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Orexins (OX), also known as hypocretins, are excitatory neuropeptides with
well-described roles in regulation of wakefulness, arousal, energy homeostasis, and
anxiety. An additional and recently recognized role of OX is modulation of fear
responses. We studied the OX neurons of the perifornical hypothalamus (PeF) which
send projections to the amygdala, a region critical in fear learning and fear expression.
Within the amygdala, the highest density of OX-positive fibers was detected in the
central nucleus (CeA). The specific mechanisms underlying OX neurotransmission
within the CeA were explored utilizing rat brain slice electrophysiology, pharmacology,
and chemogenetic stimulation. We show that OX induces postsynaptic depolarization
of medial CeA neurons that is mediated by OX receptor 1 (OXR1) but not OX
receptor 2 (OXR2). We further characterized the mechanism of CeA depolarization
by OX as phospholipase C (PLC)- and sodium-calcium exchanger (NCX)- dependent.
Selective chemogenetic stimulation of OX PeF fibers recapitulated OXR1 dependent
depolarization of CeA neurons. We also observed that OXR1 activity modified
presynaptic release of glutamate within the CeA. Finally, either systemic or intra-CeA
perfusion of OXR1 antagonist reduced the expression of conditioned fear. Together,
these data suggest the PeF-CeA orexinergic pathway can modulate conditioned fear
through a signal transduction mechanism involving PLC and NCX activity and that
selective OXR1 antagonism may be a putative treatment for fear-related disorders.
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INTRODUCTION

Deregulation of fear responses are thought to contribute to
a number of anxiety disorders, including posttraumatic stress
disorder, panic, and phobias associated with panic disorder
(Milad et al., 2006; Herry et al., 2008; Hofmann, 2008;
Holmes and Singewald, 2013). These disorders can have severe
consequences on quality of life and are accompanied with serious
economic burden for society (Olesen et al., 2012). There is an
emerging role for the orexin (OX) system in the regulation of fear
behaviors (Sears et al., 2013; Soya et al., 2013, 2017; Flores et al.,
2014, 2017).

Orexins (OX) were simultaneously discovered by two research
groups and are also known as hypocretins (de Lecea et al.,
1998; Sakurai et al., 1998). The OX system consists of two
neuropeptides, orexin A (OX A/hypocretin 1) and orexin B (OX
B/hypocretin 2), derived from a common prepro-OX precursor,
which act as endogenous ligands for G-protein-coupled receptors
OXR1 and OXR2 (HcrtR1/2). OX-producing neurons are
highly concentrated within the hypothalamus (PeF), a region
demonstrated to produce anxiety and panic in rodents (Shekhar
and DiMicco, 1987) and in humans (Shapira et al., 2006).
Multiple previous studies have implicated the OX system in
modulating fear responses: intracerebroventricular injection of
OXR1 antagonists enhances fear extinction in rats (Flores et al.,
2014); OXR1 knockout mice display impaired freezing responses
and reduced amygdala neuron activity (Soya et al., 2013); dual OX
antagonist almorexant reduces fear-potentiated startle response
(Steiner et al., 2012); immobility time after footshock positively
correlates with prepro-OX mRNA expression and is attenuated
by treatment with a dual OX antagonist (Chen et al., 2014); and
increased OX neuron activity is correlated to higher freezing
levels and resistant fear extinction (Sharko et al., 2016).

OX-producing neurons have robust projections to numerous
brain regions implicated in arousal and emotional responses
including the locus coeruleus (LC), dorsal raphe nucleus, bed
nucleus of the stria terminalis, periaqueductal gray, and the
amygdala (Peyron et al., 1998; Trivedi et al., 1998; Marcus
et al., 2001). Amygdala nuclei, including lateral (LA), basal
(BLA), and central (CeA), are involved in the formation and
expression of conditioned fear responses and are therefore
potential sites for OX-modulation of fear (Fanselow and LeDoux,
1999; LeDoux, 2000; Davis and Whalen, 2001; Walker and Davis,
2002). In a majority of terminal fields, OX exerts its effects via
postsynaptic excitation. This postsynaptic effect is mediated by
distinct intracellular signaling machinery that vary between brain
regions (Yang and Ferguson, 2002, 2003; Yang et al., 2003; Kolaj
et al., 2007; Doroshenko and Renaud, 2009; Chen et al., 2017).
Preliminary studies of OX signaling within the CeA suggested
that the neuropeptides induce postsynaptic excitation (Bisetti
et al., 2006), but the receptor selectivity and signal transduction
mechanism is unknown and presynaptic modulation has not
been explored.

Here, using OX receptor subtype-specific antagonists, C 56,
a selective OXR1 antagonist (Bonaventure et al., 2015) and
JNJ10397049, a selective OXR2 antagonist (Dugovic et al., 2009),
and prepro-OX-DREADD (Grafe et al., 2017), we aimed to

characterize the cellular, molecular, and behavioral consequences
of OX signaling in the CeA.

MATERIALS AND METHODS

Animals
Experiments were performed using 150–200 g male
Sprague-Dawley rats (Harlan/Envigo, Indianapolis, IN,
RRID:RGD_1566457). Rats were group housed in plastic
cages in standard housing conditions (maintained at 22◦C)
for a minimum of 4 days prior to experimental procedures
with ad libitum access to food and water and 12:12 light/dark
cycle (lights on at 07:00 h). All experiments were conducted in
accordance with the Guide for the Care and Use of Laboratory
Animals (Institute for Laboratory Animal Research, The National
Academies Press) and the guidelines of the IUPUI Institutional
Animal Care and Use Committee.

