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Expected utility models are often used as a normative baseline for human performance

in motor tasks. However, this baseline ignores computational costs that are incurred

when searching for the optimal strategy. In contrast, bounded rational decision-theory

provides a normative baseline that takes computational effort into account, as it describes

optimal behavior of an agent with limited information-processing capacity to change

a prior motor strategy (before information-processing) into a posterior strategy (after

information-processing). Here, we devised a pointing task where subjects had restricted

reaction and movement time. In particular, we manipulated the permissible reaction time

as a proxy for the amount of computation allowed for planning themovements. Moreover,

we tested three different distributions over the target locations to induce different prior

strategies that would influence the amount of required information-processing. We found

that movement endpoint precision generally decreases with limited planning time and that

non-uniform prior probabilities allow for more precise movements toward high-probability

targets. Considering these constraints in a bounded rational decision model, we found

that subjects were generally close to bounded optimal. We conclude that bounded

rational decision theory may be a promising normative framework to analyze human

sensorimotor performance.

Keywords: bounded rationality, motor control, movement planning, optimality model, reaction time, information-

processing resources, computational cost

1. INTRODUCTION

According to ethological theory (Alcock, 2001), behavior of living beings can be explained following
two kinds of arguments. In proximate explanations, behavior results from a change in physiological
and environmental states that are caused by natural laws of physics and biochemistry. Such
mechanistic explanations typically answer the “how”-question of behavior. In contrast, in ultimate
explanations we ask “why”-questions that are typically answered in an evolutionary context
elucidating the usefulness of the behavior and the adaptive advantage it might bring to the
organism. A bridge between the two kinds of explanationsmay be provided by optimal actormodels
(Parker and Maynard Smith, 1990; Todorov, 2004). Abstractly, an optimal actor model reproduces
an observed behavior by minimizing (or maximizing) a cost (or reward) function that depends on
certain critical variables and some constraints on these variables (e.g., environmental dynamics).
Naturally, such optimal actor models fit an ultimate explanation of behavior by emphasizing
usefulness, suggesting an evolutionary relevance of the critical variables considered. However, by
considering the nature of the variables also some light may be shed on the “how”-question, as these
variables may be critical for information-processing especially during learning, without specifying
a detailed mechanism.
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In human motor control, for example, a wide range of
behaviors has been previously explained by optimal actor models
that depend on critical variables such as motor effort, trajectory
smoothness, endpoint variability, task accuracy, or endstate
comfort (Flash and Hogan, 1985; Kawato et al., 1990; Harris
and Wolpert, 1998; Trommershäuser et al., 2003a,b, 2006, 2008;
Todorov, 2004). As motor control is fundamentally affected by
uncertainty that arises both from our own bodies and from
the environment (Faisal et al., 2008), optimal actor models are
typically expressed as Bayesian optimal actor models that deal
efficiently with uncertainty by averaging over all possibilities
and optimizing expected costs (or rewards). Bayesian models
have been very successful in explaining human perceptual
and sensorimotor learning by providing evidence that the
sensorimotor system integrates prior knowledge with new
incoming information to make inferences about unobserved
latent variables in a way that is consistent with Bayesian
statistics (van Beers et al., 1999; Ernst and Banks, 2002; Knill and
Pouget, 2004; Körding and Wolpert, 2004, 2006; Todorov, 2004;
Hudson et al., 2007; Körding, 2007; Wolpert, 2007; Braun et al.,
2009; Girshick and Banks, 2009; Wu et al., 2009; Turnham et al.,
2011; Wolpert and Landy, 2012). This research has culminated
in the Bayesian brain hypothesis that stipulates that the brain is
constantly updating predictions about its environment consistent
with Bayesian probabilities and using these probabilities for
optimal acting (Doya et al., 2007).

While Bayesian models are conceptually appealing, we know
in particular from research in artificial intelligence that such
models can become wildly intractable when faced with real-world
information-processing problems. A growing number of studies
has therefore addressed the question under what conditions
we observe deviations from Bayes-optimal behavior. Acerbi
et al. (2014), for example, have investigated suboptimality in
probabilistic inference in a pointing task and found that the
degree of suboptimality was dependend on the shape of the
priors. In rapid pointing tasks human performance is reported
to deviate from optimality in configurations with markedly
asymmetric expected gain landscapes (Wu et al., 2006). Similar
deviations from expected gain maximization in the presence
of spatial asymmetry have also been reported for whole-body
movements (O’Brien and Ahmed, 2013). While these studies
have used different ways to quantify deviations from Bayes-
optimal behavior, there is no agreed-upon framework to study
such deviations.

Here, we propose information-theoretic bounded
rationality (Ortega and Braun, 2011, 2013; Genewein et al., 2015)
as a unified framework that encompasses a wide range of previous
information-theoretic models of perception-action systems
(McKelvey and Palfrey, 1995; Mattsson and Weibull, 2002;
Sims, 2003; Wolpert, 2004; Still, 2009; Todorov, 2009; Friston,
2010; Tishby and Polani, 2011; Kappen et al., 2012) to study the
efficiency of optimal actors with limited information-processing
capabilities. In such models the information-processing cost is
measured as the relative Shannon information between a prior
distribution (before information-processing) and a posterior
distribution (after information-processing). This change in
Shannon information provides an abstract measure that can

be monotonically mapped onto any resource cost (e.g., time or
effort), as any sensible expenditure on resources should aim to
increase the ability to differentiate between different options.
Here, we apply this framework to a motor control task involving
fast reaching movements where we manipulate both the reaction
time as a proxy for the permissible amount of information-
processing and prior probabilities of motor strategies that would
influence the amount of relative Shannon information generated
during information-processing. We demonstrate how to use this
framework to quantify subjects’ efficiency taking into account
their information-processing costs.

2. METHODS

2.1. Theoretical Methods
Bounded Rationality Model
In our experiment we consider a decision-maker that is
confronted with a world state w ∈ W and chooses an action
a ∈ A which may lead to the consequence x ∈ X with
known probability p(x|a). The decision-maker’s preferences are
represented by a utility function U(w, x). A perfectly rational
decision-maker would choose their action according to

a∗(w) = argmax
a

Ep(x|a)

[

U(w, x)
]

= argmax
a

V(w, a), (1)

where we have introduced V(w, a) := Ep(x|a)[U(w, x)] to
represent the utility of choosing action a in context w. In the
following we assume that the decision-maker knows the utility
function in the sense that V(w, a) can be queried for different
instances w and a, and that the maximum utility can be found by
spending resources in a search process. The basic idea of bounded
rational decision-making can be best illustrated in the simplest
scenario (Ortega and Braun, 2011, 2013; Genewein et al., 2015),
when there is only one world state that the decision-maker has to
adapt to. The decision-maker then optimizes the utility function
by querying V(a) during a deliberation phase before selecting
the action a. Assuming the actor has a prior decision strategy
p0(a) means that in case of no available information-processing
resources the actor chooses a by sampling from p0(a). During
deliberation the bounded rational actor searches for high-utility
options and the actor’s strategy changes from p0(a) to p

∗(a) where

p∗(a) = argmax
p(a)

Ep(a)[V(a)] s.t. DKL

(

p(a)‖p0(a)
)

≤ C. (2)

The Kullback-Leibler divergence DKL(p(a)‖p0(a)) is the relative
entropy between the distributions p0(a) and p(a) and measures
the amount of Shannon information available to the actor.
The more resources (e.g., time, money, or amount of samples)
available to the actor, the higher the amount of Shannon
information C that the actor commands, i.e., the better the actor
can discriminate between the different options. Effectively, the
actor faces a trade-off between information-processing costs and
the expected gain in utility.

