mesh topology consists
of an n-dimensional array of nodes connected by a regular
structure, where each node connects to its direct neighbors
through north, east, west and south directions (Mohammadi
et al., 2015). A NoC generator is proposed in the approach of
Kwon et al. (2017) to generate a tailored NoC for the traffic flows
in the neural network accelerators. Research showed that for the
mesh topology, when the NoC size increases, the required fabrics
for the interconnection increases which leads to a considerable
hardware area overhead and prohibits the system scalability. In
addition, for the common used feed forward neural networks,
one neuron in a previous layer connects to all the neurons in the
next layer. If it fires, it generates a spike and transmits it to all the
connected neurons in the next layer (Mohammadi et al., 2015).
This is a typical multicast transmission, thus for the hardware
SNNs, to support the multicast communication is critical. With
these motivations, this paper explores a novel LCIA for the SNN
hardware systems. The LCIA is an on-chip interconnection fabric
to provide an all-to-all connection method between different
layers of SNNs, which gives a low hardware overhead and can
maintain the SNN system scalability.

Preliminary results have been published in Luo et al. (2018)
and each input port is associated with a traffic status weight,

which is calculated based on the channel traffic and previous
grant information. The router scheduler includes the weight
calculation and comparison process, and it occupies 4.99% of the
router area. In this approach, we go further and optimize the
router design, especially the scheduler module. This approach
is novel as the LCIA is an all-to-all interconnection strategy,
which is well applicable for the multi-layer SNNs than the well-
known regular topologies (e.g., mesh) (Carrillo et al., 2012; Liu
et al., 2015, 2016). The LCIA employs a novel NoC router as
the basic component where an effective scheduler is designed to
address the traffic challenge under various spike patterns (i.e.,
regular, bursting, fast and rebound spikes, etc.) (Carrillo et al.,
2012). The area utilizations and power consumption of this
architecture are obtained using the Synopsys Design Compiler
tool for SAED 90 nm CMOS technology. The results show that
the total hardware area and power consumption of a single LCIA
router are only 61,186 µm2 and 3.668 mW, where the scheduler
only occupies 1.51% of the router area. This makes it applicable
for larger scale hardware SNN systems. The main contributions
of this paper include:

(a) LCIA: A novel all-to-all interconnection architecture is
developed to connect paired input and output nodes of
multi-layer SNNs, and a compact scheduler is designed to
arbitrate the input channels.

(b) Experimental results and detailed performance analysis
demonstrate the efficient routing capability of LCIA under
different spike patterns.

(c) The low hardware area of the LCIA maintains the scalability
of the hardware SNN systems.

The rest of the paper is organized as follows: ˆsection 2 provides a
summary of related work. Section 3 discusses the proposed LCIA
in detail. Section 4 gives experimental results and performance
analysis of the LCIA under different spike patterns. Section 5
discusses the hardware implementation of LCIA using a field-
programmable gate array (FPGA) technology and provides an
area and power consumption comparison with previous works.
Section 6 concludes the paper and provides the plans for future
work.

RELATED WORKS

In this section, a brief review of various SNN implementations
is presented. Particularly, current NoC-based interconnected
strategies for hardware SNN implementations are discussed, and
their suitability in supporting SNN hardware implementations
are also highlighted.