Stereotaxic Surgery
To allow adequate viral expression, male (40–50 g)
Sprague-Dawley rats were utilized for stereotaxic injection
of AAV virus 4 weeks prior to electrophysiology experiments.
An AAV containing the Gq-coupled Designer Receptor
Exclusively Activated by Designer Drugs (DREADD) construct
(Armbruster et al., 2007) under control of the prepro-OX gene
promoter (Ple112) (Moriguchi et al., 2002) was produced by
the Penn Vector Core and obtained from Dr. Seema Bhatnagar
(AAV1-Ple112-hM3Dq(Gq)-mCitrine). Rats were anesthetized
under isoflurane delivered via nose cone (2–3%/vol MGX
research Medicine, Vetamac, Rossville, IN, United States, in
medical air, Praxair). During anesthesia, a warming pad was
used to maintain core body temperature and corneal and
paw-withdrawal reflexes were monitored to insure adequate
anesthesia level. The animals head was shaved and a 10 mm
incision was made to expose the skull. Within a stereotaxic
apparatus for rodents (900 series Ultraprecise Kopf Instruments,
Tujunga, CA, United States), lambda and bregma were set to
equivalent dorsal-ventral positions. For DREADD expression,
800 nl bilateral injections were performed in 40–50 g rats
targeting the PeF (15◦ angle toward midline AP: −1.9; ML:
2.8; DV −7.6). For drug delivery during behavior experiments,
intra-CeA infusions were performed via two stainless steel guide
cannulae (26 gauge, Plastics One, Roanoke, VA, United States)
implanted bilaterally in 150–175 g rats targeting the CeA
(AP: −2.4 ML: 3.8 DV: −7.8). The guide cannulae were
secured using three 2.4 mm screws anchored to the skull with
cranioplastic cement. Dummy cannulae (Plastics One, Roanoke,
VA, United States) with lengths matching the guide cannulae
were placed inside the guide cannulae to prevent occlusions until
treatment. Rats were sutured following completion of surgery
and administered 0.025 mg/kg buprenorphine 4 times at 12 h
intervals to mitigate pain. DREADD-expressing animals were
returned to their home cages for 4 weeks to permit high viral
expression at the time of experiments and cannulae-implanted
animals were returned to their home cages for 1 week to
permit recovery. These surgery weights and study designs
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allowed for weight matching at the time of data collection
(150–200 g).

Electrophysiology
Rats (150–200 g) were anesthetized with isoflurane, as described
above, transcardially perfused with 60 ml ice-cold oxygenated
NMDG solution (30 ml/min) and immediately decapitated.
(NMDG solution in mM: 92 NMDG; 2.5 KCl; 1.25 NaH2PO4;
10 MgSO4; 0.5 CaCl2; 30 glucose; 30 NaHCO3; 5 Na-ascorbate;
3 Na-pyruvate; 20 HEPES; 2 Thiourea, 315 mOsm, 7.4 pH).
Brains were then rapidly removed, placed in ice-cold oxygenated
NMDG solution and coronal slices (350 µM) were prepared
containing the amygdala. Slices were incubated at 31◦C for
12 min in oxygenated NMDG solution before being placed
in room temperature oxygenated artificial cerebrospinal fluid
(ACSF) until recording. (ACSF solution in mM: 130 NaCl; 3.5
KCl; 1.1 KH2PO4; 1.3 MgCl2; 2.5 CaCl2; 30 NaHCO3; 10 glucose,
315 mOsm, 7.4 pH). Cells were identified for recording at
40×magnification using Scientifica Slicescope microscope under
DIC illumination (Scientifica, Uckfield, United Kingdom). ACSF
was warmed to 30◦C and perfused at a rate of 2–3 ml/min
during recordings. Compounds were added to ACSF at desired
concentrations (clozapine-N-oxide, CNO; 1 µM; tetrodotoxin,
TTX; picrotoxin 50 µM; 1 µM; C 56: 1 µM; JNJ10397049;
1 µM; KB-R7943; 80 µM; NiCl: 3 mM; U73122 10 µM).
Whole-cell patch-clamp recordings were obtained using standard
techniques with a Multiclamp 700B amplifier, pClamp 10.3
software, and a Digidata 1440 interface (Molecular Devices,
Sunnyvale, CA, United States). Borosilicate glass electrodes (WPI,
Sarasota, FL, United States) (resistance 3–6 M�) were prepared
with a potassium gluconate based recording solution (Internal
solution in mM: 140 K-gluconate; 2 KCl; 3 MgCl2; 10 HEPES;
5 Phosphocreatine; 2 K-ATP; 0.2 Na-GTP, 290 mOsm, 7.4 pH).
Cells were excluded if greater than 10% change to series resistance
was observed during the experiment. Holding potential was
adjusted to −60 mV at the beginning of agonist/antagonist
experiments and 10 min baseline was established before
application of compounds. To verify sensitivity to OX, the
neuropeptide was perfused for a minimum of 3 min which we
determined to prohibit wash-out effect. Experiments utilizing
antagonists included an additional 10 min baseline period of
antagonist perfusion prior to perfusion of OX neuropeptides
and antagonists were maintained in the solution during OX
treatment. Compound 56 (C 56) was provided by Janssen
Research & Development, all other compounds were purchased
from Tocris (Bio-Techne, Minneapolis, MN, United States),
and salts used in patching solutions were purchased from
Sigma Aldrich (St. Louis, MO, United States). A membrane
holding potential of −60 mV was chosen (i) to allow direct
comparisons between cells and conditions, (ii) because this is
very near the resting membrane potential of CeA neurons, and
(iii) because OX-mediated depolarization to action potential
threshold was uncommon from −60 mV using our recording
solutions. CeA neuron firing in response to OX can be achieved
by solutions that shift excitatory balance or by holding neurons
at more depolarized potentials and these differences make direct
comparisons between studies very difficult (Bisetti et al., 2006;