In the case of multiple world states w, the utility V(w, a)
depends on w and a. If we want to formalize information-
processing of the stimulus, we choose a prior strategy p0(a) that
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only depends on a and a posterior strategy p(a|w) resulting from
a deliberation phase that is triggered by a change in world state.
Assuming a known world state distribution ρ(w), the bounded
rational posterior will now be given by

p∗(a|w) = arg max
p(a|w)

Eρ(w)

[

Ep(a|w)

[

V(a,w)
]]

s.t. Eρ(w)

[

DKL

(

p(a|w)‖p0(a)
)]

≤ C. (3)

Here, the average DKL measures the average distance between
the prior p0(a) and all possible posteriors p(a|w) weighted by
the probability of their occurrence ρ(w). This allows for the
consideration of the optimal prior p∗(a) that has the minimum
average information distance to all the posteriors p(a|w) of the
different world states w, that is the prior that would allow for
resource optimal processing for each w. In this case, the bounded
rational decision-making problem can be written as

p∗(a|w) = arg max
p(a|w)

E[V(a,w)]

s.t. E
[

DKL

(

p(a|w)‖p∗(a)
)]

≤ C, (4)

where p∗(a) =
∑

w ρ(w)p(a|w) is the optimal prior given by
the marginal, and expectations E[·] are taken as in Equation 3.
Assuming a Lagrange multiplier denoted by β , the constrained
optimization problem in Equation 4 can be equivalently rewritten
as

p∗(a|w) = arg max
p(a|w)

(

E[V(w, a)]−
1

β
I(W;A)

)

, (5)

with the mutual information I(W;A) = E
[

DKL

(

p(a|w)‖p∗(a)
)]

and the solution equations







p∗(a|w) = 1
Z(w)

p∗(a)eβV(w,a)

p∗(a) =
∑

w
ρ(w)p∗(a|w)

(6)

with Z(w) :=
∫

A
p∗(a)eβV(a,w)da (see Supplementary Material 1

for a detailed derivation). This problem formulation is equivalent
to the rate distortion problem in information theory and can
be solved by the Blahut-Arimoto algorithm. The parameter β

is determined by the available information resources C. In the
limit β → ∞ we obtain the perfectly rational decision-maker
with unlimited resources. In the limit β → 0 we obtain the
resourceless decision-maker that has to act according to its prior.

By varying the parameter β from 0 to ∞, we obtain a family
of bounded rational solutions p∗(a|w), such that for each β we
can compute the corresponding information resource I(W;A)
and the corresponding performance E[V(w, a)]. By exploiting
the known relationship p(x|a), the family of solutions can also
be represented in the space of consequences x by

p∗(x|w) =

∫

A

p(x|a)p∗(a|w) da , (7)

with performance criterion E[U(w, x)] = Eρ(w)Ep∗(x|w)[U(w, x)]
and the effective resource I(W;X). These optimal solutions

form an efficiency frontier that can be illustrated pictorially
in a two-dimensional plot, where the abscissa denotes the
resources spent between prior and posterior measured in units
of information bits and where the ordinate shows the utility
achieved by the decision-maker. The bounded rational solutions
form a continuous curve of Pareto optima, i.e., either of the two
quantities can only be improved by making the other one worse
(see Figure 1A).

The bounded rational decision-making model makes the
following predictions:

• Any decision-maker, irrespective of the underlying
mechanism, can either be on or below the curve, i.e.,
given a certain amount of information resources it is not
possible to achieve a higher expected utility than the bounded
rational actor.

• If we vary the resources available to the decision-making
process (e.g., C1 and C2 in Figure 1A) and measure both
the utility achieved and the information produced, then
we expect more resources to be associated with higher
information-processing costs and higher utility. Note, this
prediction is compatible with most mechanistic decision-
makingmodels, but follows here from normative information-
theoretic resource considerations.

• If we vary the world state distribution ρ(w) by moving
from a high-entropy (e.g., uniform) to a low-entropy (e.g.,
strongly non-uniform) distribution, then by adapting prior
and posterior the decision-maker can lower information
processing costs without compromising the average
performance [e.g., ρ0(w) and ρ1(w) in Figure 1B]. In
particular, one would expect that high-probability world-states
should be associated with low-entropy action distributions,
and low-probability world-states with high-entropy action
distributions (see Figure 1C).

Measuring Bounded Rational Decision-Makers
If we want to compare real-world decision-makers with the above
theoretical description, we need to determine two quantities
experimentally, namely the average utility Uexp and the average
empirical information D

exp
KL . From the experiment we typically

obtain world-state dependent choice probabilities, from which
it is straightforward to determine average performance Uexp.
The choice probabilities are the measured posteriors that may
differ from the theoretical bounded optimal posteriors. In
addition to the posteriors, we need to determine the prior
choice probabilities in order to obtain D

exp
KL . In principle, the

prior choice probabilities could be determined by interspersing
choice trials with close to zero resources (β close to zero), if
we assume that adaptation of the prior happens much more
slowly than the decision-making process itself. However, in
practice reducing resources to zero may prove difficult, as this
may lead to particular no-response behavior instead of random
behavior sampled from the prior. Similar to the posterior choice
probabilities, the prior choice probabilities can be optimal or
suboptimal depending on whether adaptation to the task was
complete or incomplete. If the decision-maker does not adapt
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FIGURE 1 | Model predictions. (A) The performance of a decision-maker depends on the resource available. With high available resource C1 the information

processing cost is higher and higher utility is achieved compared to the low resource scenario C2. (B) The information-processing cost measured in bits is reduced for

movement decisions under a low-entropy world-state distribution ρ1(w). In the case of perfect adaptation, there will be a different efficiency frontier when changing the

world state distribution. (C) For different world state distributions the entropy of action distributions H(A|W = wi ) changes. A higher world state probability lowers the

entropy whereas low world state probabilities are associated with higher action entropies.

at all, this corresponds to a fixed prior p0(a). If the decision-
maker knows the distribution ρ(w) over world states and adapts
its prior perfectly, the prior will be given by the marginal p(a)
from Equation (6). In general, the prior can be anywhere in-
between these two extremes. Given both priors and posteriors,
we can then determine the average empirical information D

exp
KL

that is generated by the decision-making process. In case of
perfect adaptation the average empirical information is equal
to the mutual information D

exp
KL = Iexp, i.e., the information

can be measured with respect to the actual statistics of the
marginal rather than with respect to a sub-optimal subjective
prior.

The performance of the decision-maker can be represented by
a data point (Uexp,D

exp
KL ) in the utility-information-plane. Given

(Uexp,D
exp
KL ), we can compute the efficiency of a decision-maker

by determining

ǫ =
Uexp − Umin

Umax − Umin
, (8)

whereUmin is themaximum theoretical utility achievable without
any information processing and Umax denotes the maximal
theoretical utility for a channel with an information processing
rate of D

exp
KL . As the decision-maker’s performance must lie either

on or below the efficiency frontier, the efficiency obeys ǫ ≤ 1.
Note that the efficiency can be equally measured in the space of
actions a or in the space of consequences x, becauseE[U(w, x)] =
E[V(w, a)].

