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Developing new standardized tools to characterize brain recording devices is critical
to evaluate neural probes and for translation to clinical use. The signal-to-noise ratio
(SNR) measurement is the gold standard for quantifying the performance of brain
recording devices. Given the drawbacks with the SNR measure, our first objective was
to devise a new method to calculate the SNR of neural signals to distinguish signal
from noise. Our second objective was to apply this new SNR method to evaluate
electrodes of three different materials (platinum black, Pt; carbon nanotubes, CNTs;
and gold, Au) co-localized in tritrodes to record from the same cortical area using
specifically designed multielectrode arrays. Hence, we devised an approach to calculate
SNR at different frequencies based on the features of cortical slow oscillations (SO).
Since SO consist in the alternation of silent periods (Down states) and active periods
(Up states) of neuronal activity, we used these as noise and signal, respectively. The
spectral SNR was computed as the power spectral density (PSD) of Up states (signal)
divided by the PSD of Down states (noise). We found that Pt and CNTs electrodes
have better recording performance than Au electrodes for the explored frequency range
(5–1500 Hz). Together with two proposed SNR estimators for the lower and upper
frequency limits, these results substantiate our SNR calculation at different frequency
bands. Our results provide a new validated SNR measure that provides rich information
of the performance of recording devices at different brain activity frequency bands
(<1500 Hz).
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INTRODUCTION

Interfacing the brain using electrodes to record from and
stimulate it is a standard approach for investigating brain
function. Multielectrode arrays (MEAs) in particular are widely
used devices, both in basic research and in the clinic, that can
record electrophysiological signals simultaneously from different
neuronal populations. MEAs have been used in basic research
to study brain function in in vitro experiments (Berdondini
et al., 2006; Taketani and Baudry, 2006; D’Andola et al., 2017)
as well as in anesthetized and in chronically implanted behaving
animals (Nicolelis et al., 2003; Dickey et al., 2009; Khodagholy
et al., 2015). Furthermore, the use of chronic implants based
on MEA technology has increased in the last few decades
with the development of brain-computer interfaces (BCIs) to
compensate for lost neural functions (Hochberg et al., 2006;
Lebedev and Nicolelis, 2006; Donoghue, 2008). An important
group of BCIs is based on the recording of the local neuronal
population such as local field potentials (LFPs) and on multi-
unit activity (MUA) (Lebedev and Nicolelis, 2006). An important
drawback of this group of BCIs is their limitations on obtaining
brain signals within a large bandwidth, especially high-frequency
signals such as MUA. These limitations are not only a feature
of the electrodes themselves, but also a feature of the design
of the recording system and the filtering procedure. Hence,
one of the strategies to overcome this frequency limitation
consists in increasing the ability of the recording system to
accurately sense and record biological signals in their whole
frequency range in order to detect as many frequency bands as
possible. The main feature that characterizes an ideal extracellular
microelectrode for recording brain signals is a high signal-
to-noise ratio (SNR), which is a measure of the fidelity of
the received message for the whole frequency band containing
useful neural information (Baranauskas et al., 2011). SNR is
usually assessed using saline-measured electrode impedances.
Typically, electrodes are made of metallic conductors such as
gold (Au), and since the electrodes used in MEAs are on the
micrometer scale, it is a challenge to achieve low electrode
impedance with plain conductors only (Obien et al., 2015). It
is generally assumed that higher SNR values can be achieved
by lowering the electrode impedance, which decreases with
increasing active surface area. Thus, recent research has pursued
new materials and fabrication techniques aimed at increasing
as much as possible the active surface area. Two particularly
appealing approaches to increasing the active surface area of
electrodes are: (1) platinum black coating electroplated on
metallic electrodes (Pt) (Desai et al., 2010; Zhang et al., 2013); and
(2) polypyrrole/carbon nanotubes composite electrodeposited
on metal electrodes (CNTs) (Keefer et al., 2008; Baranauskas
et al., 2011). Whereas the quantitative characterization of the
working performance of electrodes is usually achieved by using
electrochemical impedance spectroscopy (EIS), this measure is
useful to predict some electrode properties but does not assess
the entire electrode performance while measuring biological
signals (Ludwig et al., 2006; Ferguson et al., 2009; Baranauskas
et al., 2011). On the other hand, the SNR of the signal recorded
through the electrode allows the quantification of the recording

performance of the electrode and therefore contrasting electrodes
of different types.

Besides electrode limitations, it is important to consider that
recording systems have to ensure an amplification stage as close
as possible to the recording site by means of a high common
mode rejection (the ability to reject common noise in the active
and reference electrode) in order to reduce external noise and
ensure stable recordings. This can be achieved by a large input
impedance in the amplifier (normally in the order of T� at 1 kHz)
(Nelson et al., 2008). The recorded frequency band is also limited
by the filters of the amplifiers, which have to ensure the same
amplification value for all the frequencies of interest (Kappenman
and Luck, 2010).

