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The bladder is innervated by extrinsic afferents that project into the dorsal horn
of the spinal cord, providing sensory input to the micturition centers within the
central nervous system. Under normal conditions, the continuous activation of these
neurons during bladder distension goes mostly unnoticed. However, for patients with
chronic urological disorders such as overactive bladder syndrome (OAB) and interstitial
cystitis/painful bladder syndrome (IC/PBS), exaggerated bladder sensation and altered
bladder function are common debilitating symptoms. Whilst considered to be separate
pathological entities, there is now significant clinical and pre-clinical evidence that
both OAB and IC/PBS are related to structural, synaptic, or intrinsic changes in the
complex signaling pathways that mediate bladder sensation. This review discusses how
urothelial dysfunction, bladder permeability, inflammation, and cross-organ sensitisation
between visceral organs can regulate this neuroplasticity. Furthermore, we discuss
how the emotional affective component of pain processing, involving dysregulation of
the HPA axis and maladaptation to stress, anxiety and depression, can exacerbate
aberrant bladder sensation and urological dysfunction. This review reveals the complex
nature of urological disorders, highlighting numerous interconnected mechanisms in
their pathogenesis. To find appropriate therapeutic treatments for these disorders, it is
first essential to understand the mechanisms responsible, incorporating research from
every level of the sensory pathway, from bladder to brain.

Keywords: bladder, overactive bladder, interstitial cystitis, afferent, peripheral, central, sensitisation

INTRODUCTION

Overactive bladder syndrome (OAB) and interstitial cystitis/painful bladder syndrome (IC/PBS)
are common, chronic, pelvic disorders affecting approximately ∼16% of the western population
(Hanno, 2002; Irwin et al., 2006; McLennan, 2014; Truzzi et al., 2016). Urgency, frequency,
and nocturia are common symptoms of both OAB and IC. However, these conditions may be
differentiated by the presence of urge urinary incontinence in patients with OAB and pelvic pain
in IC patients (MacDiarmid and Sand, 2007; Hanno and Dmochowski, 2009; Haylen et al., 2010;
Homma et al., 2016). As both of these disorders are diagnosed in the absence of bacterial infection
or obvious pathology, the etiology of OAB and IC/PBS symptoms remain unknown. Accordingly,
efficacious therapeutic options are limited, contributing to the significant societal and economic
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impact of greater than $70 billion per annum in the United States
(Pierce and Christianson, 2015; Durden et al., 2018).

Normal bladder function requires coordination of afferent
signals originating from the bladder wall with excitatory and
inhibitory signals from the anterior cingulate cortex (ACC),
insula, and hypothalamus to provide an overview of the
appropriateness to urinate that is ultimately under conscious
control by the prefrontal cortex (Figure 1; Griffiths, 2015; Lovick,
2016). Bladder afferents embedded within the detrusor smooth
muscle show exquisite sensitivity for mechanical distension but
are also found innervating the urothelium (Zagorodnyuk et al.,
2006, 2007, 2009; Spencer et al., 2018). This topology provides
a secondary level of resolution to the transmission of sensory
stimuli, including the detection of bladder infection, urothelial
inflammation, or barrier breakdown (Figure 1). Accordingly,
bladder sensory afferents express a range of anti- and pro-
nociceptive receptors and ion channels (Erickson et al., 2018;
Grundy et al., 2018c) that integrate the input from this complex
signaling environment and can induce a range of sensations from
fullness through to pain (Fowler et al., 2008). These afferents,
whose cell bodies are located within the dorsal root ganglia
(DRG), project via the pelvic, hypogastric/splanchnic nerves,
synapse within the dorsal horn of the lumbosacral (LS, L5-
S1) and thoracolumbar (TL, T10-L2) spinal cord (Figure 1;
Fowler et al., 2008; de Groat and Yoshimura, 2015) and
terminate within the periaqueductal gray (PAG) (Fowler et al.,
2008). The PAG acts as an integration center for afferent
signals from the spinal cord and higher brain centers (Griffiths,
2015). A conscious “urge” to urinate is perceived when afferent
activity increases beyond a pre-set threshold and, if modulating
input from the brain permits, the PAG activates the pontine
micturition centre (PMC) to induce efficient voiding (Andersson
and Arner, 2004; Fowler et al., 2008; Griffiths, 2015; Lovick,
2016).