Johnson et al., 2012). Negative current injection was utilized
to hyperpolarize the cell membrane before and during orexin
application to monitor changes to input resistance. Presynaptic
glutamate release was examined by evoking paired post synaptic
potentials (EPSPs) from a holding potential of −70 mV with a
120 ms inter-potential interval. A concentric, platinum/iridium,
bipolar electrode (FHC, Bowdoin, ME, United States) and
Master8 pulse stimulator (A.M.P.I., Jerusalem, Israel) were
utilized to provide stimulation. The electrode was placed medial
to the CeA and five recordings separated by 10 s were averaged
for each data point. The peak amplitude of the second pulse
was divided by the peak amplitude of the first pulse to
generate the paired pulse ratio (PPR) value. A hyperpolarizing
pulse immediately preceded stimulation so that input resistance
could be assessed over the course of the experiment. Orexin
did not alter input resistance thus allowing current clamp
recordings to be used to estimate synaptic paired-pulse responses.
Application of compounds during synaptic release experiments
was counterbalanced in our design by randomizing the order of
conditions applied to individual cells. Each condition was applied
by perfusion for at least 8 min prior to recording.

Modified Solutions
In recordings where potassium driving force was altered,
modified ACSF was utilized wherein KCl was adjusted from 3.5
to 14 mM. At 30◦C this shifted the equilibrium potential from
−97 to −60 mV resulting in net zero potassium conductance at
−60 mV recording potential. In recordings where sodium driving
force was altered, NaCl was replaced with NMDG-Cl, NaHCO3
was reduced to 15 mM, and 2 mM KCl in the internal solution
was replaced by 3 mM NaCl. These changes resulted in a shift
of equilibrium potential from +175 to +40 mV. In recordings
where calcium driving force was altered, normal ACSF containing
100 µM BAPTA-AM was utilized to chelate intracellular calcium.
For this series of experiments, picrotoxin 50 µM was included to
remove GABA-A current contributions that result from altered
reversal potentials. Equilibrium potentials for individual ions
were predicted using the Nernst Equation.

Immunohistochemistry
Four weeks after PeF-targeted prepro-OX DREADD virus
injection, rats were anesthetized with isoflurane and
transcardially perfused with 250 ml 0.1 M phosphate buffered
saline (PBS) and then 250 ml 0.1 M sodium phosphate buffer
(PB) containing 4% paraformaldehyde. Brains were removed
and postfixed for 12 h before 2× rinsing in PB and placement
in 0.1 M PB containing 30% sucrose for 48–72 h. Serial coronal
sections (30 µm) were cut using a Leica freezing microtome
(Buffalo Grove, IL, United States) and immediately placed in
cryoprotectant solution (30% ethylene glycol and 30% glycerol
in 0.1 M PB). Prior to immunohistochemical processing,
slices were stored at –20◦C. Then, free-floating sections were
washed in 0.1 M PBS for 30 min before incubation in 1% H2O2
in PBS for 20 min. Next, sections were washed in PBS for
30 min and in PBS with 0.3% Triton X-100 (PBST) for 10 min.
Following washes, an overnight incubation (approximately
12–16 h) in PBST was performed at room temperature with
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either rabbit anti-OXA-polyclonal (cat. no. H-003-30, Phoenix
Pharmaceuticals, Burlingame, CA, RRID:AB_2315019; diluted
1:18,000) or mouse anti-green fluorescent protein (GFP, cat.
no. A11120, Molecular Probes, Eugene, OR, United States
RRID:AB_221568; diluted 1:1,000) antibodies against OX or
mCitrine, respectively. The next day, sections were washed
for 30 min in PBS and incubated with either horseradish
peroxidase (HRP) goat anti-rabbit (for anti-OXA) or HRP horse
anti-mouse (for anti-GFP) IgG antibodies for 90 min (cat nos.
PI-1000/RRID:AB_2336198 and PI-2000/RRID:AB_2336177,
respectively, Vector Laboratories, Burlingame, CA, United States;
diluted 1:200). Following secondary antibody incubation, slices
were washed in PBS for 30 min and then underwent a 10 min
tyramide signal amplification according to the manufacturer’s
protocol (cat no. NEL700A001KT, PerkinElmer, Waltham,
MA, United States; diluted 1:250). Following an additional
30 min wash in PBS, sections were incubated with either Cy3-
(for anti-OX A) or Alexa488-conjugated streptavidin (for
anti-GFP) for 30 min (cat nos. 016-160-084/RRID:AB_2337244
and 016-540-084/RRID:AB_2337249, respectively, Jackson
ImmunoResearch, West Grove, PA, United States; diluted 1:200).
After a final 30 min wash in PBS, sections were cover slipped
with mounting media (cat. no. H-1200, Vector, Burlingame, CA,
RRID:AB_2336790). Images were obtained using a Nikon A1R+
scanning microscope (Melville, NY, United States). Identical
microscope, capture settings and linear LUTs were used within
the amygdala. PeF images were taken at reduced laser power due
to increased intensities of fluorescence of orexinergic cell bodies
compared to fibers. Quantification of fibers was performed
by drawing ROI of amygdala regions according to Paxinos
and Watson’s rat brain atlas (Paxinos and Watson, 2005) and
recording the average intensity in arbitrary fluorescent units
(A.U.) for each ROI with Nikon NIS Elements software.

Intracerebral Injections
To infuse OXR1 antagonist compound 56 to the CeA, internal
cannulae that extend 1.0 mm beyond the guide cannulae (Plastics
One, Roanoke, VA, United States) were inserted and connected
via polyethylene tubing to 10 µl microsyringes (Hamilton, Reno,
NV, United States). An injection of 300 pmol/100 nl was delivered
using a Harvard PHD 2000 (Harvard Apparatus, Inc., South
Natick, MA, United States) syringe pump at a rate of 100 nl/min.
Cannulae remained inserted for 1 min after infusion to allow
for diffusion. Formulation of vehicle was 4.6% 1N HCl, 4.6% 1N
NaOH, and 90.8% 30% (w/v) SBE-β-Cyclodextrin. Animals were
excluded when cannulae placements were not within the CeA
or amygdala region (BLA/LA) within both hemispheres (based
on coronal brain sections, Paxinos and Watson atlas), when
extensive damage was observed at the injection site, and when
enlarged ventricles were observed. Formulation was maintained
for injections that were administered at 10 mg/kg.