Current approaches for assessing SNR in brain recordings
rely mostly on the amplitude of the signal. For instance,
some reported methodologies are based on the recording of
evoked (Kuzum et al., 2014) or spontaneous epileptic activity
(Khodagholy et al., 2013) and the SNR is calculated by taking the
highest peak during a period of epileptic activity and dividing it
by the standard deviation (SD) of the background signal during
a period of low biological activity. Recently, a similar procedure
was performed by calculating the SNR of slow oscillations—
an activity pattern that alternates between periods of neuronal
firing, or Up states, and periods of almost neuronal silence,
or Down states (Steriade et al., 1993)—as the ratio of the Up
state amplitude to the Down state SD (Blaschke et al., 2017).
Since these SNR approaches are based on the amplitude of the
signal, the calculated SNR values only evaluate the behavior of
the devices at the frequency of the recorded events. Nonetheless,
obtaining information about the SNR at different frequency
ranges of the brain signals is a relevant step in the characterization
of recording devices. To overcome the limitations of the current
SNR approaches, new methodologies to quantify the SNR in
brain recordings are needed.

In brain recordings, the frequency bands of interest include
the LFP (<500 Hz), MUA (200–1500 Hz) (Mattia and Del
Giudice, 2002) and single-unit activity (>1000 Hz). Within the
LFP band are the slow oscillations, which constitute a good
model to study the SNR of brain signals because they encompass
different frequency bands: from <1 Hz (frequency of Up and
Down state alternation) to high-frequency synchronization in the
β/γ range (15–100 Hz) (Steriade et al., 1996; Compte et al., 2008)
and population spiking activity (MUA) above 200 Hz during Up
states (Steriade et al., 1993). Slow oscillations spontaneously arise
during slow wave sleep and under anesthesia in vivo (Steriade
et al., 1993), and also in in vitro brain slices (Sanchez-Vives and
McCormick, 2000), granting the possibility of exploring them in
distinct experimental conditions.

The aims of this study were: (1) to develop and validate a new
approach to quantify the SNR of brain recording devices; and (2)
to compare the throughput of co-localized electrodes of different
materials, namely Au, CNTs and Pt. For these purposes, we used
an adaptation of the SNR calculation based on the features of the
slow oscillations, which we recorded using MEAs with electrodes
of the three aforementioned materials distributed in tritrodes and
stereotrodes. The integration of three materials in close vicinity
within the same MEA allowed the direct comparison between
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them, thereby avoiding the problem of comparing electrodes
from different probes and/or electronic systems, and avoiding
recording different neural activity patterns coming from distant
neuronal populations.

MATERIALS AND METHODS

SNR Calculation
Signal-to-noise ratio is defined as the ratio of the power spectral
density (PSD) of a signal (meaningful information) with respect
to the power of the background noise. In the analysis of brain
recordings, this measure is commonly applied in spike sorting
to select the best recording location, and also to characterize
the reliability of neural information transmission (Schultz, 2007).
The SNR can be calculated from spontaneous or evoked neural
responses to different types of stimuli (electrical, sensory, etc.).
For example, in the calculation of the SNR from a time-
dependent signal in single cell recordings, the action potentials
are considered “signal” and the inter-spike intervals the “noise.”
Then, following the description from Rieke et al. (1997), the SNR
is calculated as follows:

SNR(f ) =
S(f )
N(f )

(1)

Where S(f ) is the PSD of the signal and N(f ) is the PSD of the
noise. In our study, we obtained extracellular LFP recordings
from active cortical slices that spontaneously generated slow
oscillations (Sanchez-Vives and McCormick, 2000). Since Up
states are the consequence of a population of neurons firing,
we considered Up states the “signal.” As described above, Up
states contain a broad band of frequencies; that is, they contain
meaningful information. On the other hand, we considered
Down states the “noise” because they are mostly silent periods.
In order to quantify the SNR at different frequencies, the spectral
SNR (in dB) becomes:

= 10 log10

1
N

∑N
i=1(PSDUp)i

1
N′

∑N′
j=1(PSDDown)j

[dB] (2)

where N is the total number of Up states and N’ is the total
number of Down states.

SNR Estimators
To easily quantify the performance of each material, thereby
avoiding the vast amounts of information obtained through
the spectral analysis, we proposed and validated a set of SNR
estimators. The advantage of using these SNR estimators is that
they reduce and summarize the large amount of information
provided by the spectral SNR, since the spectral SNR gives a value
of SNR at each different frequency. These estimators are derived
from the spectral SNR curve (Eq. 2), or directly from the LFP
signal.

Area Under the Curve (AUC)
The area under the spectral SNR curve within the frequency range
from 5 to 1500 Hz, where 5 Hz is the minimum frequency allowed

by the PSD and 1500 Hz is the upper limit of the MUA band. It is
calculated as follows:

AUC =
∫ fu

fl
SNRSpectral(f )df (3)

where fl is the lower integration limit (5 Hz in this case) and fu
is the upper integration limit (1500 Hz). However, when AUC is
computed in frequency bands, these limits change, being f 0 the
lowest frequency of the band and f the highest frequency of the
band.

The AUC can also be calculated for defined frequency bands.
In our case, we chose three frequency bands of interest: low (5–
30 Hz), middle (30–200 Hz), and high (200–1500 Hz). The low
band ranges from the limit of resolution of the PSD (5 Hz) to the
upper limit of the β band (30 Hz). The middle band ranges from
the lower limit of the γ band (30 Hz) to the lower limit of the
MUA band (200 Hz). Finally, the high band corresponds to a part
of the MUA band (>200 Hz).

