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Despite significant advances in the understanding of the therapeutic activity of
antidepressant drugs, treatment-resistant depression is a public health issue prompting
research to identify new therapeutic strategies. Evidence strongly suggests that nutrition
might exert a significant impact on the onset, the duration and the severity of
major depression. Accordingly, preclinical and clinical investigations demonstrated the
beneficial effects of omega-3 fatty acids in anxiety and mood disorders. Although the
neurobiological substrates of its action remain poorly documented, basic research has
shown that omega-3 increases brain-derived neurotrophic factor (BDNF) levels in brain
regions associated with depression, as antidepressant drugs do. In contrast, low BDNF
levels and hippocampal atrophy were observed in animal models of depression. In
this context, the present study compared the effects of long-lasting fish oil-enriched
diet, an important source of omega-3 fatty acids, between heterozygous BDNF+/−

mice and their wild-type littermates. Our results demonstrated lower activation of
Erk in BDNF+/− mice whereas this deficit was rescued by fish oil-enriched diet. In
parallel, BDNF+/− mice displayed elevated hippocampal extracellular 5-HT levels in
relation with a local decreased serotonin transporter protein level. Fish oil-enriched
diet restored normal serotonergic tone by increasing the protein levels of serotonin
transporter. At the cellular level, fish oil-enriched diet increased the pool of immature
neurons in the dentate gyrus of BDNF+/− mice and the latter observations coincide
with its ability to promote anxiolytic- and antidepressant-like response in these mutants.
Collectively, our results demonstrate that the beneficial effects of long-term exposure to
fish oil-enriched diet in behavioral paradigms known to recapitulate diverse abnormalities
related to the depressive state specifically in mice with a partial loss of BDNF. These
findings contrast with the mechanism of action of currently available antidepressant
drugs for which the full manifestation of their therapeutic activity depends on the
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enhancement of serotoninergic and BDNF signaling. Further studies are warranted to
determine whether fish oil supplementation could be used as an add-on strategy to
conventional pharmacological interventions in treatment-resistant patients and relevant
animal models.

Keywords: brain-derived neurotrophic factor (BDNF), neurobehavior, antidepressant, anxiolytic fish oil (n-3) fatty
acids, serotonin

INTRODUCTION

Major depressive disorder (MDD) is an important public
health concern worldwide. The lifetime prevalence of MDD
is nowadays 15–20% of the population, and is expected to
become the second most prevalent cause of illness-induced
disability by 2020 (Lecrubier, 2001). These epidemiological
data prompt research to identify the cellular and molecular
mechanisms underpinning these mental disorders and to develop
innovative treatments with better therapeutic effects than
currently available medications. Indeed, despite their therapeutic
activity, antidepressant drugs, including selective serotonin
reuptake inhibitors (SSRIs), alleviate depression symptoms in
only a limited percentage of patients, and remain insufficiently
effective in treatment responders (Hamon and Blier, 2013).

Omega-3 polyunsaturated fatty acids (PUFAs) deficiency
has been associated with several pathologies such as mood
disorders, cardiovascular diseases, and stroke (Hibbeln et al.,
2006). Mammals are unable to synthesize omega-3 and its
supply depends on dietary intake. Fish oils represent the main
source of omega-3 PUFAs [(i.e., eicosapentaenoic (EPA) and
docosahexaenoic (DHA)] (Calder, 1998). Interestingly, it has
been reported that depressed patients display low plasma and
brain levels of omega-3 PUFAs (McNamara et al., 2007; Lin et al.,
2010). Such deficits were also found in other populations with
mental disorders: e.g., lower DHA and total omega-3 PUFAs in
postpartum depression (De Vriese et al., 2003) and lower DHA
in bipolar disorders (Chiu et al., 2003). Conversely, multiple
sources of evidence suggested that consumption of omega-3
PUFAs produces antidepressant activity in patients with MDD
(Peet et al., 1998; Marangell et al., 2003; Silvers et al., 2005;
Freeman et al., 2006; Lin and Su, 2007; Owen et al., 2008; Su et al.,
2008) or bipolar disorders (Montgomery and Richardson, 2008).
A recent meta-analysis also revealed a beneficial overall effect of
omega-3 PUFAs in patients under antidepressant drugs treatment
(Mocking et al., 2016), suggesting that supplementation with
these fatty acids could be used as an “add-on” strategy to reduce
treatment resistance, and potentiate treatment response (Peet
and Horrobin, 2002; Jazayeri et al., 2008; Gertsik et al., 2012).
Consistent with these clinical studies, research in rodents showed
that omega-3 PUFAs elicits a robust anxiolytic-like activity in
the elevated plus maze (EPM) (Pérez et al., 2013) and an
antidepressant-like activity in the forced swim and tail suspension
tests (Blondeau et al., 2009; Venna et al., 2009; Moranis et al.,
2012; Park et al., 2012; Vines et al., 2012). Moreover, omega-3
PUFAs were shown to improve anxiety-like and depressive-like
phenotypes in various animal models of depression (Pérez et al.,
2013; Pudell et al., 2014; Tang et al., 2015; Wu et al., 2016)