Fear Conditioning
The day prior to conditioning, rats were handled and habituated
to the conditioning box (25.5 × 25.5 × 39.5 cm) for 10 min.
The conditioning box was situated in a larger sound-attenuated
chamber (Ugo Basile, Monvale, Italy), which was illuminated

with a white 15-Lux light. A speaker in the rear wall of the
chamber was operating during all sessions to provide white noise.
The floor of the conditioning box was constructed of parallel
stainless-steel bars and connected to a scrambled shock generator
(Ugo Basile, Monvale, Italy). Before each trial, the chamber and
the conditioning box were cleaned with 70% ethanol to remove
olfactory cues. On the acquisition day, rats were treated 30 min
prior to fear training with 30 mg/kg JNJ10397049, or either
10 mg/kg, 30 mg/kg i.p., or 300 pmoles/100 nl cannula injection
of compound 56. Five trials consisted of a 20 s, 4 kHz, 80 dB tone
that co-terminated with a 0.5 s, 0.8 mA foot shock [inter-trial
interval (ITI) 60 s]. This data was analyzed by comparing the first
and last 20 s bins that correspond to the tone. Rats were allowed
to explore the chamber for 100 s before conditioning began and
remained in the chamber for 60 s after the last trial. The following
day, the same rats were subjected to a second treatment of orexin
antagonist or vehicle and tested for conditioned fear responses
(freezing). In this test, rats were exposed to eight conditioned
stimulus (CS) tones (4 kHz, 80 dB, 20 s, ITI 60 s). Total time
freezing during the CS presentations (20 s bin) were recorded
and scored for each rat, and this number was expressed as a
percentage of the total CS. Freezing was defined as the absence
of all movement except for normal breathing. Animals that did
not acquire fear (less than 10% freezing on acquisition day) were
excluded.

Statistical Analysis
All data are represented as means ± SEM. The n-value for each
group is given in figure legends. Electrophysiological data was
recorded as response per cell and averaged for each condition.
For all experiments, a single condition contains a minimum of
three animals to aid reproducibility. All analyses were performed
using GraphPad Prism 6 (Prism 6, GraphPad Software, La Jolla,
CA, United States). Two-way ANOVA with Sidak’s post hoc test
was used for multiple comparisons and one-way ANOVA with
Sidak’s post hoc test was used where appropriate. In the results,
reported statistics are for two-way ANOVA unless otherwise
specified. Symbols denote statistical significance meeting p < 0.05
threshold. Datasets are available upon request.

RESULTS

Orexinergic Projections Mediate
Depolarization of CeA Neurons
Orexin A immunostaining reveals amygdala nuclei innervation
by orexinergic fibers (Figures 1A,B). In alignment with a
previous report that qualitatively observed dense OX innervation
of the CeA versus the LA or BLA (Peyron et al., 1998), we detected
∼70% more fluorescence in the CeA than other amygdala nuclei
[one-way ANOVA region effect F(2, 12) = 14.16, p = 0.0007,
Sidak’s p ≤ 0.0036 for CeA versus LA or BLA] (Figure 1C).
To examine the cellular consequences of OX innervation of
the CeA, we applied OX neuropeptides to acute brain slices.
Here, compared to time control vehicle group, we detected
depolarization of CeA neurons in response to bath application
of OX A [interaction F(2, 33) = 15.58, p < 0.0001, time effect
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FIGURE 1 | OX mediates postsynaptic depolarization of CeA neurons. (A) Representative 20× images revealed OX A positive cell bodies in the PeF (f is fornix,
−2.80 mm bregma) and OX A positive fibers in the amygdala (−2.40 mm bregma). Boxed area is enlarged to show individual OX A-positive PeF neurons.
(B) Schematic of PeF projections to the amygdala and (C) summary quantification of fluorescence, n = 7 animals. (D) Depolarization response to OX A was
observed for CeA neurons (n = 9–15 cells). (E) CeA neurons depolarized to applications of either OX A or OX B (n = 10–12 cells). (F) Input resistance of CeA neurons
before and during OX perfusion. (G) Representative traces of OX mediated depolarization. Solid bars under traces indicate perfusion of OX or vehicle.
(H) Depolarization persisted following 1 µM TTX treatment indicating a postsynaptic effect (n = 9–11 cells). (I) Mapping of OX sensitive (blue, 23/51 recordings) and
insensitive (brown) neurons in the CeA shows a pattern of sensitivity in the medial CeA. Data are means ± SEM, symbols indicate significance by Sidak’s post hoc
test, p < 0.05, ∗ between subjects, # within subjects.

F(1, 33) = 45.42, p < 0.0001]. Application of 200 nM OX A
significantly depolarized CeA neurons compared to vehicle and
1 µM OX A significantly depolarized CeA neurons compared to
200 nM OX A and vehicle conditions (Sidak’s between subjects
p ≤ 0.0003, within subjects p ≤ 0.0008) (Figure 1D). We
additionally observed that CeA depolarization was produced
by application of either OX neuropeptide OX A or OX B
[interaction F(2, 24) = 10.25, p < 0.0006, time effect F(1,