Frequency Limit of Detection (FLOD)
Frequency at which the spectral SNR equals zero. At this point,
the power of the signal is exactly the same as the power of the
noise.

Voltage SNR (vSNR)
This is the most widely reported approach to compute the SNR in
LFP recordings in animals under anesthesia (Kuzum et al., 2014;
Blaschke et al., 2017). The vSNR is calculated as the ratio between
the mean of the peak-to-peak amplitude of all the Up states and
the mean of the SD of all the Down states:

SNRVoltage =
1
N

∑N
i=1(P2PUp)i

1
N′

∑N′
j=1(STDDown)j

(4)

Fabrication and Characterization of the
MEAs
Flexible microprobes integrating 16 Au microelectrodes were
fabricated using SU-8 negative photoresist as flexible substrate
as previously described (Gabriel et al., 2013; Illa et al.,
2015). The fabricated MEA has dimensions of approximately
32 mm long (Figure 1A). The tip, where the array of
distributed microelectrodes is, covers 6.00 mm × 1.55 mm. The
microelectrodes are distributed in tritrodes and stereotrodes.
They are 50 µm in diameter and the center-to-center distance
with neighboring electrodes is 200 µm. The rest of the tip is
provided with holes to enhance tissue oxygenation. To facilitate
the use of the fabricated microprobes, these were connected to a
printed circuit board (PCB) with a proper pin output by means
of a 16-channel zero insertion force (ZIF) connector. For this, the
connecting pads of the microprobe were designed to match the
specifications of the desired ZIF connector and, additionally, a
spacer was used to ensure good contact between the probe and
the connector.

Platinum Black (Pt) Electrodeposition
Au electrodes on individual devices were electrochemically
coated with a porous layer of platinum black to reduce
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their impedance through a customized process of platinization
(Gabriel et al., 2007). More specifically, electrodeposition
was performed using a platinum chloride solution [0.1 M
hydrochloric acid, 2.3% platinum (IV) chloride and 0.023% lead
(IV) acetate 99%] at−0.2 V for 20 s. The electrodes modified with
platinum black correspond to numbers 3, 4, 7, 10, 13, and 14 in
Figure 1A, depicted in black. In Figure 1B, a scanning electron
microscopy image shows the rough morphology that is achieved
by electrodepositing this material.

Single-Walled Carbon Nanotubes/Polypyrrole
Composite (CNTs) Electrodeposition
Carbon nanotubes were synthesized by the arc-discharge method
using graphite electrodes and a Ni/Y 4/1% metal catalyst
mixture. As-grown single-walled carbon nanotubes (agSWCNTs;
initial nanotube concentration: 4 mg/ml) were dispersed
ultrasonically in aqueous 1% sodium dodecylbenzenesulfonates
(SDBS) solution. Afterward, the dispersion was centrifuged at
13,000 rpm for 30 min (Hermle Z383, Hermle Labortechnik,
Wehingen, Germany) in order to increase their purity and
decrease their metal content (Ansón-Casaos et al., 2014),
achieving a final nanotube concentration of 1.3 mg/ml.

Electrodeposition of the composite material was carried
out in galvanostatic conditions (0.13 mg/ml gSWCNTs, buffer
phosphate with 0.05 M dihydrogen phosphate and 0.05 M
monohydrogen phosphate solutions, 3.2 mM SDBS and 0.14 M
pyrrole) using a constant current value of 3 mA · cm−2 during
120 s. An Ag/AgCl (3 M NaCl) electrode was used as a reference
electrode, and a graphite bar was used as a counter electrode.

Figure 1A depicts the electrodes modified with the CNTs
composite with the numbers 1, 2, 5, 12, 15, and 16, shown in
green. In Figure 1B, a scanning electron microscopy image also
shows the rough morphology that is obtained with this coating,
and even the tubes can be observed in a random distribution
(for further information about the fabrication of the MEAs, see
Gabriel et al. (2013).

In vitro Recordings
Slice Preparation
This study was carried out in accordance with Spanish
regulatory laws (BOE-A-2013-6271), which comply with the
European Union guidelines on protection of vertebrates used
for experimentation (Directive 2010/63/EU of the European
Parliament and the Council of September 22, 2010). The protocol
was approved by the ethics committee of Hospital Clinic
Barcelona. Two ferrets (5-month-old, male) were anesthetized
with sodium pentobarbital and decapitated. The entire forebrain
was rapidly removed and placed in oxygenated cold (4–10◦C)
bathing medium. Coronal slices (0.4-mm thick) from the
occipital cortex containing primary and secondary visual cortical
areas (areas 17, 18, and 19) were used (Innocenti et al., 2002).
A modification of the sucrose-substitution was used to increase
tissue viability (Aghajanian and Rasmussen, 1989). Briefly, during
the preparation of slices, the tissue was placed in a solution in
which NaCl was replaced with sucrose. After the preparation,
slices were placed in an interface style recording chamber (Fine
Sciences Tools, Foster City, CA, United States). During the first