Summary of Various SNN
Implementation Approaches
Various approaches have been explored for SNN implementation,
including software, application-specific integrated circuit (ASIC),
GPU, field-programmable gate array (FPGA), and so on. Current
software approaches based on the traditional von Neumann
computer paradigms are too slow for the SNN simulations
and suffer from the limited scalability as the SNN systems are
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inherently parallel (Furber et al., 2013; Lagorce et al., 2015).
Another approach is GPU-based architecture, which provides
a fine-grained parallel architecture and archives a computing
acceleration compared to the CPU-based solution, e.g., the
approaches of Fidjeland and Shanahan (2010) and Wang et al.
(2011) proposed the simulation frameworks for the SNNs on the
GPU platform. However, the main drawback of this technology
is that the high-end computers (GPUs included) are generally
costly in terms of power consumption (Moctezuma et al.,
2015; Kwon et al., 2018). In addition, it has limited memory
bandwidth, which constraints the data transfer rate between the
GPU and CPU (Nageswaran et al., 2009). They are currently the
major drawbacks for realizing large-scale SNN systems. Recently,
researchers have attempted to use custom hardware to design
the SNNs, e.g., ASIC and FPGA devices. For the former, many
approaches have been proposed, e.g., TrueNorth chips (Merolla
et al., 2014; Akopyan et al., 2015), a neuromorphic analog chip
(Basu et al., 2010) and Neurogrid, a large-scale neural simulator
based on a mixed analog-digital multichip system (Benjamin
et al., 2014). The main disadvantage of using ASIC devices is
the high cost for the development and chip manufacturing as
a tiny change would lead to a new development cycle (Pande
et al., 2013). For the latter, the ability to reconfigure FPGA
logic blocks has attracted researchers to explore the mapping of
SNNs to FPGA (Graas et al., 2004; Upegui et al., 2005; Morgan
et al., 2009; Cawley et al., 2011; Ang et al., 2012; Pande et al.,
2013). For example, the ENABLE machine, a systolic second level
trigger processor for track finding, was implemented based on
a Xilinx FPGA device in the approach of (Klefenz et al., 1992).
It used regular interconnection for the communications between
building blocks. A reconfigurable point-to-point interconnect is
proposed in the approach of Abdali et al. (2017) to provide
a lightweight reconfigurable interconnect system. However, the
previous work in Harkin et al. (2009) and Carrillo et al. (2012)
have highlighted the challenges of supporting the irregular
communication patterns of SNNs due to its Manhattan style
interconnections. In addition, it has been demonstrated that the
topology of the bus is not scalable for the hardware SNNs as
the number of required buses is proportional to the number
of neurons (Carrillo et al., 2012). Therefore, it is necessary to
look into new full-custom hardware architectures to address the
interconnection problems of hardware SNNs.

Current NoC-Based Spiking Neural
Network Approaches
In the hardware SNNs, the interconnection strategy of NoC
is used to support the communication requirement of SNNs.
The advantages of using NoCs for SNNs have been discussed
in previous works (Schemmel et al., 2008; Harkin et al., 2009;
Carrillo et al., 2012, 2013; Painkras et al., 2013; Liu et al., 2015).
The following text summarizes current state-of-the-art NoC-
based hardware SNN architectures.

The SpiNNaker platform was proposed in Jin et al. (2010),
which is based on a multiprocessor architecture. It uses ARM968
processor cores as the computational elements and a triangular
torus topology to connect the processors. It has been used

for the simulations of a cortical microcircuit with ∼80,000
neurons and 0.3 billion synapses (Van Albada et al., 2018). The
FACETS in Schemmel et al. (2008) was based on a 2D torus
which provided the connection of several FACETS wafers. Some
routing architectures based on two-dimensional (2D) mesh were
proposed in the approaches of Harkin et al. (2009); Carrillo et al.
(2012), and Liu et al. (2015). Additionally, a hierarchical NoC
architecture for hardware SNN was proposed in the approach
of Carrillo et al. (2013), which combined the mesh and star
topologies for different layers of the SNNs. Most of these systems
used either the baseline or some variations of the well-known
mesh topology to connect the neurons together. However, for
a large scale SNN, when the size of NoC increases, the average
communication latency increases due to the large number of
indirect connections of the mesh topology (Mohammadi et al.,
2015). For instance, when a spike event needs to be forwarded
to the neurons in the next layer of SNN, some intermediate
nodes are required for the transmissions, which increases delay.
In addition, the multiple layer SNNs are generally based on fully
connected communications. To map it to the regular topology
leads to a high hardware area overhead of the interconnection
fabric which constraints the scalability. Therefore in this paper,
the LCIA is proposed to provide an efficient communication
mechanism for the SNNs with a low hardware cost and a high
scalability.

LCIA

In this section, an ENA tile architecture for neuron node in
our previous work (Wan et al., 2016) is used as an example
for the hardware SNNs. The proposed low cost interconnection
architecture (LCIA) strategies are presented in detail. The all-
to-all interconnected architecture and the efficient scheduling
mechanism are also outlined.

The ENA Tile Architecture
In general, the SNN is a multiple-layer network that includes
an input/output layer and one or several hidden layers (Wang
et al., 2015). Figure 1A illustrates a typical SNN where input,
first hidden and output layers include k, j, and l neurons,
respectively. Each neuron in the pre-layer is connected to all
neurons in the next layer by the synapses. In our previous work
(Wan et al., 2016), the ENA was designed for the hardware
implementation of neuron node. It can accommodate a group of
neurons in one layer of SNN. Figure 1B shows that the ENAs
can be connected by a global communication infrastructure
to realize a large scale SNN system. In particular, each ENA
has the capability to accommodate up to ∼18,181 neurons and
synapses in one facility. If the number of neurons in one layer
is more than that, multiple ENAs can be used together, e.g.,
the input layer includes a total K+1 ENAs (i.e., ENA[0,0] to
ENA[K,0]) in Figure 1B. The ENA utilizes a computing resource
sharing mechanism at two levels (i.e., synapse and neuron)
to reduce the required computational resources, as shown by
Figure 1C. The aim of this paper is to propose the low cost
interconnection architecture for the multi-layer SNNs, where
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FIGURE 1 | ENA overview. (A) N-layers SNN network. (B) Architecture. (C) ENA tile.