24) = 42.81, p < 0.0001]. Application of 200 nM OX A or
300 nM OX B significantly depolarized CeA neurons compared
to vehicle (Sidak’s between subjects p ≤ 0.0002, within subjects

p < 0.0001) without affecting input resistance (Figures 1E–G).
To determine the dependence of depolarization upon presynaptic
or postsynaptic machinery, we examined response to OXs
in the presence of 1 µM tetrodotoxin (TTX). TTX is a
voltage-gated sodium channel blocker that isolates postsynaptic
effects by blocking presynaptic activity. Significant OX-mediated
depolarization was maintained in these experiments [interaction
F(2, 58) = 6.877, p = 0.0021, time effect F(1, 58) = 36.32, p < 0.0001,
Sidak’s between subjects p < 0.0001, within subjects p < 0.0001]
suggesting a requirement of postsynaptic OX receptors expressed
on the recorded CeA neuron (Figure 1H).
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In a previous report, the depolarizing effect of OX on CeA
neurons was observed for medial CeA neurons but was not
examined in lateral CeA neurons (Bisetti et al., 2006). As the
major output of the amygdala to autonomic and hypothalamic
regions, activity of the medial CeA could be predictive of
behavioral phenotypes (Bisetti et al., 2006). Here, we chose to
record from cells throughout the entire CeA and observed a
pattern of OX sensitive neurons (blue, 23 of 51) in the medial
CeA and OX insensitive neurons (brown 28 of 51) in the lateral
CeA (Figure 1I).

Orexin Mediated Depolarization of
Central Amygdala Neurons Occurs via
OXR1 and Not OXR2
Orexin release contributes an excitatory input to CeA neurons
(Bisetti et al., 2006), but the mechanism by which this occurs has
not been completely described. Orexin A and B are produced
from a common prepro-OX precursor protein and are ligands
for two G-protein coupled receptors, OXR1 and OXR2. OXR2
displays equivalent affinity for each OX A and OX B, whereas
OXR1 displays greater affinity for OX A than OX B (Sakurai
et al., 1998). We have observed that either OX A or OX B can
produce depolarization of CeA neurons (Figure 1G). Recently
developed selective OXR1 and OXR2 antagonists allow for
comprehensive experiments to delineate OX-mediated cellular
mechanisms. We examined CeA depolarization, mediated by
OX A and OX B in the presence of selective OXR1 antagonist
C 56 (1 µM) and selective OXR2 antagonist JNJ10397049
(1 µM) (Figures 2A–D). Bath application of either OX A or
OX B induced significant depolarization of CeA neurons [OX A
interaction F(2, 26) = 7.234, p = 0.0032, time effect F(1, 26) = 30.58,
p < 0.0001; OX B interaction F(2, 24) = 15.61, p < 0.0001,
time effect F(1, 24) = 20.09, p = 0.0002] (Figures 2A,B). In
response to OX treatment following OXR2 antagonism, CeA
neurons were significantly depolarized (Sidak’s between subjects
p ≤ 0.0002, within subjects p < 0.0001). However, OXR1
antagonism with C 56 prevented OX A or OX B-induced CeA
neuron depolarization (red symbols, Sidak’s between subjects
p ≥ 0.07374, within subjects ≥ 0.1685). These data suggest
OX-mediated depolarization of CeA neurons is primarily via
activation of OXR1 and not via OXR2 (Figure 2E).

Chemogenetically Mediated OX
Transmission Induces CeA Neuron
Depolarization
Having observed depolarization of CeA neurons following bath
application of OX neuropeptides (Figure 1), we hypothesized
that stimulating activity of orexinergic PeF neurons would
recapitulate this response by inducing synaptic transmission of
OXs within the CeA. To specifically activate this subgroup of
CeA projecting fibers, we utilized a chemogenetic DREADD
(Armbruster et al., 2007) under control of the prepro-OX gene
promoter (Moriguchi et al., 2002). This virus has been previously
validated to express DREADD-coupled Gαq in OX neurons
and stimulate release of OX in response to DREADD agonist
clozapine-N-oxide (CNO) (Grafe et al., 2017).

FIGURE 2 | CeA depolarization to OX occurs via OXR1 but not OXR2.
(A) Summary data for the application of OX A, or (B) OX B, in the absence or
presence of receptor antagonists (OXR1 antagonist C 56 in red, and OXR2
antagonist JNJ10397049 in orange, n = 9–13 cells per condition).
(C) Representative traces of OX A conditions and (D) OX B conditions. Solid
bars under traces indicate perfusion of OX following 10 min perfusion of
antagonist. (E) Schematics illustrating that OXR1 antagonism prevents OX
mediated depolarization and OXR2 antagonism does not affect OX mediated
depolarization. Data are means ± SEM, symbols indicate significance by
Sidak’s post hoc test, p < 0.05, ∗ between subjects, # within subjects.

We targeted expression of DREADD selectively in the
PeF OX neurons by stereotaxic surgery and guide cannula
positioned, bilaterally, within the PeF to infect cell bodies
(Figures 3A,B). Fibers of OX-producing neurons that originate
in the PeF were activated in acute brain slices by 1 µM CNO
DREADD agonist and significant CeA neuron depolarization
was observed [interaction F(3, 29) = 4.607, p = 0.0094, time
effect F(1, 29) = 9.066, p = 0.0054]. This depolarization confirms
functional connectivity between orexinergic PeF and CeA
neurons (black symbols, Sidak’s between subjects p ≤ 0.0010,
within subjects p = 0.0002) (Figures 3C,D). We hypothesized
that CeA depolarization was due to local release of OX from
PeF terminal fields within the CeA. To test this, we removed
the medial section of brain slices to excise the PeF and
DREADD-expressing orexinergic cell bodies. Here, we again
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FIGURE 3 | Stimulated release of endogenous OX produces OXR1 dependent CeA neuron depolarization. (A) Representative PeF (20×) and CeA (40×) images
demonstrate DREADD-mCitrine-positive cell bodies and fibers of cells expressing prepro-OX-DREADD-mCitrine virus. Boxed area is enlarged to show individual
mCitrine-positive PeF neurons. (B) Schematic of regions that were imaged (−2.40 mm bregma for CeA, −2.80 mm bregma for PeF). (C) Summary data of
Clozapine-N-oxide (CNO), DREADD agonist, effects for the indicated conditions (n = 9–13). (D) Representative traces from CNO treated neurons. CNO stimulated
depolarization in animals expressing PeF-targeted DREADD virus except when OXR1 was antagonized by C 56. Solid bars under traces indicate perfusion of CNO.
Data are means ± SEM, symbols indicate significance by Sidak’s post hoc test, p < 0.05, ∗ between subjects, # within subjects.