15 min, cortical slices were superfused with an equal mixture
in volume of the normal bathing medium and the sucrose-
substituted solution. Next, normal bathing medium was added
to the chamber and the slices were superfused for 1–2 h. The
modified slice solution was used throughout the rest of the
experiment. Bath temperature was maintained at 36◦C. The
artificial cerebrospinal fluid (ACSF) bathing medium contained
(in mM): NaCl, 126; KCl, 2.5; MgSO4, 2; NaH2PO4, 1.25; CaCl2,
2; NaHCO3, 26; dextrose, 10, and was aerated with 95% O2, 5%
CO2 to a final pH of 7.4. The modified solution had the same
ionic composition except for different levels of (in mM): KCl,
4; MgSO4, 1 and CaCl2, 1–1.2 (Sanchez-Vives and McCormick,
2000). Electrophysiological recordings started after allowing at
least 2 h of recovery.

Recording Set-Up
Multielectrode arrays attached to a ZIF connector were placed
on the slices. The data acquisition system comprised a 16-
channel preamplifier (µPA16, Multichannel Systems, Germany)
and amplifier (PGA16, Multichannel Systems, Germany) with a
100× gain factor, and a CED 1401 digitizer and Spike 2 software
(Cambridge Electronic Design, United Kingdom). The sampling
frequency of the recordings was set to 5 kHz.

Data Analysis
Recordings of 20–60 s duration only from operative tritrodes
and stereotrodes were selected for the analysis. From optical
imaging and EIS characterization (Figure 1 and Supplementary
Figure S1), exclusion criteria were defined: only tritrodes and
stereotrodes with the three or two electrodes, respectively,
well fabricated and operative were selected for the comparison
analysis (some of them were short-circuited or the material
was not well deposited). In addition, only recordings with
detectable Up states were used. Five MEAs containing four
different tritrodes and two different stereotrodes were tested in
seven cortical slices. After excluding non-operative tritrodes and
stereotrodes (usually a very noisy electrode recording), we ended
up with the following sample sizes: NPt = NCNTs = 102 and
NAu = 67 recordings.

Signal analysis was performed using MATLAB 2012a (The
MathWorks Inc., Natick, MA, United States). Up and Down
state detection was performed as in Castano-Prat et al. (2017).
Detection of Up and Down states from the recorded signals was
based on three main fingerprints of the Up states: the slow LFP
deflection, the gamma rhythm, and the neuronal firing. These
three features are reflected in three different time series: (1) the
slow oscillation envelope (smoothing filter with a 5-ms moving
window), (2) the envelope of the variance of the gamma-filtered
LFP (15–100 Hz) (Mukovski et al., 2007), and (3) the estimation
of the MUA, which was bandpass filtered from 200 to 1500 Hz
(Mattia and Sanchez-Vives, 2012). From each LFP we obtained a
highly processed time series as a linear combination of these three
features. The contribution of each one was weighted by principal
component analysis (PCA). As the three signals correspond
to three different frequency bands, this method is very robust
against colored noise or band-limited electrode malfunction.
Up and Down states were singled out by setting a threshold in
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FIGURE 1 | Cortical multielectrode arrays (MEAs). (A) Overview of the microfabricated device. Optical microscopy image of the MEA including dimensions and
layout in detail of the microelectrodes disposition (tritrodes and stereotrodes) and holes (gray). (B) Tritrodes distribution in detail and scanning electron micrographs
(SEM) showing 50-µm bare gold microelectrodes before the modification (Au in red), after the modification with platinum black (Pt in black) and the single-walled
carbon nanotubes/polypyrrole composite electrode (CNTs in green).

FIGURE 2 | Local field potential (LFP) traces from a representative tritrode showing the recording of spontaneous cortical slow oscillations in vitro for the three
co-localized electrodes of different materials (Au, CNTs and Pt). For this figure, the LFP signals were filtered by applying Notch filters at 50 and 150 Hz and a
smoothing filter using 10-ms sliding windows with 5-ms steps. Up states are shown in yellow.

this highly processed time series. A threshold calculated from the
bimodal distribution of Up and Down states duration was set on
the reconstructed signal to classify the parts of the recording with
more frequency content (Up states) and less frequency content
(Down states). For electrodes where the detection did not work,
we used the detection times from the nearest electrode.

Once the detection was performed, the PSD with a resolution
of 1024 points of the fast Fourier transform (FFT) was calculated
for every Up and Down state separately using Welch’s method
(window size 1024 time bins with an overlap of 512 time bins).
The mean PSD of the Up states and Down states in the recording
fragment were calculated. The same approach was employed to
calculate the mean peak-to-peak amplitude of all the Up states
and the mean SD of all the Down states.

The Spectral SNR was calculated for every electrode recording
using Eq. (2). From the Spectral SNR, AUC was calculated by
a trapezoidal numerical integration along the three different
defined frequency bands. FLOD was estimated by smoothing the
spectral SNR curve to easily find the intersection with zero. The
smoothing filter we used is based on a moving average method
with a span of 10 ms. vSNR was calculated as the mean peak-to-
peak amplitude of Up states divided by the mean SD of the Down
states.