Clinical studies reveal that patients with OAB and IC/PBS
perceive sensations of bladder fullness, urge to void, and pain at
lower cystometric volumes than healthy subjects (Van Brummen
et al., 2004; Kim et al., 2009; Parsons and Drake, 2011).
These observations thereby implicate the sensitisation of bladder
afferent pathways to physiological stimuli as a key component
in the mechanisms underlying these disorders (Yamaguchi
et al., 2007; Yoshimura et al., 2014; de Groat and Yoshimura,
2015). Furthermore, co-morbidity of depression and anxiety is
significantly higher in patients with OAB and IC/PBS, while high
psychological stress levels is strongly correlated to exacerbated
bladder symptoms (Goldstein et al., 2008; Lai et al., 2015; Golabek
et al., 2016; Leue et al., 2017; McKernan et al., 2017). As such,
increased intensity of the afferent signal or modulation of the
emotional affective state can have profound effects on bladder
sensation. A key concept therefore, in the development of OAB
and IC/PBS, is chronic sensitisation of the neuronal networks
regulating bladder sensation, incorporating structural, synaptic,
or intrinsic changes of peripheral or central structures that
may drive subsequent changes in downstream sensory pathways
(Brierley and Linden, 2014; Grundy et al., 2018c).

In this review, for brevity, we summarize both preclinical
and clinical research to highlight how alterations in peripheral

afferent excitability contribute to the symptoms of OAB and
IC/PBS to provide insights into the mechanisms that are
hypothesized to mediate these distinct disorders which have
many overlapping symptoms. For an excellent review on the
potential changes in central processes occurring in OAB see
Reynolds et al. (2016).

UROTHELIAL PERMEABILITY

Toxic waste metabolites excreted in urine are prevented from
accessing the bladder interstitium and embedded afferent endings
by a tight urothelial barrier (Spencer et al., 2018; Figure 1).
The urothelial barrier is maintained by tight junctions between
apical urothelial cells, hydrophobic uroplakin plaques, and a
considerable glycosaminoglycan (GAG) mucus layer, that block
the movement of small molecules and urine (Birder and
Andersson, 2013; Hurst et al., 2015). From a clinical point
of view, numerous studies have identified that patients with
IC/PBS, but not OAB, have a diminished or damaged urothelium
(Elbadawi and Light, 1996; Tomaszewski et al., 2001; Lai et al.,
2013; Keay et al., 2014; Hurst et al., 2015), as well as reduced
expression of the tight junction proteins zona occludens 1
(ZO-1) and E-cadherin (Liu et al., 2012). Increased bladder
permeability due to reduced urothelial integrity is thought
to underlie the sensitivity of IC/PBS patients (75%) to the
potassium sensitivity test (PST) compared to control patients
(4%) (Parsons et al., 1998). A number of clinical studies also
show that OAB patients respond to the PST, however, this may
be due to overlap and misdiagnosis between IC/PBS and OAB
(Minaglia et al., 2005; MacDiarmid and Sand, 2007; Chung et al.,
2010). Despite these observations, it remains to be determined
if bladder permeability is part of the underlying pathology of
bladder hypersensitivity in IC/PBS patients or a downstream
consequence of localized inflammation that further exacerbates
the condition.