the ENAs (Wan et al., 2016) are used as an example for neuron
nodes. Inside a single ENA the neurons can communicate with
each other locally. Note that the LCIA is not constrained to
the ENAs and can be applied to any other layer-based SNN
hardware systems especially where the processing element in the
NoC includes a large number of neurons. Only several LCIAs are
required for the interconnections of the normal scale SNNs. For
the very large SNNs, a hierarchical structure can be considered
where the entire LCIA can connect to a node of a high level
LCIA. Therefore, the proposed LCIA can maintain the network
scalability. The details are discussed in the following sections.

Spike Patterns and Traffic Loads
The approach of Carrillo et al. (2012) introduced the concept that
the spike forms of spiking neurons are highly irregular and have
a major impact on the latency of packet delivery and ultimately
may lead to traffic congestion. Figure 2 shows an example of the
typical spike forms, including the regular spikes, the fast spikes,
the bursting spikes and the rebound spikes (Carrillo et al., 2012).
Note the fundamental characteristics of these spike forms: (a)
the regular spikes: every neuron from the same layer generates
spike events, regularly; (b) the fast spikes: the high-frequency
spike events may suddenly be generated by some of all neurons;
(c) the bursting spikes: one or more neurons occasionally output
some bursting spike clusters; (d) the rebound spikes: one or several
spikes are randomly generated by a few neurons.

Various spike scenarios can be presented within an SNN
application. In the meantime, when the SNN scales, the network
connectivity becomes sparse (Jordan et al., 2018) which leads
to unbalanced traffic load across the NoC. To maintain good
performance under different spike scenarios and traffic balances,
the routing architecture of the NoC should be efficient for the
various scenarios. This architecture is introduced with more
details in the next sections.

LCIA Overview
In this work, the LCIA is proposed to efficiently forward the spike
events for the SNNs. The interconnections between the LCIAs

and ENAs are given in Figure 3A. The LCIA is an all-to-all
connection method that takes the paired input and output nodes
of multi-layer SNNs as the source and destination of connection.
A novel NoC router is used as the fundamental unit of LCIA.
Each ENA connects to the local port of a router, and the router
has a one-to-all connections (broadcast, e.g., the green lines in
Figure 3A) to the ones in the next layer. The traffic information
(red lines) are used for transmitting the traffic status information
such as busy, congested, so on. In this example, each router has
n input channels (Chs) that are shown as parallel connections
for receiving the outputs of the routers in previous layer. The
LCIA can also be used for the multicast communications between
the neurons which can be achieved by adding a mask section in
the packet layout. If the destination routers have the matched
mask, they receive and forward the packets otherwise the packets
are discarded. After the ENA generates spike packets, the router
forward these packets to the routers in next layer. The routers in
the next layer may receive multiple spike packets from different
ENAs, requiring the router to have the ability to arbitrate the
various input traffic.

The overview of a single router architecture is shown in
Figure 3B, where a FIFO, an Input Controller, a Scheduler
module and an Output Controller are included. When multiple
spike packets arrive in the input channels, the FIFOs are in
charge of caching these spike packets temporarily. The scheduler
is used for scheduling these spike events. The input and output
controllers are responsible to control the packet read and output
operations, respectively. As the router and ENA have the same
architecture in the SNN, only the structure and functionality of a
single router are presented in detail in the following sections.

Efficient Scheduling Policy
In the routers of the hardware SNN, an effective scheduler should
find requests rapidly and make the arbitration decision in a
short time period. In the meantime, it should also provide fair
and equal services to the input traffic requests (Carrillo et al.,
2010). Several scheduling policies have been proposed (Dally and
Towles, 2004), i.e., the first-come first-serve scheduler and the

Frontiers in Neuroscience | www.frontiersin.org 4 November 2018 | Volume 12 | Article 857

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00857 November 19, 2018 Time: 14:42 # 5

Luo et al. Low Cost Hardware SNN Interconnections

FIGURE 2 | The typical spike patterns.