For the statistical analyses, the Kolmogorov–Smirnov test
was performed for every SNR estimator distribution separately
for each material to test the normality. Because none of the
distributions was normal, non-parametric tests were applied to
assess statistical differences between materials. More specifically,
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we used the Wilcoxon signed-rank test to compare the SNR
distributions of different materials at every frequency, the Mann–
Whitney test to assess differences in estimator distributions
between different materials, and Pearson correlation coefficient
to quantify the degree of association between SNR estimators.
A non-parametric ANOVA test equivalent for independent
samples (Kruskal–Wallis test) was performed for all the data
separately for each MEA, tritrode/stereotrode and material using
IBM SPSS 22 statistics software.

RESULTS

Five MEAs with electrodes of the three different materials
(Au, CNTs and Pt) arranged in tritrodes and stereotrodes
were tested on seven different visual cortical slices that
generated spontaneous slow oscillations (Figure 2). From the
LFP recordings of every electrode, the SNR was calculated using
the different methods described above: the spectral SNR, the
vSNR estimator, and the estimators derived from the spectral
SNR: AUC and FLOD. The proposed SNR analysis was aimed at
characterizing the behavior of the three electrode materials while
recording brain signals. Moreover, the results themselves validate
the proposed SNR analysis as a methodology for characterizing
the SNR using biological signals.

Spectral SNR and AUC Estimator
Since the electrode SNR depends, among other things, on the
impedance, the SNR is frequency-dependent. For this reason,
measuring the SNR at different biological frequencies is crucial in
electrode characterization. The spectral SNR curve was computed
for each electrode recording and the results were grouped into
materials in order to compare them. Overall, from the spectral
SNR analysis, we found that Pt as well as CNTs electrodes
showed significantly higher SNR values than Au electrodes for
all the functional frequencies (frequencies with SNR > 0 dB)
(Figure 3). Moreover, Pt electrodes presented a slightly higher
SNR than CNTs electrodes but this difference was not statistically
significant for frequencies below 400 Hz. Nevertheless, for
certain frequencies above 400 Hz, significant differences appeared
between Pt and CNTs electrodes, Pt electrodes having higher SNR
values. Regarding the MUA frequency range (200–1500 Hz), Au
electrodes showed SNR values very close to zero while Pt and
CNTs electrodes had SNR values of approximately 4 dB at 200 Hz
(Figure 3). Negative SNR values at higher frequencies are caused
because the Down PSD values lightly exceed Up PSD values. This
effect may be caused by certain noise artifacts; since Down states
have a larger duration than Up states, the probability of having
some artifactual noise in Down states is also larger.

More specifically, SNR values for the low-frequency band (5–
30 Hz) were almost constant for the three materials (Figure 3).
At this frequency range, Pt and CNTs electrodes had SNR values
around 9 dB while that of Au was around 4 dB. These values
indicate that the power of the signal was around eight times
greater than the power of the noise in recordings obtained with
Pt and CNTs electrodes and 2.5 times in the case of Au electrodes
(UpPSD/DownPSD = 10SNR/10). For frequencies over 50 Hz, the

SNR decayed almost linearly following the typical 1/f decay
(Figure 3). The PSD of the Up and Down states (inset in Figure 3)
revealed that the power of the Up state was almost the same for
Pt and CNTs electrodes while the power of the Down state was
lower in Pt electrodes, resulting in better SNR values. The signals
recorded by the Au electrodes showed similar powers of Up and
Down states, leading to low SNR values.

The SNR distribution curves represent the mean behavior of
different stereotrodes and tritrodes (Figure 4A). For the lower
frequency band (5–30 Hz), the distributions were very wide
and chi-square shaped while as the frequency increased, the
distributions became narrower and closer to SNR = 0, indicating
that the recording performance of the electrodes was reduced
when the frequency of the signal increased (Figure 4B). In
particular, the maximum SNR values in the low frequency band
(5–30 Hz) were slightly above 20 dB for Pt and CNTs electrodes,
and around 15 dB for Au (Figure 4A, left). While Au SNR
distribution peaked at around 2 dB, the peak for Pt was about
5 dB. On the other hand, CNTs electrodes showed a bimodal SNR
distribution. The results from the Kruskal–Wallis test (p < 0.05)
suggest that this bimodality in the SNR value distribution for
CNTs electrodes was due to the variability in the fabrication
process since significant differences in variances are given by the
distribution of SNR values sorted by the tritrode location inside
the probe (Supplementary Figure S2). The SNR distribution in
the 30–200 Hz frequency range became more similar between
Pt and CNTs electrodes, although CNTs distribution was slightly
broader (Figure 4A, middle). The distribution for these two
materials was wider than that of Au, which was narrow and
centered at zero. At the 200–1500 Hz frequency range, the
distributions were very similar since most electrodes had their
SNR around zero (Figure 4A, right).