Glycosaminoglycan replacement therapy with pentosane
polysulfate (PPS) has been shown to improve the symptoms
for some, but not all, IC/PBS patients (Nickel et al., 2012;
Lai et al., 2013; Oliveira et al., 2014; Hurst et al., 2015).
However, PPS also induces broad anti-inflammatory actions,
including the inhibition of mast cell histamine release in the
bladder (Chiang et al., 2000; Anderson and Perry, 2006; Wu
et al., 2011; Sanden et al., 2017). In addition, pre-clinical
studies inducing urothelial permeability with protamine sulfate
identified a relatively rapid recovery of the urothelial barrier
and structure (Lavelle et al., 2002; Greenwood-Van Meerveld
et al., 2015), via injury-induced proliferation of basal urothelial
and stromal cells (Shin et al., 2011). A more likely scenario
therefore is that bladder permeability in IC/PBS patients is
secondary to localized inflammation. Continuous access of toxic
urine contents combined with inflammatory mediators, such
as cytokines, histamine, and proteases, can sensitize peripheral
afferent endings and have the potential to trigger long term
changes in neuronal function and neuroplasticity within the
entire afferent network (Brierley and Linden, 2014; Grundy et al.,
2018c).

Frontiers in Neuroscience | www.frontiersin.org 2 December 2018 | Volume 12 | Article 931

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00931 December 10, 2018 Time: 13:59 # 3

Grundy et al. Mechanisms Underlying OAB and IC/BPS

FIGURE 1 | Spinal innervation of the bladder. The afferent nerves innervating the bladder wall extend into the detrusor smooth muscle to detect bladder stretch, and
into the bladder urothelium to detect bladder stretch, infection, inflammation, and barrier breakdown. The bladder lumen contains numerous commensal bacteria as
well as toxic contents such as urea and high potassium. Bacterial infection of the urothelium induces apoptosis of urothelial cells, the release of cytokines, and the
infiltration and activation of the immune response, including mast cell degranulation and the subsequent release of histamine and cytokines that can sensitize
bladder afferent neurons. During bladder stretch the urothelium releases an array of neurotransmitters, including ATP, which can activate bladder afferents.
Breakdown of the urothelial barrier allows access of toxic urine contents into the underlying bladder interstitium which can activate and sensitize bladder afferents.
Bladder afferents project via the pelvic nerve or the splanchnic nerve to the dorsal horn of the thoracolumbar and lumbosacral spinal cord, where they activate
second order neurons within the spinal cord synapse in the thalamus or the PAG of the midbrain. Thalamic projections provide input into limbic and cortical
structures to provide the emotional affective and conscious component of the voiding reflex pathway. The thalamus relays to the PAG and the PAG feeds into the
PMC to signal micturition. TL, Thoracolumbar; LS, lumbosacral; SC, spinal cord; PFC, Prefrontal Cortex; ACc, Anterior cingulate cortex; Hyp, hypothalamus; HGN,
hypogastric nerve; PAG, periaqueductal gray; PMC, primary micturition center; DRG, dorsal root ganglion; DH, Dorsal horn; Agd, amygdala; LSN, lumbar splanchnic
nerve; SPN, pelvic nerve; IMG, inferior mesenteric ganglion; PP, Pelvic Plexus. Figure modified from Grundy et al. (2018c).

Altered Release of Urothelial Factors
In addition to its role as a physical barrier, the urothelium
provides bi-directional communication with underlying
primary afferents (Lazzeri, 2006; Birder and Andersson,
2013; Merrill et al., 2016) via the detection and/or release of
a range of excitatory and inhibitory neurotransmitters and
neuromodulators including ATP, acetylcholine, nitric oxide
(NO), NGF, prostaglandin E2 (PGE2), neurokinin A, and
inflammatory mediators as described above (and extensively
reviewed by Birder et al.) (Everaerts et al., 2010a,b; Birder and
Andersson, 2013; de Groat and Yoshimura, 2015; Grundy et al.,
2018a). Altered urothelial mediator release has been identified
from OAB and IC/PBS patients in a number of studies and may
be a compounding mechanism in the development of chronic
neuronal hypersensitivity (Kim et al., 2005, 2006; Sun and Chai,
2006; Suh et al., 2017).