2.2. Experimental Methods
Participants
Ten naïve subjects (5 female, 5male) participated in the study and
provided informedwritten consent prior to the participation. The
study was approved by the ethics committee of Ulm University.
They carried out the experiment over several days and were
compensated for their time with a basic hourly wage of 8e and

0-5e bonus depending on performance given by their target hit
ratio.

Setup
The experiment was conducted using a vBOT robotic
manipulandum (Howard et al., 2009). Subjects moved the
handle of the vBOT in the horizontal plane using their right
hand. Position and velocity of the hand were recorded in each
trial with a sampling frequency of 1 kHz during the performance
of the movement task. A visual screen was projected into the
plane of movement of the vBOT handle via a mirror. The virtual
reality scenario provided a visual feedback about the hand
position of the subject, preventing direct visual view of the hand.

Experimental Design
In the experimental task, subjects had to perform reaching
movements toward one of four concentrically located
targets representing the world states w∈W ={w1, ...,w4}.
Subjects’ behavior was recorded as their reaching endpoints
after a precisely defined time window for movement
execution. The action consequence x was measured as a
movement angle x∈X = [−π

2 , π
2 ]. As in previous studies

(Trommershäuser et al., 2008), we distinguish between
movement planning and movement execution and consider
subjects’ choices in the planning phase to be between different
aim points a—also represented as an angular variable angle
a ∈ A = [−π

2 , π
2 ]—that are related to the movement

endpoints x through a distribution p(x|a) that considers the
effects of noisy movement execution. In line with previous
studies (Trommershäuser et al., 2003a,b), we found a
roughly Gaussian distribution of movement endpoints (see
Figure 2A).

Trial design. The hand position was represented on the
display by a red cursor with a diameter of 0.4 cm. In each trial,
movement started from a home position with a diameter of
0.5 cm located 18 cm below the center of the screen. The desired
endpoint of the movement was represented by a circular target
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FIGURE 2 | Experimental design. (A) The recorded reaching endpoints are distributed around the individual targets. The average endpoint lies close the target

centers. The action consequences are approximated by normal distributions p(x|w) = N (µw, σ
2
w ). (B) Schematic sequence of the experimental task. Preparation

phase: the cursor (red) is moved in starting position (green) and the four possible targets are shown. Stimulus presentation: the target is selected according to the

world-state probability distribution. Movement execution: the movement is initiated within the permissable reaction time limit. The movement is executed within a fixed

movement time interval of 300ms resulting in a trajectory toward the target. (C) Three different probability distributions ρu, ρl , and ρr over the four targets correspond

to different world state distributions.

which appeared at one of four fixed target positions. The target
positions were set at a distance of 15 cm from the home position
and had an angular distance of 2.5 ◦ to each other. Each target had
a diameter of 1 cm and overlapped with neighboring target circles
due to the small angular distance between targets. The overlap
was roughly chosen at a distance where the difference between
the mutual informations for different reaction times would be
largest (see Figure S1). As the mutual information represents the
identifiability of the target from subjects’ responses, targets that
are too close together cannot be distinguished, whereas targets
that lie too far apart can always be distinguished independent of
the reaction time limit. The intermediate distance that is most
sensitive depends on each subject’s execution noise level. For
reasons of comparability, we chose the same angular distance for
all subjects.

Trials had a consistent flow of events (see Figure 2B).
First, all four targets were displayed on the screen. After a
1 s hold period with the hand in the starting position, an
acoustic signal resounded and a randomly selected target was
highlighted and disappeared after movement onset. Subjects
had to initiate the movement within a given reaction time
limit after target presentation. The subsequent movement was
restricted to a 300ms time window. The recorded endpoint
of the movement corresponded to the handle position at the
point in time when the 300ms expired. An auditory feedback
provided information whether the target was hit, i.e., whether
the recorded endpoint was inside the target circle. For our

analysis in angular space, we counted any trial as a target
hit in which the angle of the endpoint fell within the arc
spanned by the target. This defines the 0/1-utility function
U(w, x) ∈ {0, 1} as shown in Figure 3, where 1 corresponds
to a target hit and 0 to a target miss. Trials where movement
was initiated before target appearance or after the permissible
reaction time limits were rejected and had to be repeated.
Timeouts and premature reactions were displayed by a respective
error message.

Trial blocks. Subjects’ behavior was tested in six different
blocks where each block of 500 trials was characterized by
a different condition. A condition was determined by the
combination of the reaction time limit and the probability
distribution ρ(w) over targets w. Two different reaction time
limits RT1 and RT2 were defined. RT1 was intended to represent
a hard time constraint which was set specifically for each
subject. The second reaction time limit RT2 was the same for
all subjects and defined a fixed limit of 300ms. There were
three different probability distributions over targets: uniform
(ρu), high probability for leftmost target (ρl) and high probability
for rightmost target (ρr) (see Figure 2C). In total this results
in six different conditions that were performed in random
order. At the beginning of each block subjects were informed
about the condition, i.e., they were told about the probability
distribution over targets and the reaction time limits. Subjects’
behavior in each condition was characterized by fitting a
Gaussian distribution p(x|w) = N (µw, σ

2
w) to subjects’ posterior
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endpoint spread for each world-state. In order to measure
subjects’ movement execution noise in the absence of limitations
in movement planning, the six conditions were followed by
four blocks of 100 trials, each only to a single target with a
reaction time limit of 1 s. In these trials we determined subject-
specificmovement precision by fitting another Gaussian p(x|a) =
N (a, σ̃ 2

w), where σ̃ 2
w captures the subject-specific single target

endpoint spread.
To allow for learning, the experiment was preceded by a

training phase that consisted of four stages. In the first stage,
the training phase started out with a block of 500 trials, where
in each trial the target was selected randomly from a uniform
probability distribution. To get subjects used to the task, the
reaction time limit was set to 1 s. In the second stage, subjects
underwent four blocks of 100 single target trials. As these four
blocks were identical to the four blocks at the end of the
experiment, one can get an idea about behavioral improvements
of subjects. In the third stage of training, subjects’ individual
reaction time limit RT1 was determined, by fixing RT1 to a value
well below 300ms where approximately 20% of trials could not
be completed in time. In the fourth and final stage of training,
subjects underwent six blocks of 500 trials each, where each block
was characterized by a different condition, identical to the test
trials described above. Subjects’ data across these blocks can be
seen in Figure S2.

3. RESULTS

The reaching task in our experiment consists of two processes,
movement planning and movement execution (see Figure 3).
In particular, we consider the planning phase as a decision-
making process with limited resources, where the resources
are given by the permissible reaction time and the amount
of information implied by the prior probabilities. When
faced with a randomly selected target stimulus w, subjects
make a bounded rational decision by sampling a movement
aim point a during motor planning so as to maximize the
expected utility V(w, a) of hitting the target. The planning
phase is followed by movement execution in which motor
noise corrupts the planned aim point, which ultimately leads
to an approximate Gaussian distribution of endpoints x. The
movement endpoint is assigned the utility U(w, x) = 1 in
case of a target hit and U(w, x) = 0 in case of a target
miss. Note that the utilities for different world states w are
overlapping in x because the targets are close together. From
the bounded rational action selection p(a|w) and by taking
into account execution noise, we can finally determine p(x|w),
the distribution of movement endpoints under the bounded
rational planning strategy. Unlike p(a|w), the distribution p(x|w)
is directly observable. The two phases of movement planning
and movement execution are associated each with their own
type of noise, planning noise and execution noise. Execution
noise is assumed to be roughly constant and irreducible for
the time scale considered in our model, whereas planning
noise can be modulated by allowing for different amount of
planning resources. Experimentally, we distinguish between the

two sources of noise by measuring endpoint variance in blocks
of trials with a single fixed target, as this does not require
any decisions or planning with respect to target selection. In
line with previous studies (Trommershäuser et al., 2003a,b),
we determined motor execution noise as the endpoint variance
of movement angles x in such single target trials. The total
endpoint variability in our experiment with multi-target trials,
as illustrated for one subject and one condition in Figure 2A,
is composed of both execution noise and planning noise. By
manipulating permissible reaction time for movement planning,
while leaving movement time constant (at 300ms), we could
therefore attribute any difference in total endpoint spread to
planning noise.