The area under the spectral SNR curve (AUC) was calculated
as an SNR estimator, and the distributions of normalized AUC
values for the three defined frequency bands (low: 5–30 Hz,
middle: 30–200 Hz, high: 200–1500 Hz) were represented in
boxplots for the three different materials. For the three frequency
bands, the AUC for the Pt and CNTs electrodes was significantly
higher than for the Au electrodes (p < 0.001 for the low and
middle frequency bands; p < 0.05 for the high frequency band)
(Figure 4B). In the 5–30 Hz frequency range, the AUC mean
value was equal for Pt and CNTs electrodes but the median
was higher for CNTs. On the other hand, for the 200–1500 Hz
frequency range, AUC mean values for Pt were greater. At this
high-frequency range, the significance values between Pt-Au and
CNTs-Au decreased from p < 0.001 to p < 0.05 because most
AUC values were very close to zero, but the difference was still
significant.

The results from the spectral SNR analysis shed light on
the recording performance of the electrodes for the whole
spectral range from 5 to 1500 Hz. The analyzed data show
significant differences between Au and Pt, and between Au
and CNTs electrodes, indicating that Pt and CNTs electrodes
record the brain signals better than Au electrodes for the
whole range of studied frequencies. No significant differences
were found between Pt and CNTs electrodes but our results
suggest that Pt electrodes had a slightly better performance

Frontiers in Neuroscience | www.frontiersin.org 6 November 2018 | Volume 12 | Article 862

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00862 November 28, 2018 Time: 17:50 # 7

Suarez-Perez et al. SNR Quantification for Various MEA Materials

FIGURE 3 | Spectral signal-to-noise ratio (SNR). SNR was calculated as in Eq. (2) giving a SNR value for each frequency ranging from 5 to 1500 Hz. The spectral
SNR curve was calculated for the electrodes of the three different materials and the mean SNR curve of the five MEAs was tested in seven slices. The horizontal line
at zero represents SNR = 0 (UpPSD = DownPSD). Vertical lines separate the three frequency bands: low, 5–30; medium, 30–200; and high, 200–1500 Hz. Inset;
Mean power spectral density of Up and Down states (solid and dotted lines, respectively). ∗p < 0.05 by Wilcoxon signed-rank test.

than CNTs electrodes. Finally, our findings validate that the
AUC estimator, computed at different selected frequency bands,
properly describes the overall behavior of the electrodes in terms
of SNR for low, middle, and high frequency ranges.

vSNR and FLOD as SNR Estimators for
Lower and Higher Frequencies,
Respectively
As described above, vSNR and FLOD were calculated as
estimators to complement and validate the results obtained with
the spectral SNR analysis. Our findings show that vSNR, FLOD,
and AUC show the same qualitative results, reinforcing the
outcome of the previous SNR analysis (Figure 5).

As vSNR is calculated using the amplitude of the signal during
Up states and the SD of the Down states, vSNR values are
expected to describe the SNR at frequencies related to the slow
oscillations (>1 Hz); that is, very low frequencies. In agreement
with this, the results shown in the vSNR boxplot (Figure 5A)
match the results obtained with the AUC estimator (Figure 4B)
for the low frequency band (5–30 Hz). In addition, the expected
tendency of CNTs electrodes to have higher and lower AUC
values for lower frequencies and higher frequencies, respectively,
than Pt electrodes (Figure 4B) was detected in the vSNR boxplot
as well as in the FLOD boxplot (Figures 5A,C).

To confirm that vSNR is related to the SNR at lower
frequencies, a linear correlation was performed with the different
AUC distributions at the three frequency bands (Figure 6). Since
the larger correlation coefficient was for the vSNR-AUC (5–
30 Hz), our findings indicate that vSNR better describes the SNR
at lower frequencies (Supplementary Figure S3A). Furthermore,
vSNR complements our analysis by providing new information
regarding the behavior at frequencies that are too low to be
obtained with the spectral SNR.

Since FLOD is the value of the frequency at which the
SNR is zero, it is easy to relate this estimator to the SNR
value at the highest frequencies. Comparing the results of
FLOD distributions for each material (Figure 5C) with the
distributions of AUC (Figure 4B), one can see that the FLOD
estimator has a greater Pearson correlation with AUC at the
high frequency range (200–1500 Hz) (Figure 6B) than with AUC
at low and middle frequency ranges (Supplementary Figure
S3B) Thus, FLOD can be interpreted as an estimator for high
frequencies.

The total AUC distribution is dominated by high frequencies
(200–1500 Hz) since there are more frequency points within this
range and, despite the SNR values being low, the AUC is large
due to the frequency variable (note that in the spectral SNR in
Figure 3, the frequency axis is in a logarithmic scale). Thus, the
total AUC describes the SNR for the middle and high frequencies
(Figures 6C,D and Supplementary Figure S3C).
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FIGURE 4 | Spectral SNR distribution and area under the spectral SNR curve (AUC) for three different frequency bands. (A) Distribution of mean SNR values for the
electrodes of the three different materials for the three frequency bands defined in Figure 3. (B) Boxplots of AUC in the three frequency bands for the three materials.
∗p < 0.05, ∗∗∗p < 0.001 by Mann–Whitney test. NPt = NCNTs = 102 and NAu = 67 electrode recordings.

FIGURE 5 | vSNR and FLOD estimators for lower and higher frequencies, respectively. (A) Boxplots of the voltage SNR (vSNR) for Au, CNT and PT electrodes.
(B) Boxplots of the area under the spectral SNR curve (AUC) for the three materials. (C) Boxplots of the frequency limit of detection (FLOD) for the three materials.
Note the similarities with Figure 4B. ∗∗p < 0.01, ∗∗∗p < 0.001 by Mann–Whitney test.