Chronic bladder inflammation enhances ATP release from
the urothelium and augments purinergic signaling of bladder
afferents in rats (Smith et al., 2005), whilst both stretch-mediated

ATP release and its receptor P2X3 are increased in the
urothelium of OAB and IC/PBS patients (Sun and Chai, 2004,
2006; Contreras-Sanz et al., 2016; Jhang and Kuo, 2016). Pre-
clinically, acetylcholine, acting via muscarinic receptors also
triggers release of ATP, as well as NO and prostanoids from
urothelial cells (Winder et al., 2014; Michel, 2015). In animal
studies, experimentally induced cystitis upregulates muscarinic
receptors and acetylcholine release, as well as subsequent
cholinergic regulated urothelial NO release (Giglio et al., 2005;
Giglio and Tobin, 2009; Andersson, 2011; McDermott et al.,
2013). Notably, PGE2 levels are significantly increased in OAB
patients (Kim et al., 2005, 2006), whilst NO and PGE2 levels
and receptor expression are also altered in IC/PBS patients
with Hunner’s legions (Wada et al., 2015; Jhang et al., 2016).
Bradykinin stimulates urothelial NGF release and enhances
stretch-induced ATP release in a human urothelial cell line
(Ochodnicky et al., 2013; Winder et al., 2014), whilst bradykinin
1 (B1) receptor expression is upregulated in human IC/PBS
patient bladder samples (Arms and Vizzard, 2011) and in the
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urothelium of a rat CYP-induced cystitis model (Chopra et al.,
2005).

Limited causations have been determined for altered
urothelial neurotransmitter release or receptor expression in
OAB and IC/PBS, but there is accumulating evidence that they
are a downstream consequence of inflammation, infection or
urothelial breakdown.

INFLAMMATION

By definition, the presence of bladder inflammation precludes the
clinical diagnosis of OAB. Only a small population of IC/PBS
patients exhibit significant inflammation, which is characterized
by the presence of Hunner’s ulcers (Leiby et al., 2007). However,
it is widely reported that there are increases in the amount
of pro-inflammatory mediators within the bladder and urine
of both OAB and IC/PBS patients (Kastrup et al., 1983; El-
Mansoury et al., 1994; Hauser et al., 2008; Jacobs et al., 2010;
Liu et al., 2012; Jhang and Kuo, 2016; Furuta et al., 2018). These
pro-inflammatory mediators including histamine, nerve growth
factor (NGF), and those released from mast cells, are known
to directly sensitize afferent nerve terminals (Davidson et al.,
2014). Furthermore, overexpression of pro-inflammatory genes,
oedema, tissue granulation and an increase in macrophages,
chemokines, cytokines, eosinophils, as well as T and B cell
markers have also been identified in IC/PBS patients (Hauser
et al., 2008; Abernethy et al., 2017). As the majority of cystitis-
induced inflammation is localized to the superficial mucosa,
urothelial afferents are ideally placed to detect and respond to
these environmental changes.

Inflammation-induced sensitisation of afferents is an essential
mechanism for the induction of normal wound healing, however,
chronic sensitisation of afferents can occur during prolonged
inflammation or following a severe bout of inflammation
(Brierley and Linden, 2014; Abraham and Miao, 2015). In support
of an inflammatory-mediated pathophysiology in urological
disorders, animal models of cystitis have employed a range
of chemicals, including acetic acid, acrolein, cyclophosphamide
(CYP), zymosan and lipopolysaccharide, that induce both acute
and longer lasting bladder hyperactivity (Takezawa et al., 2014;
Liu and Dong, 2015; Abdi et al., 2016; Hughes et al., 2016).
Whilst there are many limitations to the use of inflammatory
animal models in the study of symptom defined disorders such
as OAB and IC/PBS (comprehensively discussed by Fry et al.,
2010), these animals show an overactive bladder phenotype, with
altered cystometry and enhanced visceromotor response during
bladder distension, replicating the reduced bladder capacity, plus
the allodynia and hyperalgesia to bladder distension observed in
humans (Fry et al., 2010; Lai et al., 2011; DeBerry et al., 2014,
2015b). Furthermore, bladder afferents show direct sensitisation
to chemical and inflammatory stimuli (de Groat and Yoshimura,
2009), whilst retrogradely traced bladder-innervating DRG
neurons from CYP-treated rats or a naturally occurring feline
interstitial cystitis model exhibit lower activation thresholds and
sensitisation to current injection (Dang et al., 2008; Buffington,
2011). The efficacy of intraluminal therapies to treat OAB and