and their combination with SSRIs appeared to be more effective
than antidepressant drugs alone for reducing depression-like
behaviors (Lakhwani et al., 2007; Laino et al., 2010; Able et al.,
2014).

Antidepressant drugs activity is associated with the
stimulation of brain serotonergic neurotransmission (Gardier
et al., 1996) accompanied with an enhancement of adult
hippocampal neurogenesis. On the contrary, disruption of
hippocampal neurogenecis prevents the behavioral effects of
various classes of antidepressant in mice (Schmidt and Duman,
2007). A number of factors have been proposed to participate in
adult hippocampal neurogenesis and SSRI response including
Brain-Derived Neurotrophic Factor (BDNF) (Nibuya et al.,
1995). A single bilateral infusion of BDNF into the dentate
gyrus of hippocampus produced antidepressant-like effects
in naive mice (Deltheil et al., 2009) or in animal models of
depression such as the learned helplessness (Shirayama et al.,
2002). Interestingly, in heterozygous BDNF+/− mice or in
inducible BDNF KO lines of mice, deletion of BDNF in adults
does not impact on depression-like behavior evaluated in the
forced swim test (FST) (MacQueen et al., 2001; Saarelainen
et al., 2003; Monteggia et al., 2007). However, these mutants
display signs of antidepressant drugs resistance, notably at the
behavioral and neurochemical levels (Saarelainen et al., 2003;
Monteggia et al., 2004; Daws et al., 2007; Monteggia et al., 2007;
Guiard et al., 2008; Ibarguen-Vargas et al., 2009). In an attempt
to clarify the relationship between BDNF and the serotonergic
system, alterations in behaviors regulated by serotonin such as
hyperphagia and weight gain were demonstrated in BDNF+/−

mice (Lyons et al., 1999). BDNF+/− mice also exhibit accelerated
age-related loss of serotonergic innervation to the hippocampus
(Lyons et al., 1999; Luellen et al., 2007) and increased expression
of 5-HT transporter (Guiard et al., 2008). The latter effects likely
contribute to dampen serotonergic neurotransmission (Siuciak
et al., 1996; Mamounas et al., 2000) and strongly suggest that
normal BDNF signaling is essential for antidepressant efficacy in
mice.

Interestingly, the time course of omega-3 PUFAs-induced
antidepressant-like effects in rodents is compatible with
molecular and morphological changes taking place in the
hippocampus. In particular, it has been reported that prolonged
omega-3 PUFAs exposure stimulated BDNF expression and adult
hippocampal neurogenesis in mice (Wu et al., 2004; Rao et al.,
2007; Blondeau et al., 2009; Venna et al., 2009). In this context,
the present study was designed to determine to what extent
fish oil-enriched diet containing omega-3 PUFAs influence
serotonergic tone and markers of hippocampal plasticity in
BDNF+/− mice and their wild-type littermates. Using behavioral
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paradigms assessing anxiolytic/antidepressant-like activities,
we also examined whether fish oil-enriched diet represents
an alternative therapeutic strategy to currently available
antidepressant drugs in BDNF+/− mice.

MATERIALS AND METHODS

Animals and Dietary Treatment
Experiments were performed in accordance with the European
Union (86/609/EEC) and the French National Committee of
Ethics (87/848) policies regarding the care and use of laboratory
animals. BDNF+/− mice and their wild-type littermates initially
bred on a mixed S129/Sv x C57BL/6 genetic background
(Korte et al., 1995) were backcrossed to 129Sv strain, mated
and raised at the animal facility of the Université Paris-Sud
(Châtenay-Malabry, France) or at the Universidade Federal de
São Paulo (Sao Paulo, Brazil). One-month-old male mice were
genotyped by polymerase chain reaction and were randomly
assigned to receive either a control diet or a fish oil-enriched
diet for 12 weeks. Diets were prepared according to the
recommendations of the American Institute of Nutrition
(AIN-93) for rodents (Reeves, 1997) and were isocaloric and
normolipidic, i.e., diets had identical energy and lipid content.
The source of fat was soybean oil in the control diet and fish
oil (Sigma-Aldrich, St. Louis, MO, United States). Both diets