FIGURE 3 | LCIA and its connection. (A) LCIA application in ENA-based hardware SNN. (B) Single router overview.

round-robin scheduler. A first-come first-serve scheduler gives
the highest priority to the first event that occurs. Thus, it is
efficient for the spike scenario where only one or a few ports
are busy (e.g., the rebound spike pattern), as the router does
not spend extra clock cycles servicing inactive or unused ports.

However, it’s not feasible for the bursting spikes since the packet
waiting time from inactive ports increases as the arbiter priority
is given only to the first requested port (Carrillo et al., 2012).
However, a scheduler based on the round-robin arbitration policy
exhibits a strong fairness, since it allocates equal priorities to
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all ports (Zheng and Yang, 2007). It is good for the regular
spike scenarios where all router ports have data transmission
requests. However, since it cannot skip the inactive ports, the
router latency is proportional to the number of inactive ports
of the router (e.g., some inactive ports can be found in the fast,
bursting and rebound spike patterns). Therefore, an efficient
scheduling policy is proposed in this work which combines
advantages of the aforementioned two arbitration approaches.
The scheduler services only those ports that require information
transmission, avoids wasting clock cycles on inactive or unused
ports, and services all active ports successively based on the
fairness mechanism without starvation.

FIGURE 4 | Scheduler block diagram.

The scheduler block diagram, illustrated in Figure 4 to handle
n different requests, includes reset, clock, and a N-bit require and
grant signal ports. The require information is given by each of the
“data present” signals provided by the FIFOs. The scheduler can
know when and where a spike event has occurred by using these
signals, then the grant signal is generated.

Figure 5 shows the logic diagram for an n × n scheduler
block. The scheduler consists of an n-bit ring counter, n n-input
OR gates, n priority logic blocks, an AND gate and an NOT gate,
where n can be set according to the requirement, e.g., n = 4 for
four require signals. Note that n parallel n × n priority logic blocks
are included, and each priority logic block is implemented using
combinational logic whose truth table is illustrated in Table 1.
The input priorities are set in descending order from input 0 to n
in Priority Logic 0 through n, i.e., inputs “in[0]” and “in[n]” have
the highest and lowest priorities, respectively. In addition, the
connection sequences of request signals are varied in the different
priority logic blocks, see the red rectangles in Figure 5. An n-bit
Ring Counter is used to implement the polling operation between
different priority logic blocks. The output of the Ring Counter is
rotated after each clock cycle, e.g., for the 4-bit width, its output
is from N × N to (1000)2 after one rotation where the default value
is (0001)2 after the reset. The output of the ring counter is used as
the enable signal of the priority logic blocks. It allows one priority
logic block to be enabled in turn, and this enabled priority logic
block generates the grant signals. For the polling mechanism,
each priority logic block must wait no longer than (n-1) time

FIGURE 5 | Logic diagram of the n × n scheduler block.
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TABLE 1 | Truth table of a N × N priority logic block.

Input Output

EN in[0] in[1] in[2] in[3] in[n] output[0] output[1] output[2] output[3] output[n]

0 × × × × × 0 0 0 0 0

1 1 × × × × 1 0 0 0 0

1 0 1 × × × 0 1 0 0 0

1 0 0 1 × × 0 0 1 0 0

1 0 0 0 1 × 0 0 0 1 0

1 0 0 0 0 1 0 0 0 0 1

FIGURE 6 | Simulation results of the scheduler.

slots. The time is allocated to the other chosen priority logic
block, until it receives the enable information in the next time
slot. This protocol guarantees a dynamic priority assignment to
requestors without starvation.

To illustrate the details, suppose 4 ENA neuron nodes are
connected to four routers as slave elements where four request
signals are required for the interconnection. The simulation
results of the scheduler are shown in Figure 6. In this example,
the output port of the Ring Counter (RC_o), the request signal
(req), the output port of the AND gate (AND_y), and the grant
signal (grant) are included to illustrate the working mechanism
of the scheduler. Assume that the output of the Ring Counter
is (0100)2 at one time point as shown by time (a) in Figure 6.
It means only Priority Logic #2 is enabled, and only ENA #0
(req[0]) and ENA #1 (req[1]) request to transfer the spike events
at this clock cycle (i.e., Req[3:0] is(0011)2 ). In Priority Logic #2,
the connection of “in[0]” (i.e., req[2] from ENA #2) has the
highest priority, as “req[3]” is connected to “in[1]” of Priority
Logic #2, ENA #3 has the second highest priority. Since ENA #2
and #3 do not make a request, the connection of “in[2]” (i.e.,
req[0] from ENA #2) has the next level priority. However, the
req[0] has been granted at the previous cycle, see time point
(b). Thus the corresponding request bit is shielded by an NOT
gate and an AND gate in the next clock cycle of time point
(c). Finally, only “req[1],” which is connected to “in[3]” of the
Priority Logic #2, is granted, see time point (d). The ENA #1
is granted to output a spike event, i.e., the Input Controller
reads a spike packet from its corresponding FIFO buffer, and
then this grant information as a feedback signal is sent to a D
flip-flop within the NOT gate. The feedback signal is delayed
one cycle by the D flip-flop. The delayed feedback signal is
sent to an NO gate, and its output is transferred to an AND
gate. The request signal and feedback information are operated