observed significant CeA neuron depolarization following
1 µM CNO treatment (brown symbols, Sidak’s between subjects
p ≤ 0.0200, within subjects p = 0.0431) confirming that
modulation of CeA depolarization by DREADD-stimulated
release of OX is due to local CeA terminal fields. To test
whether DREADD-stimulated synaptic transmission from
orexinergic neurons and subsequent CeA neuron depolarization
is dependent upon OXR1, we antagonized the receptor with 1 µM
C 56 prior to CNO application. OXR1 antagonism prevented
DREADD-mediated depolarization thereby recapitulating
the requirement of OXR1 activity for OX-dependent CeA
depolarization (Sidak’s between subjects p ≥ 0.9999, within
subjects p ≥ 0.9992). An application of 1 µM CNO had no effect
on CeA neurons from naïve animals (Sidak’s between subjects
p ≥ 0.9999, within subjects p ≥ 0.9935) (Figure 3C).

Orexin-Mediated Depolarization of CeA
Neurons Requires Phospholipase
C-Mediated Activity of Sodium-Calcium
Exchanger
Underlying the activity of all excitable membranes are
choreographed shifts in conductance of specific ions (Hodgkin
and Katz, 1949). Therefore, the requirement of an ion for
OX-mediated CeA membrane depolarization can be determined

by limiting or eliminating its conductance. We applied this
strategy and utilized modified solutions to eliminate potassium
conductance at resting membrane potential, reduce sodium
equilibrium potential via ionic substitution, or chemically
chelate internal calcium. Under each of these conditions, OX
A-mediated depolarization of CeA neurons was examined.
A significant depolarization following OX A treatment was
maintained when potassium conductance was eliminated
[interaction F(2, 27) = 15.30, p < 0.0001, time effect F(1,

27) = 9.831, p = 0.0041, Sidak’s within subjects p < 0.0001]
and completely prevented when either sodium or calcium
conductance was restricted (Sidak’s within subjects p ≥ 0.8050)
(Figures 4A,B). Potassium conductance is the most commonly
described effector of OX-mediated depolarization within the
brain (Ivanov and Aston-Jones, 2000; Brown et al., 2001; Yang
and Ferguson, 2003; Yang et al., 2003; Hoang et al., 2004; Murai
and Akaike, 2005; Kolaj et al., 2007, 2008; Doroshenko and
Renaud, 2009). However, potassium does not appear to regulate
OX-mediated CeA depolarization compared to sodium and
calcium, conductances of which are both required.

Previous studies have detailed OX responses in other brain
regions as insensitive to pertussis toxin (Hoang et al., 2004)
and sensitive to phospholipase C (PLC) inhibition (Yang et al.,
2003). This indicates that OXs signal through Gq/11 G-protein
coupled receptors. Having observed dependence of OX-mediated
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FIGURE 4 | CeA depolarization to OX occurs via sodium and calcium conductance mediated by PLC and NCX activity. (A) Representative traces of CeA neurons
and (B) summary data for OX A treated cells with altered ionic gradients. Solid bars under traces indicate perfusion of OX. CeA depolarization did not occur when
sodium or calcium conductance was reduced, but was maintained when potassium conductance was eliminated (n = 8–11 cells). (C) Summary data for OX and
antagonist treated cells. PLC antagonist 10 µM U73122 and NCX antagonists 80 µM KB-R7943 and 3 mM NiCl prevented OX mediated CeA depolarization
(n = 7–10 cells). (D) Schematic of putative signaling pathway by which OX mediates postsynaptic depolarization via PLC and NCX without contribution to
depolarization by potassium channels. Data are means ± SEM, symbols indicate significance by Sidak’s post hoc test, p < 0.05, ∗ between subjects, # within
subjects.

depolarization upon both sodium and calcium conductance
(Figure 4B), we hypothesized that CeA OX signaling requires
sodium-calcium exchanger (NCX), a membrane protein that
contributes to conductance of both ions. We examined
contributions of PLC and NCX via antagonism of PLC by
10 µM U73122 and antagonism of NCX by 3 mM NiCl
and by 80 µM KB-R7943. In each condition, application of
the antagonist prevented significant depolarizing responses in
response to OX A application, and the antagonists themselves
had no effect on membrane potential [interaction F(4, 28) = 1.078,
p = 0.3862, time effect F(2, 28) = 1.88, p = 0.3198] (Figure 4C).
Based on these data, we put forward a putative cell signaling
model for OXR1 activation in the CeA includes PLC-dependent
calcium release and downstream NCX-mediated depolarization
(Figure 4D).