met the minimum suggested requirement for rodents of 2 g/kg
diet of alpha-linolenic acid (ALA). The fatty acids composition
of diets is depicted in Supplementary Table S1. Animals were
housed in groups of five mice per cage under standard conditions
(12:12 h light-dark cycle, 22 ± 1◦C ambient temperature, 60%
relative humidity), with ad libitum access to food and water.
Experimental timeline is depicted in Figure 1. Procedures were
conducted in conformity with the institutional guidelines in
compliance with national and policy (Council directive #87–848,
October 19, 1987, Ministère de l’Agriculture et de la Forêt, Service
Vétérinaire de la Santé et de la Protection Animale, permission
#92.196).

Fatty Acids Analysis in the Hippocampus
Mice were killed by cervical dislocation. The brains were
withdrawn and rinsed in saline (NaCl 0.9%). The hippocampi
were finely dissected, weighed and stored at −80◦C in CHCl3-
MeOH (v/v, 2/1) to further determine its fatty acids profile.
The lipids were extracted with chloroform/methanol (2/1),
according to an adaptation of the method previously described
(Rousseau et al., 2003). The phospholipids (PL) were separated
from non-phosphorous lipids on silica acid cartridges. After the
separation, the phospholipid fractions, mostly representative of
the membranes, were transmethylated with boron trifluoride
methanol 7% (Sigma-Aldrich, Saint Quentin Fallavier, France).
The methyl esters of phospholipid fatty acids were analyzed

FIGURE 1 | General procedure and experimental groups. Mice from each genotype were fed a control or fish oil-enriched diet for 12 weeks. In vivo procedures (i.e.,
behavioral and microdialysis experiments) were conducted while the animals were maintained under their respective diets. Given that it has been demonstrated that
the interval between behavioral tests could be as little as 1 day, with a weak effect on overall performance (Paylor et al., 2006), in the present study, a 2-day recovery
period between each test was provided. Moreover, to avoid the interference of behavioral testing on microdialysis experiments and notably the fact that the FST
represents a strong stressor for the animals, the collection of dialysate samples was conducted 10 days after the behavioral assessment. The next day, animals were
euthanized for immunohistochemistry, Western-blot and biochemical analyses.
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by gas chromatography coupled to FID (Auto Sampling 8410
Gas Chromatograph 3900; Varian, Les Ulis, France) on an
Econo-Cap EC-WAX capillary column (30-m, 0.32-mm internal
diameter, 0.25-µm Film, ref 19654, ALLTECH Associates Inc.,
Templemars, France), using heptadecanoic acid (margaric acid,
C17:0) as internal standard. Fatty acid composition was expressed
as the percentage of total fatty acid weight. Desaturase activity was
estimated according to Warensjo et al. (2009).

Intracerebral Microdialysis for the
Determination of Hippocampal
Extracellular Serotonin (5-HT) Levels
Under anesthesia (chloral hydrate, 400 mg/kg, i.p.), mice were
stereotaxically implanted with concentric microdialysis probes
(active membrane length: 2.0 mm, molecular weight cut-off:
4.5 kD) in the ventral hippocampus (coordinates in mm from
bregma: AP: −3.4, L: ± 3.4, V: 4.0). The next day, mice were
connected to a swivel system and the probes were connected
to a microinjection pump, allowing a continuous perfusion of
artificial cerebrospinal fluid (composition: NaCl 147 mM, KCl
3.5 mM, CaCl2 1.26 mM, MgCl2 1.2 mM, NaH2PO4 1.0 mM,
NaHCO3 25.0 mM; pH 7.4 ± 0.2) at a flow rate of 1.5 µl/
min. A 2 h-perfusion was performed to allow stabilization
of 5-HT concentrations and microdialysis samples were then
collected every 15 min. Microdialysates were kept at −80◦C
until analysis of 5-HT content by high performance liquid
chromatography (HPLC) coupled to an amperometric detector
(VT03; Antec Leyden, Netherlands). The amounts of 5-HT
in microdialysates (19 µl) were calculated by measurement
of peak heights relative to external standards. The limit of
sensitivity for 5-HT was ∼ 0.5 fmol/sample (signal-to-noise
ratio = 2).