by the AND gate to shield the previous grant port. Note the
output result of the AND gate (AND_y) is labeled by (e) in
Figure 6 where the previous grant port has been shielded and
the result is taken as a new input for the next circulation. The
proposed scheduler services only the input ports that contain
information, avoids wasting clock cycles for inactive or unused
ports, where all active ports are serviced in turn based on the
fairness mechanism without starvation. For example, the green
section in Figure 6 shows that the require signal Req[3:0] is
“0111,” the grant signal Grant[3:0] outputs the grant information
of “0010,” “0100,” and “0001” in turn and skips the port without
requirements. In addition, the first output is “0010” because the
requirement of “0001” has been serviced in the previous clock
cycle.

LCIA Structure and Its Working
Mechanism
To understand the structure and the working mechanism
of the LCIA, an example of a data transmission scenario
based on a single router is presented in Figure 7. The
proposed LCIA is an all-to-all interconnection architecture
based on multiple routers, and a single router is used to
introduce the working mechanism of LCIA, as other routers
have similar working flows. Figure 7 shows the connections
between the two routers in the LCIA and the local ENA tile.
The following sub-blocks are inside the LCIA: (a) An FIFO
component. It is used to store the spikes for different ENAs
temporarily, and its depth grows linearly with the number of
ENAs; (b) The Scheduler. It is used to make the arbitration
decision for various spike events; (c) Input controller. After
the Scheduler makes the grant result, the corresponding spike
is granted for transmission from the Input Controller; and (d)
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FIGURE 7 | LCIA structure.

Output Controller. It is used to control the packet forwarding
processes.

When the packets from the pre-layer router arrive, the FIFOs
in LCIA are allocated to store various packets temporarily if the
output channel is busy and cannot forward packets immediately.
Then, the Scheduler is used to make the arbitration decision
according to the request information from the “data present”
signal of the FIFO, which is shown by the communication
path (CP) #1 in Figure 7. After completing the arbitration,
the Scheduler generates the grant information to the Input
Controller, as shown by CP #2. Then, the Input Controller
converts it into a “read enable” signal of the FIFO, which is used to
enable the read data port of the FIFO. The Input Controller reads
the corresponding packets in relevant FIFOs and transfers to the
Output Controller, which is then forwarded to the local ENA
neuron node, as shown by CP #3. The spike events from the local
ENA are forwarded to next-layer routers by the output controller,
as shown by CP #4. In addition, the Output Controller prejudges
its traffic status based on the “full” status signal of FIFO before
transferring the packet information to the local ENA node or the
next router. If the traffic is not congested (i.e., the “full” signal
of FIFO is invalid), the packet continues to transfer, otherwise
the transmission is waiting. Various traffic statuses probably cause
packet latency jitters. This can be addressed by adding time stamp
to the packet, where the neuron nodes calculate the membrane
potential after all the synaptic information are received (i.e.,
the activities are synchronized). In addition, research shows
that other form of spike-timing-dependent plasticity (such as
endocannabinoid-plasticity) is highly resistant to jitter (Cui et al.,
2018), which can be considered as an alternative learning rule.

METHODOLOGY AND EXPERIMENTAL
RESULTS

This section outlines the methodology used in performing
experiments and presents results for the performance of the LCIA
under different spike scenarios.

Methodology of Evaluation
The spike patterns of SNNs are highly irregular, according to the
description in section 3.2. These irregular scenarios can have a
major impact on the latency of packet delivery and additionally
may lead to traffic congestion (Carrillo et al., 2010). Thus,
the key aspect of the performance verification of the proposed
LCIA routing architecture is to analyze how LCIA can guarantee
effective routing capabilities (i.e., throughput) under various
spike patterns. Considering the spike packet layout illustrated
in Figure 2, the spike event generator (SG) and the spike
event counter (SC) as the spike packet source and throughput
calculation module from the approach of Carrillo et al. (2012) are
employed in this paper to evaluate the performance of the LCIA.
A VHDL co-simulation framework is presented in Figure 8. It has
16× 2 array of LCIA-based routers as shown by Figure 8B where
each router is connected to all the nodes in the previous layer and
the local SG, e.g., Figure 8A shows that 16 SGs are attached to the
input ports of an router R (Gerstner and Kistler, 2002; Schuman
et al., 2017) and one output port is connected to the SC14. The
SGs and SCs are attached to the input and output NoC router
ports, respectively.