3.1. Resource Manipulation I: Varying
Reaction Time
We compared two reaction time conditions for each subject: a
fast condition and a slow condition, RT1 and RT2 respectively.
Averaged over all subjects we measured a mean reaction
time τRT1 = 154 ± 10ms and τRT2 = 202 ± 5ms.
By manipulating the permissible reaction time, we effectively
manipulated subjects’ decision-making resources. According to
bounded rational decision theory one would expect higher
decision noise with less resources, and therefore an increased
total endpoint variance in case of RT1 compared to RT2.
In line with our prediction we found a general tendency
of increased movement variability when decreasing subjects’
reaction time limit. Figure 4 compares subjects’ movement
variance, accuracy and bias in the different reaction time
conditions RT1 and RT2 for uniform target distribution ρu.
In particular, we find that standard deviation σ = 〈σw〉ρ(w)
of subjects’ endpoints on average increased when decreasing
subjects’ reaction time limit (p = 0.0047, repeated measures
ANOVA) (see Figure 4A). In other words, movement precision
measured by the inverse of the standard deviation decreased
with decreasing resources. Subjects’ average movement accuracy
aRT := 〈[ 1N

∑

i(xi − x∗w)
2]−

1
2 〉ρ(w) measured as the mean squared

deviation of movement endpoints from the desired target
location x∗w is significantly higher in the slower reaction
time condition (p = 0.0042, repeated measures ANOVA)
(see Figure 4B). Movement accuracy is related to movement
variability by aRT = 〈(σ 2

w + b2w)
−1/2〉ρ(w), where the bias bw

represents the difference between mean movement endpoint and
desired target location x∗w . While we find significant effects
for movement variability and accuracy, we find no systematic
effects in the average movement bias b = 〈bw〉ρ(w) (see
Figure 4C).

To ensure that differences in movement planning were indeed
the major explanans for the observed differences in endpoint
variability, we checked that movement execution was similar
for the two reaction time conditions. We therefore looked
at trajectory paths, velocity profiles and trajectory variance
averaged over all of subjects’ movements. While we found
no systematic differences between movement paths in the
fast and slow reaction time conditions (see Figure S3), we
found that movement variance was considerably higher in trials
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FIGURE 3 | Scheme of the decision process. The task requires planning and execution of a movement. Based on the expected utility V (w, a) a bounded rational

decision-maker makes a motor decision by sampling a movement aim point a from the distribution p(a|w) that maximizes V (w, a) for a given target w. During
movement execution, the aim point a is corrupted by motor execution noise, resulting in the distribution p(x|w) of actual movement endpoints. The task utility U(w, x)
indicates target hit or miss in the space of angular movement endpoints x.

FIGURE 4 | Effect of resource limitation on movement variability. (A) Movement variability in the two reaction time conditions is measured by subjects’ standard

deviation σ . Standard deviation is generally higher (i.e., precision is lower) in the faster reaction time condition RT1. (B) Movement accuracy aRT in the two reaction

time conditions is measured by deviation from the correct target location. Accuracy is generally higher in the slower reaction time condition RT2. (C) Subjects’
movement bias shows no significant trend across different RT conditions.

with faster reaction time, which is reflected in the endpoint
variability shown in Figure 4. However, we also found that
the faster reaction time condition was characterized by slightly
higher peak velocity in the movement, on average 4% faster
than the slow reaction time condition (see Figure S4). Yet,
this elevated movement velocity cannot explain the differences
in variability. This can be seen when we select trajectories
in the slow reaction time condition based on their peak
velocity and only allow trajectories that have a peak velocity

that lies in a band of width b with respect to the mean
velocity of the fast reaction time condition. The width b
was determined as the absolute difference between the peak
velocities in the fast and slow reaction time conditions. With
this selection of trajectories, there is no significant difference
between peak velocities in the two reaction time conditions
(p = 0.847, repeated measures ANOVA). Importantly, however,
while the difference in peak velocities vanishes, the difference
in variability remains (p = 9.092 · 10−5, repeated measures
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ANOVA) as can be seen in Figure S5. We can therefore
conclude that differences in endpoint variability are indeed
mostly due to differences in motor planning and not motor
execution.

To assess the effect of limited reaction time on subjects’
performance, we investigate the change in utility and
information. Subjects’ overall performance is measured
by their expected utility E[U(w, x)] under the world state

FIGURE 5 | Bounded rational analysis of movement performance for different reaction times and uniform target distribution ρu. Movement

performance is given by subjects’ average target hitting probability (expected utility) and sensorimotor information in bits measured by the mutual
information I(W;X ) between movement endpoints and world state. The two data points correspond to the movement performance measures for
the two different reaction times RT1 and RT2. The 95% confidence region is determined by bootstrapping. Subjects’ experimental performances
are each compared against two bounded optimal efficiency frontiers, arising as the theoretical predictions with and without execution noise. For

planning in an ideal system without movement execution noise (σ̃ = 0) we obtain a steeper efficiency frontier than for bounded optimal planning
by taking into account subjects’ individual execution noise levels (σ̃exp) measured in single target trials.
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distribution ρ(w) and the Gaussian strategy p(x|w) fitted to the
subject’s responses, and their planning effort by the effective
information measure I(W;X) that determines how specific
subjects’ actions are for each target—more specific actions,
require more planning. Subjects’ individual performances for
both reaction time limits under ρu can be seen in Figure 5

represented by the two data points. The precise utility and
information values of all the data points can be found in the
Tables S1, S2 respectively. On average over all subjects we
measured a mean information of IRT1 = 1.42 ± 0.05 bits and
IRT2 = 1.56 ± 0.03 bits. Forming the difference quotient between
information and reaction time, we get a mean information rate
of approximately 3 bits/s.

In Figure 5 the performance measurements for both reaction
time conditions are compared against the optimal performance
of a bounded rational decision maker. Here, we consider two
theoretical predictions of planning the optimal actions with and
without taking into account execution noise. In the limit of
infinite planning resources, a bounded rational decision-maker
in the absence of execution noise (σ̃ = 0) would be able to
pick any endpoint with arbitrary precision and therefore reaches
the maximum utility of E[U(w, x)] = 1. This maximum is
reached at the expenditure of 1 bit, as the optimal prior is set
at the two overlapping areas between targets w1 and w2 and
between targets w3 and w4, such that the posterior simply selects
one of the two possibilities. When considering execution noise
in the planning phase, the optimal performance of a bounded
rational decision-maker depends on the individual execution
noise level σ̃exp that determines the expected utility V(w, a) that
is used for planning (see Figure 3). It should be emphasized
that the precise shape of the optimal performance curve for
each subject is affected by the experimentally measured level of
motor execution noise (see Figure S6). Such a bounded rational
decision-maker requires more information resources to reach
the same level of utility than a bounded rational decision-
maker without execution noise. Also such a decision-maker, may
not achieve a maximum utility of E[U(w, x)] = 1 even for
planning with unlimited resources. At the other extreme, without
any information processing [i.e., I(W,A) = 0], the posterior
strategy cannot deviate from the prior. When comparing the two
theoretical predictions, it can be seen that subjects’ performance
is much closer to the theoretical prediction considering execution
noise, i.e., performance always lies slighly below the bounded
optimum under execution noise, and well off the bounded
optimum without execution noise.