Western-Blot Analyses of Serotonin
Transporter (SERT) and TrkB-BDNF
Signaling Pathway
The hippocampi were homogenized in lysis buffer (1%
Triton X-100, 100 mM Tris-HCl pH 7.4, 100 mM sodium
pyrophosphate, 100 mM sodium fluoride, 10 mM EDTA,
10 mM sodium orthovanadate, 2.0 mM phenylmethylsulfonyl
fluoride and 0.1 mg aprotinin/ml). Protein concentrations
were determined using a commercial kit (BioAgency,
Brazil). Equal amounts of proteins (50 µg) were loaded
and separated on 10% SDS polyacrylamide gels and transferred
onto nitrocellulose membranes (Amersham Biosciences, GE
Healthcare, United States). Membranes were saturated with
a blocking solution containing 1% BSA in TPBS (10 mM
Tris, 150 mM NaCl and 0.02% Tween 20). Protein blots were
incubated in 1% BSA in TPBS, overnight with the following
primary antibodies: anti-phospho-Akt, anti-phospho-p44/p42
Erk, anti-SERT, and anti-alpha-tubulin. Primary antibodies
were purchased from Cell Signaling (anti-phospho-Akt, anti
phospho-p44/p42 Erk) or Santa Cruz Biotechnology (St. Louis,
MO, United States) (serotoninergic and alpha-tubulin). After
washing, membranes were incubated with the appropriate
HRP-conjugated secondary antibodies (Sigma-Aldrich, St. Louis,

MO, United States). Staining was revealed using the ECL-Plus
Western blotting detection system (Thermo Scientific, Rockford
IL, United States). Chemiluminescence was quantified by
Scion Image software. After each revelation, membranes were
incubated in stripping solution (62.6 mM Tris-HCl, 2% SDS,
100 mM b-mercaptoethanol, pH 6.8) for 30 min at 45◦C and
reblotted. Results are presented as the ratio of the protein,
or phosphoprotein levels, to alpha-tubulin and are expressed
as a percentage of the controls (wild-type under the control
diet).

Immunohistochemistry to Assess Adult
Neurogenesis
5-Bromo-2-Deoxyuridine (BrdU) Injection and Brain
Preparation
A new cohort of mice was used for adult neurogenesis
experiments. Just before the beginning of the dietary treatment,
mice received i.p. injections of 5-bromo-2-deoxyuridine
BrdU (150 mg/kg; 2 times/day) dissolved in saline (0.9%
NaCl) for 4 days. After 12 weeks of dietary treatment, mice
were deeply anesthetized with ketamine and transcardially
perfused with 0.9% sodium chloride followed by 4%
paraformaldehyde (PFA) in 0.1 M phosphate saline buffer
(PBS). Brains were removed and postfixed overnight in
4% PFA at 4◦C. Brains equilibrated in 30% sucrose 0.1
M phosphate buffer were embedded in Tissue-Tek OCT
(Sakura, United States) and frozen. Coronal 40 µm-thick
sections were obtained with a cryostat (Leica, Bensheim,
Germany) and stored in cryoprotectant at −20◦C
until use.

BrdU Immunohistochemistry
One in six series of coronal sections (spaced 240 µm) throughout
the rostrocaudal extent of the hippocampus was used for
BrdU staining to evaluate new cell survival. Free-floating
brain sections were rinsed in PB containing 0.9% NaCl and
0.25% Triton X-100 (PBST) before inactivation of endogenous
peroxidases with 3% H2O2 in 10% methanol in PBS. Sections
were incubated in 2N HCl in PBST for 50 min to denature
DNA and then neutralized in 0.1M borate buffer (pH 8.5).
Sections were then blocked in PBST containing 5% normal
goat serum for 60 min, followed by overnight incubation in
primary antibody monoclonal rat anti-BrdU (1:400; OBT-0030,
Harlan Seralab, Loughborough, United Kingdom) in PBST
with 0.1% sodium azide containing 5% normal goat serum.
After incubation in goat anti-rat-biotinylated antibody (1:100,
BA9400 Vector) for 1 h at room temperature, sections were
incubated in the avidin-biotin complex (1:400 in PBS-T; Vector
Laboratories ABC Elite Kit) and staining was visualized with
DAB-Ni.

Doublecortin Immunohistochemistry
One in twelve series of coronal sections (spaced 480 µm)
of the rostrocaudal extent of the hippocampus was used for
doublecortin (DCX) staining to evaluate maturation of newborn
neurons. Sections were incubated in 0.1M phosphate buffered
saline with 0.5% Triton X-100 and 10% normal donkey serum
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(NDS), followed by goat anti-doublecortin primary antibody
(1:500; Santa Cruz Biotechnology, SC8066, Santa Cruz, CA,
United States) in TBS/Tx/NDS for 24 h at 4◦C. Sections
were then incubated in biotinylated donkey anti-goat secondary
antibody (1:500; Jackson ImmunoResearch, West Grove, PA,
United States) in TBS/NDS for 1 h at room temperature, followed
by a 1 h amplification step using an avidin-biotin complex
(Vector Laboratories ABC Elite Kit) and diaminobenzidine
(DAB; Vectastain DAB Kit) as previously described (Quesseveur
et al., 2013).