According to the description in section 3.2, spike patterns
include regular, fast, bursting, and rebound spikes. In this
experiment, various spike patterns can be simulated by the
architecture in Figure 8, and this method is widely used to
evaluate the performance of the hardware SNN router (Carrillo
et al., 2012, 2013; Liu et al., 2015). The different spike injection
rates (SIRs) can be simulated by changing the time interval
between the spikes. The SIR refers to the rate at which spike
packets are injected into the router. For any given single node
router in the SNN, the number of injected spike packets per clock
cycle is equal to SIR and has the range of0 < SIR ≤ 1. For example,
if SIR = 0.2, the node sends 0.2 packets per clock cycle, i.e., 2
packets every 10 clock cycles. The different spike patterns can
be simulated by controlling the SGs which are the inputs of the
router (Gerstner and Kistler, 2002; Schuman et al., 2017) as well
as the SIRs. For instance, the bursting spike pattern in Figure 2
can be simulated by the following setting: only two of the 16 SGs
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FIGURE 8 | The neural network structure using the LCIA. (A) The interconnections of the router (Gerstner and Kistler, 2002; Schuman et al., 2017). (B) A 16 × 2
array of NoC routers.

(SG0 to SG15) are enabled to generate spike packets, and each
enabled SG uses a high spike injection rate (e.g., SIR = 0.5). In
addition, if all 16 spike event generators SG0 to SG15 are enabled,
a typical regular spike pattern can be simulated.

Experimental Results
This section presents the results from experiments on assessing
how the LCIA guarantees throughput under different spike
patterns. The results between the number of enabled SGs and
the throughput at different SIRs is shown in Figure 9. In this
example, the total number of SGs is 16. The round-robin scheme

FIGURE 9 | Relationship between the number of enabled SGs and the
throughput at different SIRs.

is used as the benchmark. The results include spike scenarios
of (1) the regular or rebound spike pattern, and (2) the fast or
bursting spike pattern.

The Regular or Rebound Spike Pattern Scenario
In this scenario, the traffic load is light or medium where
SIR = 0.3125 is employed (i.e., the SG generates 1 packet every 32
clock cycles) and all 16 SGs are enabled for modeling. The results
in Figure 9 illustrate that the LCIA and the round-robin-based
routers achieve almost same performance when all 16 SGs are
enabled at SIR = 0.3125. However, for the rebound spike pattern,
only a few routers out of 16 are active (e.g., the number of enabled
SGs is 1 or 2). It can be seen that under this pattern, the proposed
LCIA router can skip idle ports, which avoids wasting clock cycles
and achieves a higher throughput than the round-robin-based
router. This advantage becomes more significant in the following
fast or bursting spike pattern scenarios.

The Fast or Bursting Spike Pattern Scenario
For this scenario, not all router ports generate spike events.
That is, the number of SGs that generate the spike packets is
only a small percentage of the total SGs, but the SIR is higher
than the regular spike pattern. In this example, the SIR is set
to 0.5 to produce a bursting or fast spike. Figure 9 shows that
when the number of enabled SGs decreases, the throughput
difference between LCIA and the round-robin scheme becomes
larger, and the LCIA has a much higher throughput. For instance,
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if only two input channels receive the spike packets (two SGs
enabled), which is a typical bursting traffic pattern, the LCIA
has a 140% throughput improvement than the round-robin
scheme. Therefore, the LCIA architecture can maintain system
throughput under different spike patterns. It has the advantage of
high throughput especially for fast or bursting spike patterns, as it
can efficiently arbitrate the data requests without wasting time on
the channels with no data present. Thus, the experimental results
of Figure 9 show that LCIA is able to balance the traffic load of
the hardware interconnected SNNs.

HARDWARE IMPLEMENTATION

This section presents the methodology for implementing the
LCIA in hardware and the results of area overhead and power
consumption. The performance comparison with state-of-the-art
approaches is also given. The hardware implementation is based
on a Xilinx XC7Z020-CLG484 device. The router is implemented
based on a 100 MHz system frequency and the 36-bit packet data
width. The pre-layout area overhead and power consumption
have been evaluated based on a Synopsys Armenia Educational
Department (SAED) 90 nm CMOS technology.