In line with the prediction of Figure 1A, we find that for
most subjects a lower reaction time limit produces behavior
with lower expected utility and less information processing.
The difference in information and utility caused by different
reaction time limits is shown in Figure 6. As expected, the
amount of information resources I(W;X) decreases when
given less reaction time in condition RT1 (p = 0.042,
repeated measures ANOVA) , which can be seen in Figure 6A.

Similarly, the utilities E[U(w, x)] are significantly lower when
given less reaction time in condition RT1 (p = 0.0028,
repeated measures ANOVA), which can be seen in Figure 6B.
Generally, subjects were more efficient in the slower reaction

time condition RT2, even though average efficiencies as defined
in Equation 8 are well above 90% throughout for all subjects (see
Figure 6C).

3.2. Resource Manipulation II: Varying Prior
by Changing World State Distribution
A bounded rational decision-maker should consider the given
world state distribution ρ(w), as this affects the optimal action
prior p∗(a). Consequently, the amount of mutual information
needed for a bounded rational decision-maker to gain maximum
expected utility depends on the given world state distribution.
In our case, for the uniform world state distribution ρu
the processing cost to achieve maximum expected utility
is approx. 1.7 bit for an average level of motor execution
noise. In comparison, the non-uniform distribution ρnu that
represents the mirror symmetric distributions ρl and ρr from
Figure 2C allows for planning with less ressources as predicted
in Figure 1B. In our case, we expect approx. 1.2 bits for
maximum performance. Subjects’ performance under the non-
uniform target distribution ρnu is depicted in Figure 7, where
we have averaged the performances recorded for ρr and ρl.
Subjects’ performance in the two reaction time conditions is
compared against the bounded optimal efficiency frontier for ρnu
considering the individual level of movement execution noise.
On average over all subjects we measured mean reaction times
of τRT1 = 155 ± 9ms and τRT2 = 189 ± 6ms and mean
information values of IRT1 = 1.01 ± 0.03 bits and IRT2 =

1.09±0.02 bits. Taking the difference quotient of information and
reaction time we estimate an information rate for the population
of approximately 2.1 bits/s, which is similar to the uniform
condition.

The efficiency frontier for the non-uniform distribution ρnu is
shifted to the left compared to the efficiency frontier under the
uniform world state distribution ρu. As predicted in Figure 1B,
we observe that the data points are shifted to the left compared
to the data points under the uniform world state distribution.
The changes in information and utility for varying world state
distributions are shown as a scatter plot in Figure 8. As expected,
the amount of mutual information I(W;X) decreases when
given less uncertainty about the world state (p = 1.48 · 10−8,
repeated measures ANOVA)(see Figure 8A). In contrast, the
utilities E[U(w, x)] do not change significantly when changing
the world state distribution (p = 0.579, repeated measures
ANOVA)(see Figure 8B). Generally, subjects were less efficient
in the non-uniform condition (see Figure 8C), which may be a
consequence of incomplete adaptation to the non-uniform world
state distribution.

In order to make predictions about subjects’ performance
for non-uniform world state distributions from their behavior
under a uniform condition, it is necessary to make additional
assumptions about the constraints that determine the decision-
making process. For the prediction of the bounded rational
decision-making model in Figure 1B, for example, we assumed
that subjects achieve the same level of utility under both world
state distributions. The results presented above are in line with
this assumption, as we found that on average there was indeed
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FIGURE 6 | Performance with different reaction time resources (RT1 <RT2). (A) A limitation in reaction time resource results in a decrease in

information resources. (B) With less resources available, decision-makers achieve less expected utility. (C) Subjects’ average efficiency is
generally high (above 92%).

no systematic deviation in utility between the uniform and
non-uniform condition (see Figure 8B). On the basis of this
assumption we predict for each individual subject the level
of utility and the effective information in the non-uniform
condition from the 95%-confidence intervals of utility and
information in the uniform condition (see Figure 9). For 7 out of
10 subjects, we find an overlap in the confidence intervals of the
measured utilities for ρu and ρnu in both reaction time conditions
(see Figure 9A). Only Subject S2 differs in utility with non-
overlapping confidence bands in both reaction time conditions
when changing the world state distribution. Similarly, we
compared actual and predicted confidence bounds for subjects’
information resources under a constant utility constraint. The
predicted confidence bound for information was determined by
projecting the two bootstrap confidence bounds of the utilities in
the uniform condition to the non-uniform efficiency frontier (see
Figure 9B). Without considering inefficiencies, the predictions
underestimate the information systematically.When allowing for
inefficiencies at the average measured ineffiency level of 86%,
9 out of 10 subjects have overlapping confidence bounds for
measured and predicted information resources.

In principle, there are alternative assumptions one could
make to predict behavior in the non-uniform condition from
uniform performance. We consider three possible alternatives:
(1) one could try to achieve a higher utility by maintaining
the same level of information, (2) one could reoptimize prior
and posterior by maintaining the same rationality parameter β ,
and (3) one could simply maintain exactly the same behavior
as before without adapting at all. The first hypothesis can be
ruled out immediately when looking at Figure 7. Since the
maximum information under the non-uniform condition is
lower than the actual information in the uniform condition,
one would expect all subjects to be able to perform at the
maximum information level and very close to 100% utility.
This is obviously not the case and alternative hypothesis (1)
can be rejected. As we will elaborate in the discussion, the
rejection of hypothesis (1) is not surprising, as the mapping
between concrete resources and information changes with the

world state distribution. The second alternative hypothesis with
constant β would predict in our case that utilities should remain
roughly the same and that information resources should decrease
(see Figure 10), which is in quantitative agreement with our
experimental data. To distinguish better between this hypothesis
and the other alternatives, we therefore attempted to extract
estimates of the rationality parameter β for each subject. Strictly
speaking this is only possible for data points that lie exactly
on the efficiency frontier. However, as subjects were in general
very close to the efficiency frontier we determined the rationality
parameters of the bounded optimal actors nearby that were
closest. To this end, for each data point we considered all
the β-values as neighbors that would lie between the bounded
optimal actor with the same utility level as the data point, but
with lower (optimal) information, and the bounded optimal
actor with the same information resource level, but with higher
(optimal) utility. The extracted interval of β-parameters can
be seen in Figure 9C. While it seems that there is a tendency
for β to be higher in the uniform condition, this trend is
not significant (p = 0.477, repeated measures ANOVA). We
can therefore not rule out hypothesis (2). The third alternative
hypothesis without adaptation would also predict that utilities
should remain roughly the same and that information resources
should decrease (see Figure 11). To obtain this prediction we
simply assumed that the experimental posterior p(x|w) fitted
in the uniform condition would stay exactly the same in the
non-uniform condition. To better distinguish this hypothesis
from our constant utility hypothesis, we studied the conditional
entropy of the posteriors more closely. As shown in Figure 1C

we expect that the conditional entropy of action distributions
H(A|W = wi) for more probable world states wi is lower
than entropy of action distributions for less probable world
states wi. Figure 12 compares the theoretical entropy predictions
with action entropies from the experiment. The frequency terms
frequent,medium, infrequent arise from the three different world-
state distributions ρu, ρl and ρr and relate to the outer most
target locations (w1,w4). The theoretical entropies are computed
from the bounded optimal posteriors that have the same expected
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FIGURE 7 | Bounded rational analysis of movement performance for varying world state distributions. Subject’s experimental performances are
each compared against the bounded optimal efficiency frontier for given world state distributions. For the non-uniform world state distribution ρnu
the information processing cost is reduced compared to the uniform distribution ρu.