Quantification of Immunoreactive Cells
Slides were coded before analysis; the experimenter was
blind to genotype and diet until all samples were counted.
Quantification of BrdU-immunoreactive (BrdU+) and
DCX-immunoreactive (DCX+) cells was conducted using
Olympus BX51 microscope (Olympus Deutschland GmbH,
Hamburg, Germany). The corresponding surface area of the
granule cell layer (GCL) sampled for counting was measured
using the Mercator stereology system (Explora Nova, La
Rochelle, France). Density of positive cells was then calculated
by dividing the number of positive cells by the GCL area
sampled. Results were expressed as the number of positive
cells/mm2.

Behavioral Tests
Behavioral tests were performed between 9:00 and 11:00 am in a
low light condition. Studies in animals are reported in accordance
with the ARRIVE guidelines (McGrath et al., 2010). Thus, each
mouse was subjected the open-field (OF), the EPM and the FST.
This sequence was applied to minimize the impact of stress
across tests and a 2-day recovery period between each test was
provided (Figure 1). It is noteworthy that reducing the inter-test
interval reduces the possible effect of dietary administration on
tests.

Open Field was performed in Plexiglas setups (MED
Associates, France) during a 30-min session. Entries count and
total time in the center were measured by an automated system
(MED Associated, France). Total ambulatory distance was also
measured to ensure the absence of any locomotor effect of
genotypes and/or diets.

Elevated Plus Maze was performed in a Plexiglas apparatus
(MED Associates, France) during a 5-min session. Mice were
placed in the center of the EPM facing an open arm and entries
as well as time spent in the open and closed arms were measured
by an automated system (ANY-maze, Stoelting Co., Wood Dale,
IL, United States).

Forced Swim Test was performed in plastic buckets (20 cm
diameter, 23 cm deep) filled up to two thirds with water at
23–25◦C. FST was videotaped for a 6-min session period and the
last 4 min were scored for active (climbing and swimming) and
passive (immobility) behaviors by an experimenter blind to both
genotypes and diets.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism
software (Version 5, San Diego, CA, United States). Comparisons

between groups were made using an analysis of variance
(ANOVA), followed by Tukey’s post hoc analysis when warranted.
Significance was set at p < 0.05.

RESULTS

BDNF+/− Mice and Their Wild-Type
Littermates Fed a Fish Oil-Enriched Diet
Similarly Incorporate Omega-3 PUFAs in
Their Hippocampus
In the present study, two diets equivalent in total fat, protein,
carbohydrate and caloric content were formulated. The
control diet contained the fatty acid ALA, the precursor of
omega-3 PUFAs, and the fish oil-enriched diet presented higher
levels of EPA and DHA, two omega-3 PUFAs components
(Supplementary Table S1). The fish oil-enriched diet increased
levels of omega-3 PUFAs [F(3,10) = 83.1; p < 0.001] and
decreased the ratio omega-6 to omega-3 [F(3,10) = 568.2;
p < 0.001] in the hippocampus of both wild-type and
BDNF+/− mice. Hence, the partial genetic inactivation
of BDNF did not prevent the incorporation of omega-3
fatty acids into hippocampal phospholipid membranes
(Table 1).

Erk Phosphorylation Is Reduced in the
Hippocampus of BDNF+/− Mice and Can
Be Rescued by Fish Oil-Enriched Diet
Because initial studies demonstrated that forebrain BDNF mRNA
and protein levels in BDNF+/− mice were≈50% of the wild-type
(Ernfors et al., 1994; Korte et al., 1995; Kolbeck et al., 1999),
the activation of ErK and Akt in the hippocampus was used in
the present study as an indirect marker of changes in BDNF
signaling (Schmidt and Duman, 2010; Quesseveur et al., 2013;
Lepack et al., 2016). Under control diet, a significant reduction in
p-Erk protein levels was unveiled in BDNF+/− mice compared
to wild-type littermates (p = 0.04, Figure 2A). Fish oil restored
p-Erk protein to normal levels (p = 0.04) in BDNF+/− mice,
whereas it had no impact on p-Erk in wild-type animals (p = 0.7;
Figure 2A). We also monitored the expression of p-Akt and
found that partial BDNF depletion had no impact this parameter.
Moreover, no significant effects were detected in either wild-type
nor BDNF+/− mice fed a fish oil-enriched diet [F(3,16) = 0.9;
p = 0.4; Figure 2B]. Altogether, these data support the fact that
the partial BDNF depletion leads to impairment of Erk signaling
pathway, a deficit which can be rescued by fish oil-enriched
diet.