Hardware Implementation
Figure 10A shows a 6 × 2 array of NoC routers implementing
the routing scheme of hardware SNN using the LCIAs. Only 3
out of 6 SGs (i.e., SG1, SG3, and SG4) are enabled to generate
spike events. The spike packets from each SG are transmitted to
all the routers in the next layer by a broadcasting method, and
they are forwarded to all the SCs in the next layer. Figure 10B
illustrates a traffic example for a single router R (Gerstner and
Kistler, 2002; Carrillo et al., 2013) where 3 out of 6 input
ports receive the spike events (X“121211801,” X“141411401,” and
X“151511801”). Suppose that a worst case happens, i.e., the spike
events from these three inputs arrive at the router ports at the
same time. These spike events are forwarded in turn by the router
R (Gerstner and Kistler, 2002; Carrillo et al., 2013) and follow four
steps: (1) The spike events are saved temporarily by the FIFOs; (2)
the Scheduler checks the request information from FIFOs (i.e.,
Req[1,3,4] in Figure 10B) and makes the corresponding grant
decision; (3) the Input Controller reads the corresponding spike
packets according to the grant decision; and (4) finally, these
packets are forwarded to the local SCs by the Output Controller.
In addition, if a spike event is from the local SG, it will be forward
by the Output Controller to the routers in next layer.

Moreover, the runtime operation of this router is shown in
Figure 10C. The grant decision is made in turn by Grant[5:0]
and FIFORead_EN ports of the Scheduler with the request
signal Req[5:0] of FIFO being “011010.” Only one clock cycle
is consumed from receiving the FIFO request information to
making the grant decision by the Scheduler. Next, the spike
packets from the corresponding FIFOs are transmitted to the
local SCs by the SpikesToENA [35:0] port of the Output
Controller in turn. In addition, when the traffic statuses of
the routers in the next layer are not congested, i.e., the
NextRoutersTraffic signal is “0” as shown in Figure 10C, the spike

events from the local SG will be forward by the Output Controller
to the routers in the next layer.

Performance Analysis
The scalability of the LCIA is analyzed as follows: (1) for the large-
scale SNNs, the required routers, and ENAs increase with the
number of neurons in each layer. The proposed LCIA supports a
regular layout of the ENA tiles and neuron communication where
the number of each router input port needs to be extended, e.g.,
n ENAs in each layer require an n input router. However, since
each ENA can implement ∼180 neurons (Wan et al., 2016), e.g.,
for one layer with 1,440 neurons only 8 routers with 8 input ports
are required, the increased port number of routers using LCIA
does not limit the network size that can be implemented; and
(2) Figure 11 shows the required router areas of two approaches,
LCIA in this work and the approach of (Cios and Shields, 1997).
In this work, the hardware area of a single router is less than the
router in the approach of Cios and Shields (1997). In addition,
the multiple neurons are included in each ENA rather than one
router per neuron in the approach of Cios and Shields (1997).
Thus, the LCIA can achieve much less area overhead for the large
network compared to the approach of Cios and Shields (1997).
Therefore, the proposed LCIA can maintain the scalability for the
large neural network.

For the scheduler in Figure 5, the critical path is from the
request input to the generation of the grant, which determines
that the maximum frequency is 280 MHz. Figure 12 shows
the area utilization and power consumption of a single router
including all modules – net interconnect, input FIFO, scheduler,
and input/output controller. The results show that the total area
overhead and power is 61,186 µm2 and 3.668 mW, respectively,
where the FIFOs occupy the largest area and power (88 and
80.97%). These results are obtained using the Synopsys Design
Compiler tool based on a SAED 90 nm CMOS technology, where
a clock frequency of 100 MHz has been used. In general, buffered
routers can reduce network contention (i.e., latency), but they
are costly in terms of area overhead and power consumption
(Agarwal et al., 2009). For the LCIA, if the buffer capacity is
increased by one packet, the router area is increased by ∼17.6%.
Thus, considering efficient router designs, it is important to
find a trade-off between the capacity of input buffers and the
performance. In previous work, some quantitative analysis has
been conducted regarding the impact of varying the buffer
capacity on the throughput, power consumption, and area
utilization (Carrillo et al., 2012, 2013; Liu et al., 2015, 2016).
For example, our previous work (Carrillo et al., 2012) shows
that both of the power consumption and throughput increase
proportionally to the buffer capacity; however, the change rate
of former is more than double of the latter and the break-point
is when buffer capacity is greater or equal to nine packets. Thus
the buffer capacity should be less than nine. In the meantime,
the power consumption and area utilization were also analyzed
under various buffer capacities. Results showed that the power
consumption and area utilization have the same change rates
when the buffer capacity increases. Therefore considering the
relationships between power consumption, throughput, and area
utilization, a five-packet buffer capacity offers a good trade-off,
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FIGURE 10 | The hardware SNN system and router operations. (A) A 6 × 2 array of NoC routers, (B) a traffic example for the single router, and (C) router operation
with three input channels.

and it is used in this work. For the large-scale networks, if
the area utilization of buffers is too high, application-specific
buffer space allocation technique (Hu and Marculescu, 2004)
or bufferless router architecture (Moscibroda and Mutlu, 2009)
could be used.