OX Modifies Presynaptic Glutamate
Release Into the CeA via OXR1
Several groups have shown that OX neurons colocalize with,
and release, the excitatory neurotransmitter glutamate (Torrealba
et al., 2003; Henny et al., 2010; Schone et al., 2014). In

the prefrontal cortex, presynaptic glutamate release can be
regulated by OX (Aracri et al., 2015). To examine whether
OX exerts effects on glutamate release in the CeA, we evoked
excitatory postsynaptic potentials (eEPSPs) in combination with
OX and OXR antagonists (Figure 5A). First, we observed
that compared to baseline evoked potentials, 200 nM OX
A increased excitatory potentials without modifying input
resistance [one-way ANOVA treatment effect F(2, 20) = 20.63,
p < 0.0001]. This indicates that OX potentiates glutamate
response (Figures 5B–D). Next we examined the PPR of two
stimulations. PPR is sensitive to altered presynaptic calcium
signaling and the availability of presynaptic vesicles (Regehr,
2012) such that a shift in the ratio is indicative of modifications
to presynaptic machinery. We observed that 200 nM OX A
shifted the PPR of CeA neurons by roughly 60% and that
this shift requires activity of OXR1. Antagonism of OXR2
with 1 µM JNJ10397049 had no effect on PPR compared
to OX A by itself, however, 1 µM OXR1 antagonist C
56 produced PPR comparable to baseline [one-way ANOVA
treatment effect F(4, 16) = 9.063, p = 0.0005]. The effects of
these conditions were counterbalanced by applying treatments
to recorded cells in random order and none of the conditions
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FIGURE 5 | OXR1 modifies presynaptic glutamate release in the CeA. (A) Schematic and image depicting location of stimulation and recording electrodes during
evoked excitation experiments. (B) Representative potential traces evoked from CeA neurons. (C) Summary data of potentials evoked from CeA neurons from a
holding potential of −70 mV and (D) their recorded input resistance (n = 11). (E) Representative paired-pulse potential traces for indicated treatments. (F) Summary
data of paired pulse ratios from CeA neurons treated with 200 nM OX A in the presence and absence of OXR antagonists (C 56 OXR1 antagonist and JNJ10397049
OXR2 antagonist) and (G) their recorded input resistance. Treatments were applied to the same cells in randomized orders (n = 5). Data are means ± SEM, symbols
indicate significance by Sidak’s post hoc test, p < 0.05, ∗ between subjects.

altered input resistance (Figures 5E–G). These data highlight
that OX action through OXR1 alters CeA presynaptic glutamate
release in addition to effects on postsynaptic membrane
potential.

OXR1 Antagonism in the CeA Reduces
Expression of Conditioned Fear
It has been previously shown that intracerebroventricular
delivery of OX enhances fear expression and that delivery of OX
antagonists reduces fear expression (Flores et al., 2014). We have
demonstrated that CeA depolarization and control of synaptic
transmission is dependent upon OXR1 but not OXR2 activity,
so we aimed to determine the effects of OXR antagonism on
fear expression. Compound 56 and JNJ10397049 were utilized to
antagonize OXR1 and OXR2 activity, respectively, 30 min prior
to auditory fear conditioning and 30 min prior to fear expression
testing. JNJ10397049 was administered I.P. at 30 mg/kg and
compound 56 was administered either I.P. at 10 or 30 mg/kg or
bilaterally via cannulae targeting the CeA at 300 pmoles/100 nl at
both time points.

In both systemic and intra-amygdala experiments, vehicle, C
56, and JNJ10397049 treated animals acquired fear, observed as
time effect and measured as difference in time freezing during
the first and fifth tone [systemic time effect F(1, 19) = 328.9,

p < 0.0001; intra-amygdala time effect F(1, 9) = 354.8, p < 0.0001]
(Figures 6A,B). On the following day, freezing response during
8 consecutive tones was evaluated in the absence of a paired
shock. Here, we observed significant tone and treatment effects
suggesting that animals began to extinguish fear over time
and that OX antagonism affected freezing [two-way ANOVA
systemic tone effect F(7, 91) = 6.789, p < 0.0001, treatment
effect F(3, 13) = 6.194, p = 0.0076]. Animals treated with
JNJ10397049 displayed similar freezing responses to vehicle
treated animals (black versus orange, Fisher’s LSD post hoc
analysis, p = 0.8624) suggesting that OXR2 antagonism did not
modify fear expression. Alternatively, both 10 and 30 mg/kg
treatments with C 56 reduced fear expression compared to vehicle
(bright and dark red, Fisher’s LSD post hoc analysis, p = 0.0477
and p = 0.0018) suggesting that OXR1 activity is required for
normal fear expression (Figure 6A).

We next administered C 56 via cannulae targeted to the
CeA (Figure 6B and Supplementary Figure 1). This allowed
us to examine the requirement of CeA OX signaling for
fear expression. Here, C 56 treated animals demonstrated
significantly reduced freezing responses [two-way ANOVA
intra-amygdala tone effect, F(7, 70) = 2.824, p = 0.0119, treatment
effect, F(1, 10) = 12.85, p = 0.0050] (Figure 6B). Therefore,
OXR1-mediated signaling contributes to CeA-dependent
expression of fear without affecting acquisition of fear memories.
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FIGURE 6 | OXR1 antagonism reduces expression of cued fear in rodents. (A) Summary data of auditory fear conditioning and expression following systemic I.P.
injections of vehicle, C 56 at 10 and 30 mg/kg, and JNJ10397049 at 30 mg/kg. (B) Summary data of auditory fear conditioning and expression following cannulae
injection of 100 nl vehicle or 300 pmole C 56. None of the treatment conditions affected fear acquisition. OXR1 antagonism, but not OXR2 antagonism, reduced
expression of cued fear. Data are means ± SEM, symbols indicate significance by Fisher’s LSD post hoc test, p < 0.05, # treatment effect.