IC/PBS (Cvach and Rosamilia, 2015; Manriquez et al., 2015), that
either (1) block bladder afferent firing (such as lidocaine and
neosaxitoxin) or (2) cause peripheral nerve desensitization (with
agents such as resiniferatoxin; RTX), highlight the important role
of peripheral afferents in mediating bladder hypersensitivity to
distension (Apostolidis et al., 2005).

The transient receptor potential (TRP) channel TRPV1
is upregulated in the bladders of patients with OAB and
IC/PBS (Liu and Kuo, 2007), whilst both TRPV1 and TRPA1
have consistently been implicated in mediating normal and
cystitis-induced mechanical sensitivity in rodents by modulating
neuronal activation thresholds and enhancing bladder afferent
responses to P2X receptor activation (Daly et al., 2007; Wang
et al., 2008; DeBerry et al., 2014, 2015b; Yoshiyama et al., 2015;
Grundy et al., 2018b). A host of additional receptors and channels
associated with nociception have also been identified upon
bladder afferents that regulate neuronal sensitivity and neuronal
excitability in animal models of cystitis, including voltage gated
sodium (NaV) channels (Erickson et al., 2018; Grundy et al.,
2018d), potassium channels (KV) (Hayashi et al., 2009), P2X
receptors (Dang et al., 2008; Chen and Gebhart, 2010), TRPV4
(Merrill et al., 2012) and cannabinoid receptors (Hedlund, 2014;
Izzo et al., 2015; Bakali et al., 2016; Hedlund and Gratzke, 2016;
Munoz, 2016).

It is possible that a population of patients present without
active inflammation or increased bladder permeability but
are in fact in remission from a preceding bladder infection
or inflammation. Such a scenario could induce a protracted
hypersensitive state and correspond to their enhanced sensory
symptoms. Indeed, women with a clinical history of recurrent
UTI as children are significantly more likely to have a diagnosis
of IC/PBS as adults (Peters et al., 2009), and preclinical
investigations of neonatal bladder insult in rats suggests this
may be due to long term sensitisation of sensory pathways
(Randich et al., 2006; DeBerry et al., 2007; Ness and Randich,
2010). Neuroplasticity of peripheral afferent circuitry following
the resolution of inflammation or recovery from tissue injury
has been well documented in both somatic and visceral pain
models through the induction of neurogenic inflammation and
neuronal sprouting (de Groat and Yoshimura, 2009; Gregory
et al., 2013; Brierley and Linden, 2014). Neonatal bladder
inflammation in rats results in hypersensitive responses to
inflammatory stimuli as an adult, inducing an overactive
bladder phenotype (Randich et al., 2006; DeBerry et al., 2007,
2010), as well as enhanced spontaneous and urinary bladder
distension-evoked activity of spinal visceral nociceptive neurons
(Ness and Randich, 2010). Alterations in spinal cord circuits
responsible for bladder sensation may regulate this phenomenon,
as neonatal inflammation induces a downregulation of GABA
(Aα-1) receptor microRNA and altered opioid peptide content
in the dorsal horn (Sengupta et al., 2013; Shaffer et al., 2013).
Furthermore, neonatal zymosan enhances bladder neuropeptide
content of CGRP and Substance P compared to sham controls
(DeBerry et al., 2010; Shaffer et al., 2011).