DISCUSSION

In this work, we have developed and validated a novel method
for characterizing the performance of brain recording devices
based on a spectral SNR analysis using cortical slow oscillations.
The validation was performed by applying this method to
characterize and compare electrodes made of three different
materials (Au, CNTs and Pt) organized in tritrodes. We also
report here that electrodes made of platinum black and carbon
nanotubes have better recording performance than electrodes

made of gold for the whole functional frequency range that
we explored (from 5 to 1500 Hz). Furthermore, Pt electrodes
showed a trend toward working better than CNTs electrodes
even though the difference did not reach statistical significance.
Although these results can be qualitatively predicted from
impedance characterization (i.e., directly related to the specific
surface area of the electrode site; see Supplementary Figure S1),
a quantitative measure of the entire electrode performance
can only be assessed by SNR analysis (Ludwig et al., 2006;
Baranauskas et al., 2011). We have seen that both functionalized
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FIGURE 6 | Correlation between SNR estimators (vSNR, FLOD and total AUC) and AUC for different frequency ranges. (A) Linear correlation between vSNR and
AUC at 5–30 Hz; (B) between FLOD and AUC at 200–1500 Hz; (C,D) between total AUC and AUC at 30–200 Hz (C) and 200–1500 Hz (D). ρ, Pearson correlation
coefficient.

electrodes (CNTs and Pt) displayed lower background noise
during the Down states (inset Figure 3); this behavior is due
to the reduction of both the root mean square and the thermal
noise that are both directly related to the real part of the
impedance of the electrode material (Supplementary Table
S1). Similar results have already been published describing the
improvement in the SNR by using electrodes of electrodeposited
platinum black (Desai et al., 2010; Zhang et al., 2013) and
carbon nanotubes (Mazzatenta et al., 2007; Keefer et al., 2008;
Lu et al., 2010; Baranauskas et al., 2011; Castagnola et al.,
2014), reinforcing the validation of our SNR methodology.
Nevertheless, a quantitative SNR comparison of the different
electrodes recording simultaneously from the same location and
using the same recording system has, to our knowledge, not
been done before. This novel SNR calculation has also been
used recently in the characterization of graphene FET (field
effect transistor) arrays in in vivo brain recordings, proving the
potential of this measure to give information of the recoding

capabilities of graphene FET in a broad biological frequency band
(Hébert et al., 2017).

The design of the probes was intended to compare the
materials while minimizing the interferences derived from
recording from different neuronal populations by using co-
localized electrodes arranged in tritrodes and stereotrodes.
Because our in vitro experiments in cortical slices allow the
recording of slow oscillations, the intrinsic characteristics of
this activity pattern make it suitable for developing a SNR
analysis using Up-Down states as Signal-Noise signals, thus
overcoming the complexity of the SNR calculation in biological
signals that usually arises from the difficulty in separating
signal from noise. One could argue that Down states are
not totally silent but relatively silent states and therefore that
they contain neuronal information (e.g., Reig et al., 2009),
such that referring to them as “noise” is not quite accurate.
However, notice that in this paradigm there are no experimental
manipulations that act on the neuronal firing at any point
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of the experiment, plus the recordings from closely located
electrodes of different materials are compared. Under these
conditions, it seems reasonable to assume that Down states
be considered “noise” with respect to Up states. Thus, the
probes design, as well as the experimental approach, allowed
the development of this SNR analysis to be able to compare
quantitatively the behavior of electrodes made of different
materials.

There are some differences between measurements carried out
by injecting artificial currents in saline solution electrolyte (as in
EIS; see Supplementary Figure S1) in contrast to in vivo and
in vitro measurements. Measurements in saline solution display
lower impedance values and larger capacitive charge capacity
in comparison with the measures where the electrodes are in
contact with tissue (Wei and Grill, 2009). This effect can be
attributed to the differences in the composition between both
electrolytes (saline solutions and brain tissue) and the difference
in the electrode-reference path. When using saline solution as an
electrolyte both electrode and reference are soaked in the same
electrolyte. In an in vitro preparation, the electrode is placed
over the slice of brain tissue and the reference is placed in
the ACSF bath. In this case the path is composed of the brain
slice and the ACSF bath. Finally, in an in vivo preparation, the
electrode contacts the brain and the reference can be placed
in different locations, such as the nearby muscles. In this case,
the path is composed of the brain, the skull and the muscle.
Normally, as the electrode-reference path increases, so does
the number of different electrolytes (with different electrical
properties), and the noise of the measured signal increases. In
conclusion, both electrode–electrolyte interaction and electrode–
reference path, determine the impedance-frequency dependence
and the level of noise (both thermal and RMS – root mean
square).