Fish Oil-Enriched Diet Thwarts the
Perturbation of Serotoninergic
Neurotransmission Induced by BDNF
Depletion in the Hippocampus
We then sought to determine whether fish oil-enriched diet
influenced hippocampal serotonergic tone by first assessing the
expression of the 5-HT transporter SERT in the hippocampus
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TABLE 1 | Fatty acids profile (% of total fatty acids) of hippocamrpus membrane phospholipids of wild-type and BDNF+/− mice treated with control or fish oil-enriched
diet.

Wild-type mice BDNF+/−mice

Control diet Fish oil-enriched diet Control diet Fish oil-enriched d

Fatty acids

C14:0 0.83 ± 0.02 0.95 ± 0.02 0.98 ± 0.21 0.79 ± 0.03

C16:0 23.17 ± 0.05 23.06 ± 0.12 15.34 ± 5.27 22.79 ± 0.17

C18:0 21.27 ± 0.05 20.78 ± 0.15 24.38 ± 1.87 20.60 ± 0.21

6 SFA 46.03 ± 0.01 45.58 ± 0.23 41.45 ± 3.27 45.02 ± 0.41

C16:1n-7 0.57 ± 0.00 0.76 ± 0.034 0.933 ± 0.354 0.756 ± 0.046

C16:1cis-9 0.57 ± 0.02 0.64 ± 0.02 0.65 ± 0.12 0.62 ± 0.01

C18:1cis-9 14.41 ± 0.12 16.27 ± 0.16 15.87 ± 1.22 16.64 ± 0.13

6 MUFA 20.90 ± 0.19 22.93 ± 0.26 23.43 ± 2.08 23.34 ± 0.19

C18:2 n-6 (LA) 1.44 ± 0.11 0.88 ± 0.03∗∗∗ 1.65 ± 0.1 0.68 ± 0.02∗∗∗

C20:4 n-6 (AA) 12.20 ± 0.00 8.62 ± 0.10∗∗∗ 12.91 ± 0.57 8.45 ± 0.07∗∗∗

C18:3 n-3 (ALA) 0.04 ± 0.00 0.17 ± 0.04 0.04 ± 0.01 0.04 ± 0.00

0.03 ± 0.00 0.57 ± 0.05∗∗∗ 0.03 ± 0.01 0.63 ± 0.09∗∗∗

C20:5 n-3 (DPA)

0.24 ± 0.02 0.67 ± 0.02∗∗∗ 0.23 ± 0.02 0.74 ± 0.02∗∗∗

C22:5 n-3 (EPA)

14.49 ± 0.10 17.33 ± 0.24∗∗∗ 15.33 ± 0.30 17.62 ± 0.20∗∗∗

C22:6 n-3 (DHA)

6 PUFAs 32.91 ± 0.04 30.95 ± 0.35∗∗∗ 34.36 ± 1.78 30.96 ± 0.29∗∗∗

17.42 ± 0.04 11.77 ± 0.13∗∗∗ 18.50 ± 0.87 11.58 ± 0.07∗∗∗

6 PUFAs n-6

6 PUFAs n-3 15.13 ± 0.15 19.18 ± 0.21∗∗∗ 16.10 ± 0.30 19.38 ± 0.28∗∗∗

1.15 ± 0.01 0.61 ± 0.0∗∗∗ 1.15 ± 0.03 0.60 ± 0.01∗∗∗

n-6/n-3

Desaturase activity

19 16:1/16:0 0.025 ± 0.00 0.033 ± 0.00 1.244 ± 1.219 0.033 ± 0.002

19 18:1/18:0 0.673 ± 0.008 0.783 ± 0.012∗∗∗ 0.654 ± 0.02 0.808 ± 0.016∗∗

16 20:3/18:2 0.343 ± 0.01 0.433 ± 0.027∗∗∗ 0.299 ± 0.021 0.519 ± 0.019∗∗

15 20:4/20:3 25.55 ± 0.43 22.847 ± 0.48 26.13 ± 0.99 24.21 ± 0.81

SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids; LA, linoleic acid; AA, arachidonic acid; ALA, alpha-linolenic acid; EPA,
eicosapentaenoic acid; DHA, docosahesaenoic acid; DPA, docosapentaenoic acid. 6 SFA: sum of C14:0+ C15:0+ C16:0+ C18:0+ C20:0+ C22:0+ C23:0+ C24:0.
6 MUFA: sum of C14:1 n-9 + C15:1 n-9 + C16:1 n-7 + C16:1 n-9 + C16:1 n-11 + C18:1 n-7 + C18:1n-9 + C20:1 n-7 + C20:1 n-9 + C20:1 n-11 + C22:1 n-9. 6