Similarly, in pre-clinical models of adult cystitis, bladder
overactivity is associated with increases in tyrosine receptor
kinase (Trk) A, Trk B, and calcitonin gene-related peptide
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(CGRP) (Vizzard, 2001; Qiao and Vizzard, 2002), which in turn
promote inflammation in the tissue where the afferent terminals
reside (Rosa and Fantozzi, 2013). Furthermore, patients with
IC/PBS have higher elevated serum and urinary NGF levels
than healthy controls (Chen et al., 2016). NGF overexpression
in mouse urothelium leads to neuronal hyper-innervation,
increased mast cell counts and changes in bladder function
(Schnegelsberg et al., 2010). These discoveries may explain
the increased sprouting of neuronal terminals identified in the
bladders of IC/PBS patients (Christmas et al., 1990; Lundeberg
et al., 1993), that has been replicated in rodent models of
inflammation in vivo and in vitro (Dupont et al., 2001;
Schnegelsberg et al., 2010; Boudes et al., 2013; Ekman et al., 2017).

MICROBIOME/CHRONIC URINARY
TRACT INFECTION

Following the recent identification of a bladder-specific
microbiome, and the role of the gut microbiome in chronic
functional gastrointestinal diseases (Hughes et al., 2013; Harper
et al., 2018), a link between the balance of bacteria in the bladder
and the symptoms of OAB and IC/PBS has been postulated and
explored (Contreras-Sanz et al., 2016; Angelini, 2017; Drake
et al., 2017). Moreover, the traditional colony forming unit
thresholds for confirming urinary tract infection (UTI) in clinical
practice have been questioned, and a role for chronic UTI in the
pathogenesis of OAB has been investigated (Balachandran et al.,
2016).

Patients with OAB may have genuine uropathogenic
infections, and are therefore misdiagnosed, as large numbers of
bacteria are undetected by routine mid-stream urine cultures
(Khasriya et al., 2013). Indeed, a significantly greater number
of patients with refractory idiopathic detrusor overactivity
show low count bacteriuria vs. controls (Walsh et al., 2011).
Undiagnosed intracellular bacterial colonization of urothelial
cells may also occur in OAB (Scott et al., 2015), as OAB patients
exhibit significantly greater infected urothelial cell counts and
microscopic pyuria than healthy subjects, which also correlates
to urgency symptoms (Gill et al., 2018). Uropathic E. coli
infection initiates the release of multiple mediators from the
urothelium, including cytokines and interleukins, as well as
promoting urothelial barrier defects (Wood et al., 2012), which
alert the immune system to impending damage and initiate
an immune response (Abraham and Miao, 2015). Immune
cell infiltration and the release of pro-inflammatory cytokines
are known to sensitize peripheral afferents (Ren and Dubner,
2010), and in this way enhance bladder sensation. In support
of these considerations, a recent pilot study revealed that
combination antibiotic treatment of both Gram-negative and
Gram-positive bacteria significantly improved OAB symptoms
as well as the perception of their bladder condition (Vijaya
et al., 2013). Furthermore, shifts in the bacterial species that
constitute the bladder microbiome have been associated
with both the presence and severity of OAB and IC/PBS
(Siddiqui et al., 2012; Whiteside et al., 2015; Contreras-Sanz
et al., 2016; Lakeman and Roovers, 2016; Curtiss et al., 2017).