utility as the experimental posteriors. For frequent targets we
average the theoretical entropies for target w1 in the case of
ρl and target w4 in the case of ρr and compare against the
experimentally determined action entropy for the same targets.
For infrequent targets we average the theoretical entropies for
target w4 in the case of ρl and target w1 in the case of ρr and
compare against the experimentally determined action entropy
for the same targets. The medium frequency comprises both

target w1 and target w4 under the uniform target distribution ρu.
Dependent on the world state frequency the optimal entropy of
the action distribution is modulated, such that frequent world
states should be associated with lower entropy and infrequent
world states with higher entropy. This way the average entropy
is lowered. The experimental results confirm the trend that the
action entropy decreases with increasing world state frequency
(RT1 : p = 0.037,RT2 : p = 0.024, repeated measures ANOVA).
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While this result fits well with the constant utility and constant
β hypotheses, the third alternative hypothesis with constant
posterior has to be rejected, as this would predict that the
conditional entropy should not change depending on the world
state distribution.

4. DISCUSSION

In this study we investigated how the abstract theory of
information-theoretic bounded rationality can be applied to
a sensorimotor reaching experiment by varying informational
resources during motor planning. In particular, we varied the
permissible reaction time for planning and the probability
distribution over the different targets to manipulate subjects’
action prior. We found that both information constraints had a
significant impact on task performance as measured by endpoint
variability and expected utility (i.e., the expected probability
of a target hit under known motor execution noise). The two
experimental manipulations of reaction time and prior can
be mapped into abstract informational resources quantified by
relative Shannon information within bounded rationality theory.
Our results show that a decrease in permissible reaction time
is accompanied by a decrease in both utility and information-
processing resources, and that changing to a low-entropy world
state distribution also decreases information-processing costs, as
the motor system selectively adapts endpoint variability to the
probability of the targets. Both the reduction in information-
processing due to reaction time limits and the modulation
of endpoint variability depending on target frequency can
be understood within the normative framework of bounded
rationality. Usually, optimal decision-making models under
motor execution noise either assume perfect planning or add
planning noise in an ad hoc fashion to fit the data. In contrast,
bounded rationality models allow to compare performance
against the best possible performance with a given information
resource in a similar way that information theory allows to
compare the performance of codes to the theoretical optimum.
We found that the experimental behaviors were generally close
to bounded optimal. The reported inefficiencies are small and
due to biases in behavior that are not considered in the priors
and utilities of the model. Investigating the source of such
inefficiencies may constitute an interesting avenue of future
research that is opened up by such a framework.

Bounded rationality with information-theoretic concepts
has been investigated in the context of economic decision-
making (Sims, 2003), and has also been applied to high-
level cognitive problem solving and perceptual decision-making
(Ortega and Stocker, 2016; Sims, 2016). Here we chose to apply
information-theoretic bounded rationality concepts to a very
basic sensorimotor reaching task, on the one hand to emphasize
the generality of the framework and its applicability to any kind
of behavior, on the other hand because one might rightly expect
such highly trained behavior to be efficient and close to bounded
optimal. A consequence of choosing such a basic task is that
information-processing is extremely fast and stereotyped, which
makes it difficult to measure behavior at different resource levels.

We found, for example, in our task that already at a “slow”
reaction time limit of 300ms, subjects did not benefit from looser
limits, and in fact their average reaction time in these trials was
far below the limit at approximately 200ms. In contrast, the
subject-specific “fast” limit was set between 190ms and 220ms
with average reaction times at 150ms, which is fairly close to
the slow condition. Introducing a third level between slow and
fast would have little extra value, as the theoretically maximal
differences we can expect in mutual information are already
rather small (see Figure S1). Lowering the reaction time limit
below the fast limit is also fraught with problems, because on
average over all blocks subjects already had to repeat 18% of trials
when they initiated movements too late. Increasing the failure
rate further would have been difficult both in terms of keeping
subjects motivated and in terms of the required number of trials
(currently 7, 300 trials per subject spread over approximately
10 h). Ultimately, this lower bound is of course not too surprising,
as it is impossible to execute a movement in the total absence
of motor planning, even if it is totally random (i.e., it generates
zero relative information), because there is a minimal time for
information-processing that constitutes an offset.

Information-Theoretic Models of Sensorimotor

Processing
Two of the earliest applications of information theory to human
behavior were Hick’s law (Hick, 1952) and Fitts’ law (Fitts,
1954). Hick measured reaction time in simple choice reaction
time experiments and found a linear relationship between choice
reaction time RT and the logarithm of the number n of options,
such that RT = a + b log(n + 1). This law can be considered
as a special case of RT = a + bI(n), where I(n) is the Shannon
information under arbitrary stimulus distributions (Hyman,
1953). Hence, according to Hick-Hyman’s law there is a linear
map between information and time resources for decision-
making during motor planning, typically in tasks with constant
accuracy requirements where subjects choose their preferred
reaction time. In contrast to Hick’s reaction time study, Fitts
investigated a speed-accuracy trade-off in motor execution by
measuring movement time MT in a reciprocal tapping task as a
function of target widthW and target distance D, and found that
MT = a + b log 2D

W . In analogy to Shannon’s channel capacity
C for a Gaussian channel with bandwidth B and signal-to-noise
ratio S/N given by C = B log(N+S

N ), Fitts equated his index of

difficulty ID = log 2D
W with the logarithm of the signal-to-noise

ratio, which represents the amount of information in bits that
needs to be processed. In this interpretation, there is again a linear
relationship between time and information resources in a task
with constant accuracy requirement where subjects choose their
preferred movement time.

Our experiment could be interpreted as a Hick’s experiment
in continuous space. For experimental design reasons we
decided not to have continuous targets, so we could average
responses for each target without making a global translational
symmetry assumption. Instead, we chose four targets as an
approximation to the continuous case. For a continuous uniform
target distribution ρ(w) = 1

wmax−wmin
and Gaussian endpoint

distribution p(x|w) = N (w, σ 2) the mutual information
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FIGURE 8 | Performance under non-uniform world state distributions. (A) A more concentrated world state distribution effectively results in a

decrease in information. (B) Decision-makers’ expected utility is not affected by a change in world state distribution. (C) Subjects’ average
efficiency for ρnu is generally lower than for ρu.

would be

I(W;X) = H(W)− H(W|X)

= log (wmax − wmin) −
1

2
log (2πeσ) + f (wmin,wmax, σ ),

where the first term is the differential entropy of the target
distribution, the second term is the differential entropy
introduced by Gaussian noise and the third term is a correction
term due to truncation. For our approximation the first and
second term would stay the same, the third term would
vary depending on target distance and number of targets. In
Figure S7, one can see that for the range of information values
considered in our experiment, there is an equivalent continuous
interpretation. In contrast, Hick considered discrete target and
action spaces, where mutual information is obtained from the
probability of target hit or miss. If we had classified actions
into discrete categories like Hick and ignored actions that
missed all targets, we would have obtained the following discrete
information values:

uniform condition: IRT1 = 1.91± 0.02 bits and

IRT2 = 1.95± 0.01 bits

non-uniform condition: IRT1 = 1.29± 0.03 bits and

IRT2 = 1.26± 0.02 bits.