The results from the spectral SNR analysis provide a large
amount of data since they give an SNR value for each frequency.
Therefore, the use of SNR estimators that give an overall idea
of the behavior under certain conditions is especially helpful.
Because of this, we defined and validated some SNR estimators
extracted from the spectral SNR analysis. On the one hand,
we defined several SNR estimators from the spectral SNR
analysis: total AUC, the AUC for different frequency bands of
biological interest (5–30 Hz, 30–200 Hz and 200–1500 Hz),
and the FLOD. On the other hand, we also calculated the
vSNR, which is the standard approach to calculating SNR
in LFP recordings (Khodagholy et al., 2013; Kuzum et al.,
2014; Blaschke et al., 2017). AUC values defined in frequency
bands of interest are very useful estimators for describing
and quantifying the behavior of the electrodes (Figure 3).
FLOD and vSNR estimators were compared with the AUC
at different frequency bands and we found that while FLOD
describes very well the SNR at high frequencies, the vSNR
describes the SNR better at lower frequencies. Proving our
hypothesis that vSNR applied to these slow oscillation signals
describes the SNR at the slow oscillations frequency (<1 Hz), the
correlation of this estimator with AUC at different frequencies
is highest for the lower frequencies. On the other hand,
vSNR can give more information of the SNR values at lower

frequencies where spectral SNR cannot reach enough frequency
resolution due to the short duration of Up states (∼200 ms).
Furthermore, we observed that the total AUC describes the
SNR behavior at middle-high frequencies. This can be explained
because, given the nature of the spectral analysis, the AUC
is more weighted toward higher frequencies. Since we defined
lower frequencies as 5–30 Hz, only six frequency values were
considered, while for the 200–1500 Hz range, 266 frequency
values were considered. This is why we normalized the AUC
in different frequency bands by the number of frequency
values.

Searching in the literature for SNR calculation methods,
we found two different methodologies estimating the SNR at
different frequencies that we consider to be worthy of note.
The first one involved estimating the SNR from recordings
of spike and wave discharges (SWDs) during spontaneous
epileptiform activity in an animal model of absence epilepsy
(Khodagholy et al., 2013). The authors of this study calculated
the SNR as the ratio between the power spectra of the recording
during ictal seizure in SWDs and the power spectra of the
recording during inter-ictal activity (period of low biological
activity) (Khodagholy et al., 2013). The second methodology
implied the calculation of the SNR as the ratio between the
power of the signal from the recording of rapid-eye movement
(REM) sleep and the power of the signal from post-mortem
recordings (Khodagholy et al., 2015). The main drawback of
the first approach is the need for a specific transgenic animal
model in order to have a signal of large enough amplitude,
which will nevertheless be a pathological one. The possible
changes that arise due to obtaining the ictal and the inter-
ictal activity recordings at different time periods and the
variability of SWDs activity across different animal subjects and
levels of anesthesia makes this approach less robust. One of
the drawbacks of the second approach is that REM activity
is very similar to activity during wakefulness and the only
way to distinguish one from the other is by means of an
electromyogram (EMG) recording. Furthermore, in contrast to
the recording of a live animal, in a post-mortem recording
there is no respiration or heartbeat; finally, other biological
changes related to the cessation of the homeostatic equilibrium
occur. Therefore, these changes could lead to a bias in the SNR
calculation.

In order to overcome these drawbacks, we propose a
SNR methodology based on the slow oscillatory state that
arises during anesthesia and during non-REM sleep in
typical in vivo conditions and can be also reproduced
in the in vitro preparations. The SNR can be assessed at
different frequencies since we are applying a spectral analysis,
considering the signal in the Up states (given that they
contain different biological frequency rhythms caused by
the firing of populations of neurons), and the noise in the
Down states (since they are periods of almost silent neuronal
firing). The alternation between these two states in short
time periods make the approach more robust than the
two approaches described above. In addition, the spectral
SNR analysis was performed using the mean PSD from
different Up and Down states occurring in less than 1 min,
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conferring higher statistical reliability than the other methods
that only used one large period as signal and one large period
as noise, with both periods being very separated in time from
each other. In other words, the proposed SNR methodology
has the advantage of allowing the quantification of the SNR
for different frequencies by using the Up and Down states of
the well-known slow oscillations, which are the default neural
activity pattern during sleep and anesthesia and are reproducible
in in vitro preparations. To sum up, we have developed a novel
and robust method to quantify the performance of electrodes in
brain recordings by a novel SNR approach adapted to cortical
slow oscillations. Additionally, we have validated the approach by
quantifying the performance of electrodes made of three different
materials by recording electrophysiological signals from the
brain, showing that platinum black as well as carbon nanotubes
electrodes have better working performance than gold electrodes.

To sum up, we present a detailed SNR analysis to quantify
and compare the performance of different devices to record
brain activity. Neural MEAs with electrodes of different
materials arranged in co-localized tritrodes and stereotrodes
were used to record slow oscillations from the cerebral cortex
network. This approach was designed to avoid the interferences
from external variables and thus enable a proper comparison
between electrodes. The results shed light on the recording
behavior of electrodes made of different materials in a broad
range of biological frequencies showing that platinum black
as well as carbon nanotubes electrodes have better working
performance than gold electrodes. Furthermore, the results
obtained here parallel previous studies involving some of the
tested materials, hence reinforcing the validation of the proposed
SNR approach. The work here exposed is also intended to validate
and standardize a methodology for quantifying the SNR in
different types of brain recording devices such as electrodes or
transistors.
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