For example, women with IC/PBS, but not OAB, have a
less diverse microbiota than those without (Hilt et al., 2014;
Pearce et al., 2014; Abernethy et al., 2017; Curtiss et al., 2017).
Interestingly, despite significant inter-patient variability in
bladder microbiome, a decrease in Lactobacillus, which has
antimicrobial properties, in both OAB and IC/PBS patients
compared to controls is a common finding (Hilt et al., 2014;
Pearce et al., 2014; Curtiss et al., 2017). Furthermore, the
absence of Lactobacillus acidophilus correlates with higher pain
scores and higher scores on the interstitial cystitis symptom
index (Abernethy et al., 2017). Proteus, the urinary pathogen,
is also identified more commonly in patients with OAB and
lower urinary tract symptoms than healthy controls (Khasriya
et al., 2013; Curtiss et al., 2017). These data support a line
of communication between the urinary microenvironment
and underlying afferent nerves that is likely mediated by the
urothelium.

Cross-Organ Sensitisation
Considerable clinical evidence suggests that diseases of the colon,
such as irritable bowel syndrome (IBS) and inflammatory bowel
disease (IBD), can induce subsequent development of pathology
in an otherwise unaffected adjacent organ, such as the bladder
(Grundy et al., 2018d).

A mouse model of colitis induced by intra-rectal instillation
of 2,4,6-trinitrobenzene sulfonic acid (TNBS) induces hyper-
excitability of the entire peripheral sensory pathway, from the
afferent ending in the colon to the spinal cord (Brierley and
Linden, 2014). Importantly, TNBS colitis also prompts consistent
changes in bladder voiding parameters that replicate the clinical
symptoms of urgency and frequency, as well as increased
bladder-afferent sensitivity to bladder distention (Brumovsky and
Gebhart, 2010; Ustinova et al., 2010; Greenwood-Van Meerveld
et al., 2015; Yoshikawa et al., 2015). These symptoms occur in the
absence of any overt inflammation or histological damage to the
bladder, highlighting the importance of altered afferent sensitivity
in maintaining OAB and IC/PBS symptomology (Yoshikawa
et al., 2015).

This “cross-organ sensitisation” is considered to originate
within the physiological co-ordination of these pelvic organs, and
persistent pathological plasticity of their shared sensory pathways
within the thoracolumbar and lumbosacral DRG and spinal
cord (Persson et al., 2015; Grundy et al., 2018d). Approximately
15% of colonic innervating TL and LS DRG neurons exhibit
dichotomising afferents, simultaneously innervating the bladder
(Christianson et al., 2007; Yoshikawa et al., 2015), whilst a
similar proportion of spinal dorsal horn neurons also respond
to both urinary bladder and colonic distension (Grundy et al.,
2018d). As such, sensitisation of colonic afferent pathways has the
potential to directly influence the excitability of bladder afferent
pathways. Indeed, a very recent pre-clinical study also indicates
that chronic sensitisation of colonic afferent pathways results
in the subsequent sensitisation of bladder afferent pathways
and the triggering of uncontrolled urinary voiding in mice.
Intriguingly, these changes in bladder function can be reversed
by a therapeutic treatment targeted only to the colon (Grundy
et al., 2018e).
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Additionally, neurochemical changes occur within colonic
afferent pathways following colitis that indicate the development
of neurogenic inflammation (Grundy et al., 2018d). Multiple
studies have shown that this translates to persistent upregulation
of the neuromodulators NGF, BDNF, CGRP, and the high affinity
receptor TrkB in bladder, bladder-innervating DRG neurons,
and spinal cord (Liang et al., 2007; Qiao and Grider, 2007;
Pan et al., 2010; Xia et al., 2015; Kawamorita et al., 2016).
These receptors and neuropeptides share an intimate relationship
enabling the positive feedback of each other (Malykhina et al.,
2006; Christianson et al., 2007; Lei et al., 2013; Yoshikawa
et al., 2015), consequently inducing neuronal sensitisation
and neurite outgrowth, and likely contributing to cross-organ
sensitisation through paracrine actions within the ganglia to
increase bladder afferent excitability (Xia et al., 2015; Sorkin et al.,
2018).