Information values for both world state distributions are very
close to their respective maxima of Imax

u = 2 bits and Imax
nu =

1.36 bits, which suggests that subjects performed nearly perfectly
in terms of aiming for the correct target in angular space.
In a conventional discrete reaction time analysis as pioneered
by Hick, one would conclude that the task was too simple,
because subjects always achieved plateau performance, which
is reflected in the fact that the information values across the
two reaction time conditions are virtually the same. However,
in terms of continuous endpoint spread we observed a clear
difference in information between reaction time conditions,

which highlights that such a continuous analysis provides further
insight compared to the discrete analysis championed by Hick.

Another important difference from Hick’s task to our
experiment is that we had a hard controlled reaction time limit,
whereas the orignal experiment was a free reaction time task
with a given accuracy level. In follow-up studies, for example
by Pachella and Fisher (1972), the relationship between reaction
time and information was also studied in speed constraint
conditions and found to be of roughly linear shape, although
the coefficients of this relationship depend on the number of
alternatives and the linear shape levels off for high reaction
times. Our results are consistent with these previous findings
in that for the same reaction time subjects generate different
levels of information depending on the world state distribution—
where world state distributions with different entropy effectively
correspond to different number of alternatives. This is exactly
what one would expect from a bounded rationality perspective,
namely that for each world state distribution there is a monotonic
relationship between information and resource (e.g., time) and
that for different world state distributions this relationship
will change, because the range of possible information values
changes. In general, the monotonic shape would be expected
to be marginally decreasing, as more and more samples or
resources are necessary to increase mutual information which
will ultimately plateau at its maximal value for a given world
state distribution. A roughly linear relationship would hold
in the initial slope before information plateaus and only in
special cases across the entire range (e.g., in case of logarithmic
search). In contrast to this time-information relationship for
each particular world state distribution, Hick’s law relates the
maximum information in the plateau (where there is no reaction
time constraint) across different world state distributions with
different entropies and number of states.

As we measured endpoint accuracy in reaching movements,
Fitts’ law is of course in principle applicable to our task. However,
Fitts’ law doesn’t say anything about reaction time which we
manipulated, but only about movement time which we did
not manipulate. As we kept movement time, target distance
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FIGURE 9 | Predicting performance across world state distributions. (A) Predicting confidence bounds for utility in non-uniform condition from

uniform condition by assuming that utility levels are maintained. (B) Predicting confidence bounds for information in non-uniform condition from
uniform condition by assuming that utility levels are maintained. (C) Confidence bounds for beta estimates in uniform and non-uniform condition.
(D) Means of β intervals shown in (C).

and target width constant throughout the experiment, Fitts’ law
cannot explain our changes in endpoint accuracy due to reaction
time manipulation. As suggested previously (Albertas et al.,
2012), Fitts’ lawwould need to be extended to encompass reaction
time as a variable. While Fitts himself considered reaction time
as a parameter in a follow-up study (Fitts and Peterson, 1964),
the results were interpreted as showing only weak effects of
reaction time (compared tomovement time), suggesting a strictly
serial information-processing pipeline, and therefore reaction
time never got integrated into Fitts’ law. In the future one could
design experiments where both reaction time and movement
time are varied to develop a general information processing
law where both Hick’s law and Fitts’ law would be special
cases.

How does bounded rationality contribute to this line of
study? While our experimental design can be interpreted as
a Hick’s experiment in continuous space, both Hick’s law and
Fitts’ law are fundamentally concerned with the relationship
between information and time. In contrast, bounded rationality
studies the relationship between utility and information, where
information is conceived as an abstract resource measure,
ultimately counting how many distinctions one can make. In
general, one would expect a monotonic relationship between
information and any concrete resource measure like time,
because the more resources are available the more distinctions
one can make (for example, the longer the computation of the
number pi, the more digits are known). A linear relationship
between information and resource would only be expected in
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FIGURE 10 | Comparison of predicted and experimental utility and information when predictions are generated from the uniform condition under the hypothesis that

the rationality parameter β is constant. (A) shows confidence intervals for utility values belonging to a range of possible β-values assigned to a data point, as described

in the main text. For 6 out of 10 subjects the confidence intervals overlap in both reaction time conditions, i.e., prediction matches experimental measurement. (B)

shows confidence intervals for information for the same range of β-values. Predicted information is only considered for bounded optimal actors, which is why there is

not much overlap in confidence intervals. However, when allowing for inefficiencies as described in the main text, hypothesis (2) cannot be ruled out.

FIGURE 11 | Comparison of predicted and experimental utility and information when predictions are generated from the uniform condition under the hypothesis that

there is no adaptation and the posterior p(x|w) is constant. (A) shows confidence intervals for utility values belonging to different posteriors fitted to a set of

bootstrapped data. For 7 out of 10 subjects the confidence intervals overlap in both reaction time conditions, i.e., prediction matches experimental measurement. (B)

shows confidence intervals for information of the same fits. In this prediction inefficiencies are implicitly considered, which is why there is a higher overlap.

special cases, for example in case of logarithmic search. In
this sense both Hick’s law and Fitts’ law are consistent with
bounded rationality theory, even though these findings only
concern the resource part and ignore utility. In contrast, within
a bounded rationality framework one could study effects of
different utilities on the choice task, for example in the form
of monetary payoff or by changing features of the stimulus.

Norwich et al. (1989) for example has investigated the effect of
stimulus features on reaction time, especially stimulus intensity
of a single stimulus, by assuming that a subject requires a
certain amount of information 1H before they can react to
the stimulus, where 1H increases by the number of times a
receptor is allowed to sample the environment. In the future
it would also be interesting to consider such manipulations in
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FIGURE 12 | Conditional entropy H(X|W). Average entropy of endpoint distribution conditioned on the world state. World states are summarized
as frequent, medium and infrequent. High-frequent world states have lower entropy, because endpoint spread is smaller. Experimental entropies
are averaged over all subjects and obtained from measured posteriors p(x|w), theoretical model predictions are for bounded optimal posteriors
p∗(x|w) under a constant utility hypothesis.

a bounded rational framework. This illustrates how bounded
rationality allows asking questions beyond the realm of Fitts’ and
Hick’s law.