A comparison regarding the hardware overhead and power
consumption of the proposed router with other existing
approaches is shown in Table 2. The approaches in Zhang
et al. (2008), Harkin et al. (2009), and Wang et al. (2010)
have a relatively low area overhead, but they do not have

the congestion-aware capability. The router areas for them are
68,000, 185,392, and 201,000 µm2, respectively. Other NoC
routers (Carrillo et al., 2013; Liu et al., 2015, 2016) and the
proposed LCIA are all equipped with a traffic congestion
avoidance mechanism. SpiNNaker uses a communications NoC
and a system NoC for the communication mechanism, where
the former provides the communications for on and off-chip
interprocessors and the latter handles the on-chip processor
to memory/peripheral communications (Furber et al., 2013;
Painkras, 2013). As its communications NoC handles large
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FIGURE 11 | The comparison of router area overhead.

FIGURE 12 | The area utilization and power consumption distributions per router. (A) Area utilization of router. (B) Power consumption of router.

TABLE 2 | Router hardware overhead and power consumption comparison.

The
approach

Congestion
aware

Throughput
(Gpbs)

Power
(mW)

Area
(µm2)

Device
technology

Zhang et al.,
2008

× N/A N/A 68,000 SXLIB 90 nm

Wang et al.,
2010

× N/A N/A 185,392 SMIC 0.18 µm

EMBRACE
Harkin et al.,
2009

× 16 1.72 201,000 90 nm CMOS

H-NoC
Carrillo et al.,
2013

√
3.33 13.16 587,000 TSMC 65 nm

CG Liu et al.,
2016

√
NA 16.172 237,115 SAED 90 nm

FG Liu et al.,
2016

√
NA 27.266 267,756 SAED 90 nm

EDAR Liu
et al., 2015

√
18 2.291 241,000 SAED 90 nm

This work
√

18 3.668 61,186 SAED 90 nm

number of router entries, the hardware area is 9.7 mm2 based
on an UMC 130 nm technology (Painkras, 2013). FACETS
(BrainScaleS) (Schemmel et al., 2008; Schmitt et al., 2017)
contains large number of analog neuron and synapse circuits, and
it uses hierarchical buses and NoC routers for the inter/intra-
wafer communications. The proposed LCIA provides a general

communication infrastructure for the all-to-all interconnection
in the neural network with a relative low hardware area, and
it provides communications for customized neural network
hardware systems. The approaches of Carrillo et al. (2013)
are based on a hierarchical star topology. The approaches of
Liu et al. (2015) and Liu et al. (2016) are based on a 2D
mesh topology. Each router contains five input FIFOs for the
North/E/S/W and local ports. For the fairness of comparison,
five input ports are set in proposed LCIA. Based on the Xilinx
XC7Z020-CLG484 device, the router uses 3,334 slide LUTs,
11,653 slice registers, 1,440 F7 Muxes, and 648 F8 Muxes.
Based on the pre-layout results of SAED 90 nm technology,
the area overhead and power consumption of the LCIA are
61,186 µm2 and 3.668 mW, respectively. The routers in the
approaches of Carrillo et al. (2013) and Liu et al. (2016)
have a higher power consumption. In addition, compared with
the approach of Liu et al. (2015), the LCIA has a slightly
higher power consumption, however, the hardware area overhead
is much less than (Liu et al., 2015). Thus, comparing with
other approaches, LCIA achieves a relatively low resource
consumption.

CONCLUSION AND FUTURE WORK

A novel LCIA is proposed in this paper to provide a
communication mechanism for the hardware SNN systems. The
aim is to maintain efficient routing with a low hardware cost.
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This approach employs a NoC router as the fundamental unit for
the SNN interconnections where an efficient scheduling policy
is used to improve the communication efficiency between the
neurons. Results show that the proposed LCIA is effective under
various spike patterns, and the hardware overhead is relatively
low enabling system scalability to be maintained. The future work
will explore to further optimize the NoC routers.
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