PUFAs: sum of C18:3 n-3 + C18:4 n-3 + C20:3 n-3 + C20:4 n-3 + C20:5 n-3 + C22:5 n-3 + C22:6 n-3 + C18:2 n-6 + C18:3 n-6 + C20:2 n-6 + C20:3 n-6 + C20:4
n-6 + C22:2 n-6 + C22:3 n-6 + C22:4 n-6 + C22:5 n-6. 6 n-3: sum of C18:3 n-3 + C18:4 n-3 + C20:3 n-3 + C20:4 n-3 + C20:5 n-3 + C22:5 n-3 + C22:6 n-3.
6 n-6: sum of C18:2 n-6 + C18:3 n-6 + C20:2 n-6 + C20:3 n6 + C22:4 n-6 + C22:2 n-6 + C22:3 n-6 + C22:4 n-6 + C22:5 n-6. ∗∗p < 0.01 and ∗∗∗p < 0.001:
significantly different from the corresponding group of mice fed a control diet (n = 3/4 mice/group).

of wild-type and BDNF+/− mice. Under control diet, a
significant decrease in SERT protein levels was observed in
BDNF+/− compared to wild-type mice (p = 0.015). Although
fish oil had no effect on SERT protein levels in wild-type
mice (p = 0.7), this diet rescued SERT protein to control
levels in BDNF+/− mice (p = 0.02; Figure 3A). In light of
these findings, we tested the possibility that serotonergic tone
might be differentially modified in wild-type and BDNF+/−

mice. Accordingly, under control diet a significant increase in
extracellular 5-HT levels ([5-HT]ext) was detected in the ventral
hippocampus of BDNF+/− mice compared to their wild-type
littermates (p < 0.001). Fish oil-enriched diet normalized
this parameter in BDNF+/− mice (p < 0.001; Figure 3B).
These results indicate that the partial BDNF depletion is
responsible for an enhancement of serotonergic tone in the

hippocampus whereas fish oil-enriched diet restored normal
[5-HT]ext levels in BDNF+/− mice by heightening SERT protein
expression.

Fish Oil-Enriched Diet Increases
Densities of Immature Adult-Born
Neurons in the Dentate Gyrus of
BDNF+/− Mice
Because previous reports pointed out a role for 5-HT and BDNF
signaling in the control of hippocampal plasticity, particularly
regarding its ability to influence new cell survival and neuronal
differentiation (Nibuya et al., 1995; Quesseveur et al., 2013), we
examined the effects of fish oil-enriched diet on these parameters
in wild-type and BDNF+/− mice. To this end, we quantified
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FIGURE 2 | Fish oil-enriched diet increases p-Erk (Thr202/Tyr204) in the hippocampus of BDNF+/− mice. (A) Densitometric quantification of immunoblot analysis
from p-Erk (Thr202/Tyr204) (ANOVA: [F(3,16) = 4.2; p = 0.02]) and (B) p-Akt (Ser473) (ANOVA: [F(3,16) = 0.9; p = 0.4]) in the hippocampus of wild-type and
BDNF+/− mice fed a control (white bars) or fish oil-enriched diet (black bars) for 12 weeks. Data are expressed as means ± SEM of the ratio p-Erk/α-tubulin or
p-Akt/α-tubulin (% of wild-type mice fed a control diet). ∗p < 0.05: diet effect, #p < 0.05: genotype effect (n = 5 mice/group).

BrdU- and DCX-labeled (BrdU+ and DCX+) cells in the dentate
gyrus of mice from both genotypes. Densities of 12-week-old
BrdU+ cells were not significantly different among experimental
groups (Figures 4A,B), indicating that partial BDNF depletion
has no long-term impact on hippocampal new cell survival.
As regards the density of DCX+ cells, under control diet,
neuronal differentiation was not different between wild-type and
BDNF+/−mice. Interestingly, although fish-oil diet failed to alter
this parameter, a significant increase in the density of DCX+
cells was observed in BDNF+/− mice (p = 0.05; Figures 4C,D).
These results suggest that fish-oil enriched diet increases the
pool of immature neurons in the dentate gyrus of BDNF+/−

mice.