Cortical Regulation: Stress, Anxiety, and
Depression
The sensory signals from bladder afferent converge in the PAG
where they are modulated by input from the limbic system
(amygdala, hypothalamus, thalamus, cingulate gyrus), insula,
and prefrontal cortex (Fowler et al., 2008), which can in turn
modulate or be modulated by the hypothalamic pituitary adrenal
(HPA) axis. As such, changes to cortical networks or modulation
of the emotional affective state can have profound effects
on bladder sensation and may be an underlying mechanism
in the development and persistence of OAB and IC/PBS
symptoms.

Patients with OAB and IC/PBS report psychological stress
levels that are significantly higher than healthy controls (Lai et al.,
2015), which may be a consequence of HPA axis dysregulation
following chronic early life stress (ELS) (Taylor, 2010). Exposure
of children to ELS is a significant risk factor for developing
HPA abnormalities (Anand, 1998; Pierce and Christianson,
2015), and shows strong correlations with the development of
depression and anxiety in later life (Egeland, 2009; Heim and
Binder, 2012). To this end, a number of studies report higher
incidences of ELS and trauma in IC/PBS patients than healthy
controls (Fuentes and Christianson, 2018), whilst clinical studies
have demonstrated a strong correlation between stress, anxiety,
depression, and the symptoms of bladder overactivity in patients
with OAB and IC/PBS (Goldstein et al., 2008; Golabek et al.,
2016; Leue et al., 2017). The increased prevalence of depression
and anxiety in patients with IC/PBS occurs both following and
prior to bladder symptoms, indicating a reciprocity in cause
and effect, with no clear way to delineate patient cohorts to
provide increased mechanistic understanding (McKernan et al.,
2017). In addition to relationships with cognitive disorders,
structural abnormalities within the white matter of the brain
in women with IC/PBS, which facilitates the communication
between and within brain regions, correlates closely to symptom
severity (Farmer et al., 2015). It remains unclear whether
these white matter properties are causes or consequences of
IC/PBS. It is possible that certain white matter architecture
may reflect a predisposition to develop disease, but it is equally

plausible that these changes are a consequence of IC/PBS disease
progression and future longitudinal studies are required to test
this hypothesis.

The link between stress and bladder disorders is supported
by pre-clinical studies in rodents that consistently induce
bladder overactivity or mechanical hyperalgesia following stress-
treatments (Black et al., 2009; Merrill et al., 2013; DeBerry et al.,
2015a; Lee et al., 2015; Wang et al., 2017). In addition, this
hypersensitivity has been found to be dependent on (DeBerry
et al., 2015a), or correlate with, significant changes in brain
regions associated with emotional processing and bladder control
(Wang et al., 2017). Neonatal maternal separation in female
mice, as a model of ELS, enhances visceromotor responses to
urinary bladder distension accompanied by altered hippocampal
input onto the HPA axis (Pierce et al., 2016). If sensitisation
of peripheral afferent endings occurs in these models as a
consequence of stress, or if sensitisation is arbitrated solely within
the CNS has yet to be fully determined.

CONCLUSION

This review highlights the complex nature of both OAB and
IC/PBS, incorporating evidence for changes in the dynamic
signaling environment between the bladder lumen, urothelium,
and afferent nerves, coordinating with adaptations to the
HPA axis, and emotional affective components of sensory
processing mediated within the limbic system. The bladder
microbiome, bacterial infection, inflammation, and urothelial
permeability contribute to the development of peripheral afferent
hyperexcitability that is fundamental to the development of
frequency and urgency in OAB, and pain in IC/PBS. In addition,
the higher psychological stress levels, increased prevalence of
anxiety and depression, as well as clinical co-morbidities with
other visceral pain disorders suggests pathological plasticity
within the CNS is an important component in the mechanisms
underlying both OAB and IC/PBS. Determining the underlying
mechanisms of bladder hypersensitivity is paramount to
providing novel targets for the development of safer and more
efficacious treatments.
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