DISCUSSION

Our report advances the understanding of OX signaling
mechanisms that modulate the activity of CeA neurons
and influence fear behavior. A previous report demonstrated
that intracerebroventricular injection of an OXR1 antagonist
enhances the extinction of fear memory (Flores et al., 2014).
Moreover, OXR1 knockout promotes extinction of conditioned
fear (Soya et al., 2013). These findings align with our own
data demonstrating reduced fear expression following systemic
and intra-CeA antagonism of OXR1. There is evidence that
in addition to OXR1 activity in the CeA, OXR1 activity in
the locus coeruleus (LC) is critical for fear learning. Through
the interruption of OX projections to the LC, consolidation of
fear acquisition is impaired (Sears et al., 2013). Furthermore,
OXR1-null mice display enhanced extinction of fear memory
that is reversed by virus-mediated recovery of OXR1 expression
exclusively within LC neurons (Soya et al., 2013, 2017). Thus,
a key role of OXR1 in regulating fear behavior has been
established for both the CeA and LC. The Sears et al. study
also put forward that there is no direct role for OXR1 signaling
in the lateral amygdala for control of fear memories. Our
data shows their finding may be the result of amygdala-level
organization of OX-positive terminal fields wherein orexin fiber
innervation of the CeA is 100% greater than the lateral amygdala.
We have demonstrated that intra-CeA infusion of an OXR1
antagonist prior to fear conditioning and again prior to fear
expression prevents expression of fear. This correlates with our
in vitro electrophysiology experiments showing OXR1 modulated
depolarization of the medial CeA. Together, our data has
validated the CeA as an important region for OX modulation
of fear memories. With our dual-treatment approach prior to
acquisition and prior to expression, reduced freezing could result
from either preventing expression of fear during expression
testing or preventing consolidation following acquisition. Future

experiments are poised to determine the detailed role of CeA
OXR1 in acquisition and/or consolidation of fear memories.

OX has emerged as an excitatory neuropeptide that engages
diverse signaling cascades downstream of the postsynaptic
receptor. OX-mediated excitation has been described to require
various combinations of activity by PLC, protein kinase
C, nonselective cation channels, altered sodium, calcium or
potassium conductance, and NCX (Eriksson et al., 2001; Yang
and Ferguson, 2002, 2003; Yang et al., 2003; Kolaj et al.,
2007; Doroshenko and Renaud, 2009; Chen et al., 2017).
The predominantly described mechanism of depolarization is
reduction of potassium conductance which facilitates slow and
moderate depolarization of neurons in several brain regions
(Ivanov and Aston-Jones, 2000; Brown et al., 2001; Yang and
Ferguson, 2003; Yang et al., 2003; Hoang et al., 2004; Murai
and Akaike, 2005; Kolaj et al., 2007, 2008; Doroshenko and
Renaud, 2009). Gq-linked receptors, such as OXRs, can modulate
conductance of various potassium channels including GIRK and
TASK (Cui et al., 2010; Wilke et al., 2014). A previous study
of CeA OX signaling demonstrated an OX mediated shift of
potassium ramp current (Bisetti et al., 2006). However, when
we eliminated contribution of potassium conductance, CeA
neurons depolarized in response to OX treatment (Figure 4).
We demonstrate that OX-mediated depolarization of CeA
neurons require NCX activity and resemble what is reported for
histaminergic neurons of the tuberomammillary nucleus without
a requirement for potassium conductance (Eriksson et al., 2001).

In the present study, we mapped the OX-sensitive and
OX-insensitive neurons within the CeA. We show a pattern of
OX sensitivity within the medial CeA and OX insensitivity within
the lateral CeA (Figure 1H). Within current models of CeA
circuitry (Badrinarayan et al., 2012), medial CeA neurons output
pro-fear behavioral responses whereas lateral CeA neurons
contribute to either direct GABAergic inhibition or disinhibition
of the CeM. The pattern of OX sensitivity in the CeM that we
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have observed would permit OX mediated pro-fear signaling to
occur. Lack of OX-sensitive neurons in the CeL is not surprising
due to the dual role of the region in positive and negative control
of the CeM during cured fear behaviors (Badrinarayan et al.,
2012). Our observed pattern of OX-sensitivity as well as the
postsynaptic dependence of OX mediated CeA depolarization is
consistent with a report by Bisetti et al. ((2006). Bisetti reported
that in response to equivalent applications of OX A and OX B,
CeM neurons produced depolarization responses with similar
amplitudes (Bisetti et al., 2006). Since OXR2 is expected to
demonstrate equal receptor occupancy for both OX A and OX
B neuropeptides (Sakurai et al., 1998), the authors hypothesized
that OX effects in the CeA may be mediated by OXR2. However,
agonist occupancy of OX GPCRs might not be predictive
of receptor selectivity. Our study has been assisted by the
development of OXR1 and OXR2 specific antagonists (Dugovic
et al., 2009; Bonaventure et al., 2015). We pharmacologically
isolated OX mediated effects on CeA neurons and made the novel
observation that CeA depolarization by OX requires OXR1, but
not OXR2 (Figure 2). These findings were confirmed using an
AAV-OX-DREADD virus to drive synaptic release of OX in the
CeA. The current study utilized this virus to identify connectivity
of OX-PeF neurons and the CeA and molecular requirements
of OXR1 signaling in the CeA. However, additional detailed
behavior studies using this virus during examinations of animal
fear behavior would help us to further understand the role of
OX in fear memories formation. An additional novel finding of
our study is that OX modifies presynaptic glutamate release in
the CeA, again via OXR1 but not OXR2. This observation is
similar to the presynaptic effect of OX in the prefrontal cortex
(Aracri et al., 2015). These mechanistic findings demonstrating
OXR1-mediated effects in the CeA are recapitulated by animal
behavior experiments that demonstrate OXR1 contribution to
fear expression.

OXR2 does not appear to influence the effects of OX in the
CeA, but the receptor has emerged as critical signaling machinery
for mediating wakefulness (Mang et al., 2012). This function of
OX has recently been targeted for treatment of insomnia with
suvorexant, a dual antagonist of OXR1 and OXR2 (Dohme, 2013;

Jacobson et al., 2014; Patel et al., 2015). Alternatively, OXR1 has
been implicated in hypothalamic-pituitary-adrenal response to
repeated stress and in expression of fear behavior (Heydendael
et al., 2011; Soya et al., 2013, 2017). Separate modalities for OXR1
versus OXR2 could allow for specific targeting of OXR1 function
to relieve fear-related symptoms.
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