Computational Models of Imperfect Decision-Making
As far as the authors are aware, this study is the first to show the
effect of limited reaction time on continuous endpoint variability
in a human reaching task. There is a large body of studies
that have investigated speed-accuracy trade-offs (Wickelgren,
1977; Chittka et al., 2009) using reaction-time experiments to
shed light on the dynamics of neural information processing,
in particular the effect of noisy motor planning on behavioral
accuracy in discrete choice tasks. In an early study by Schouten
and Bekker (1967), for example, it was found that reaction
times are shorter when subjects are asked to speed up their
response, which, however, results in more errors. This is similar
to Hick’s choice task, except that Hick had a free reaction time
choice task and simply encouraged subjects to allow for more
errors. Both tasks do not consider endpoint accuracy but discrete
choice accuracy. Endpoint accuracy is considered in Fitts’ studies
as part of the movement difficulty ID. While Fitts did not
investigate reaction time in his original study, in a follow-up
study Fitts and Peterson (1964) also studied effects of movement
difficulty on reaction time and movement time in discrete target
reaches. When manipulating the probability distribution over
targets, Fitts and Peterson (1964) found that reaction time
and movement time for frequent targets was reduced. He also
found that accuracy somewhat increased depending on target

frequency, similar to our finding in Figure 12. However, Fitts’
task differed from ours in that it was again a free reaction
time choice task. Endpoint accuracy was also recorded in a
recent study (Boyd et al., 2009) investigating neural correlates
of movement planning in a reaching task with restricted and
unrestricted planning. The authors found that endpoint accuracy
was reduced in the restricted planning condition. In their
study a single target had to be reached after a go signal that
followed a restricted (100ms) or unrestricted (1,000ms) stimulus
presentation interval. However, neither movement time nor
reaction time were controlled, only response times from go
signal to movement end were measured. Response time could
vary within a 4 s window and was elevated for the restricted
planning condition. Reaction time was not controlled because
movement could be initiated any time after the go cue. During
the unrestricted planning condition the authors found additional
brain activity in the medial frontal gyrus, pre-SMA, putamen and
cerebellum.

While there have been a number of studies investigating the
effect of neuromuscular noise on motor control (Harris and
Wolpert, 1998; Faisal et al., 2008; Selen et al., 2009), studies
that investigate the noise contribution of the central nervous
system are rare. The neurophysiological basis of limited motor
planning on endpoint variability has been previously investigated
in monkeys by Churchland et al. (2006a) who found that
variation in perparatory neural activity approximately predicts
half of the variability in peak velocity of the movement. In
a second study Churchland et al. (2006b) also report that
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changes in firing rate variability in premotor cortex are an
indication of planning progress during motor preparation.
In particular, the firing rate variability was found to be
initially high and to decline after target onset and go cue.
Longer reation times were found to occur when firing rates
had higher variability. These results are consistent with the
notion that shorter motor preparation times lead to higher
movement variability, which is exactly what we observed in our
experiment.

Although there have been attempts in applying computational
models of noisy decision-making to continuous motor
planning (Cisek et al., 2009; Resulaj et al., 2009; Thura
et al., 2012; Ramakrishnan and Murthy, 2013), typically noisy
planning models are perceptual evidence accumulation models
for discrete decision-making (Laming, 1968; Ratcliff, 1978,
1988; Carpenter, 1981; Townsend and Ashby, 1983; Luce, 1986;
Schweickert, 1993; Ratcliff and L Smith, 2004; Ratcliff and Starns,
2013), very often with just two alternatives. In these models,
noisy sensory evidence is accumulated for different response
alternatives, where each alternative is typically represented by its
own accumulator, such that the number of accumulators directly
corresponds to the number of response alternatives. Evidence is
accumulated until one of the accumulators reaches a threshold,
which corresponds to a decision for the pertinent response
alternative. The decision is then executed by a movement.
However, the movement itself is usually not considered part
of the planning or decision-making process. Such accumulator
models for discrete choice can be shown to approximately
implement Bayes-optimal decision-making (Laming, 2001;
Brown et al., 2009; Bitzer et al., 2015; Noorani and Carpenter,
2016) and can be related to sequential sampling methods (Stone,
1960; Laming, 1968; Link and Heath, 1975; Draglia et al., 1999;
Dragalin et al., 2000). Such sampling-based decision-making
processes model the transition from prior to posterior through
a sequence of small steps. In most models the trade-off between
accuracy and the number of steps is determined by a fixed
decision boundary, but dynamic decision boundaries have
also been studied in models that consider explicit costs for
evidence accumulation (Frazier and Yu, 2007; Drugowitsch
et al., 2012). The speed-accuracy trade-off can be considered
as a special manifestation of the abstract utility-information
trade-off when assuming a particular dynamic realization of the
prior-posterior transition. Other sampling models of optimal
decision-making with limited resources include Markov chain
Monte Carlo (MCMC) models, where decisions are made subject
to the constraint that only a certain number of samples can be
evaluated during the deliberation phase (Vul et al., 2014). Such
sampling-based decision-making models can be considered as
a particular implementation of information-theoretic bounded
rational decision-making when they converge to the appropriate
equilibrium distributions (Ortega et al., 2014; Hihn et al.,
2018).

From the large family of sampling-based decision-making
models, in particular drift diffusion evidence accumulation
models have been successfully linked to neurophysiological
recordings, especially in the parietal cortex (Wang and
Sandholm, 2002; Huk and Shadlen, 2005; Gold and Shadlen,

2007; Yang and Shadlen, 2007; Hanks et al., 2011), as the input
to the accumulators is assumed to be Brownian motion where
the signal is encoded in the drift. Mainly, four different kinds
of drift diffusion models are distinguished: race models (Vickers,
1970, 1979; Busemeyer and Diederich, 2002; Bogacz et al., 2006;
Bitzer et al., 2014; Insabato et al., 2014), mutual inhibition
models (Usher and Mcclelland, 2001; Wong et al., 2007),
feed-forward inhibition models (Shadlen and Newsome, 2001;
Mazurek et al., 2003) and pooled inhibition models (Wang
and Sandholm, 2002; Wong and Wang, 2006). In race models
accumulators are independent and the first accumulator to reach
the threshold wins, whereas in the other models accumulators
compete by inhibiting each other. Recently, there has been
considerable interest to relate such models to information-
theoretic quantities similar to Hick’s law, which is often used
as a robust empirical finding to validate these models (Usher
and Mcclelland, 2001; Usher et al., 2002; McMillen and Holmes,
2006; Leite and Ratcliff, 2010; Hawkins et al., 2012). In particular,
Usher and Mcclelland (2001) have studied several kinds of drift
diffusion models and found simulated reaction times to vary
linearly with the number of alternatives, as required by Hick’s
law.

Decision-making models that take the cost of computation
into account have also been explored in the reinforcement
learning literature (Keramati et al., 2011, 2016; Pezzulo et al.,
2013; Viejo et al., 2015). In these studies there is typically
a trade-off between cheap model-free learning that simply
summarizes past experiences and computationally expensive
model-based learning that allows for better decision-making
at the cost of deeper planning requiring cognitive effort. The
choice between the two processes is then mediated by a
meta-decision that may take into account the estimated value
of additional deliberation, opportunity costs, the uncertainty
of the value estimates, and other factors. Compared to our
framework, these models are much more specific, making
concrete assumptions about how behavior changes dynamically
across time depending on the available resources (for example,
the number of available planning steps), and where the meta-
decision determines the optimal resource level given these
constraints. The advantage of such concrete models (just like
their neurally inspired cousins from the previous paragraph) is
that they also allow to study adaptation and sequential decision-
making effects. In contrast, the framework of information-
theoretic bounded rationality operates on a more abstract
level that ignores concrete mechanisms of decision-making,
but just considers the basic trade-off between utility and
information, answering the question of what is the highest
achievable utility with a given amount of information (i.e., a
given amount of states that can effectively be discriminated).
Such an abstraction has both advantages and disadvantages.
The disadvantage is clearly that predictions regarding the
precise dynamics and adaptation of the decision-making process
are limited, unless more constraints are considered in the
optimization problem. The advantage is that the framework can
be applied more generally and normatively, both to biological
information processing and machines. As a consequence,
rationality theory with computational constraints may provide
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a bridge between neuroscience and artificial intelligence and
bring these two fields closer together again (Gershman
et al., 2015; Jordan and Mitchell, 2015; Parkes and Wellman,
2015).
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