Fish Oil-Enriched Diet Exerts
Antidepressant and Anxiolytic-Like
Effects on BDNF+/− Mice
Finally, we tested the effects of fish oil-enriched diet on mice from
both genotypes submitted to behavioral paradigms designed to
evaluate different symptoms of depressive state such as anxiety in
the OF and EPM and despair in the FST.

In the OF test, numbers of entries in the center were not
statistically different between wild-type and BDNF+/− mice fed
a control diet (p = 0.06). In mice fed the fish oil-enriched diet,
the number of entries (p < 0.01) was significantly increased
in BDNF+/− mice (p < 0.01), but not in wild-type littermates
(p = 0.7; Figure 5A). Interestingly, similar results were obtained
on the time spent in the center (Supplementary Figure S1A).
To eliminate a putative bias, we verified that the locomotor
activity was not different between groups (wild-type control
diet: 3195 ± 461 cm during 30 min; BDNF+/− control diet:
2694 ± 209 cm; wild-type fish oil-enriched diet: 2794 ± 305 cm
and BDNF+/− fish oil-enriched diet: 3201± 154 cm [F(3,20) = 0.7;
p = 0.5491]).

Likewise, in the elevated plus maze, under control diet,
no differences were detected between BDNF+/− and their
wild-type littermates in the number of entries in the open
arms (p = 0.4). However, in mice fed the fish oil-enriched
diet, this parameter was significantly increased in BDNF+/−

mice (p < 0.01) but not in wild-type littermates (p = 0.4;
Figure 5B). Again, these results are consistent with those
obtained on the time spent in the open arms (Supplementary
Figure S1B).

Finally, in the FST, under control diet, wild-type and
BDNF+/− mice displayed the same duration of immobility
(p = 0.9). Fish oil significantly decreased the time of immobility
in BDNF+/− mice (p < 0.01), while it had no effect in wild-type
mice fed a control diet (p = 0.8; Figure 5C).

Overall, these set of behavioral data indicate that fish oil-
enriched diet elicited anxiolytic- and antidepressant-like activities
specifically in BDNF+/− mice.

DISCUSSION

The present study evaluated the effects of prolonged exposure
to fish oil-enriched diet in wild-type and BDNF+/− mice at
the molecular, cellular and behavioral levels. BDNF+/− mice
offer a good model to study non-conventional therapeutic
strategies for anxiety and depression since these mice are
less prone to respond to currently available antidepressant
drugs including SSRIs (Daws et al., 2007; Guiard et al., 2008;
Ibarguen-Vargas et al., 2009). One of the most remarkable
results obtained herein is that under control diet, the
partial BDNF depletion produced significant changes in
the hippocampus, including a decreased activation of the
MAP kinase Erk along with an elevated serotonergic tone.
However, these effects were not sufficient to impact cell survival
and neuronal differentiation in the hippocampus and to
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FIGURE 3 | Fish oil-enriched diet decreases serotonergic tone in the hippocampus of BDNF+/− mice. (A) Protein expression of the Serotonin Transporter (SERT).
(Left panel) Representative blots from SERT. (Right panel) Densitometric quantification of immunoblot analysis from SERT (ANOVA: [F(3,29) = 5.2; p = 0.002]) in the
hippocampus of wild-type and BDNF+/− mice fed a control (white bars) or fish oil-enriched diet (black bars) for 12 weeks. Data are means ± SEM of the ratio
SERT/α-tubulin (% of wild-type mice fed a control diet). ∗p < 0.05: diet effect; #p < 0.05: genotype effect significantly different from wild-type mice fed a control diet
(n = 8–9 mice/group). (B) Basal extracellular 5-HT levels ([5-HT]ext) in the hippocampus. Data are means ± SEM of basal [5-HT]ext (fmol/19 µL) measured for a
60 min-period in the hippocampus of mice from both genotypes fed a control (white) or fish oil-enriched diet (black) for 12 weeks (ANOVA: [F(3,25) = 67.23];
p < 0.001). ∗∗p < 0.01 and ∗∗∗p < 0.001: diet effect; ###p < 0.001: significantly different from wild-type mice fed a control diet (n = 6–9 mice/group).

Frontiers in Neuroscience | www.frontiersin.org 8 December 2018 | Volume 12 | Article 974

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00974 December 20, 2018 Time: 17:1 # 9

Zemdegs et al. Neurobehavioral Effects of Fish Oil

FIGURE 4 | Fish oil-enriched diet does not affect cell survival but increases the density of immature neurons in the hippocampus of BDNF+/− mice.
(A) Representative images of the dentate gyrus after 5-bromo-2-deoxyuridine (BrdU) immunostaining in each experimental group. Scale bar: 50 µm. (B) Density of
BrdU-labeled (BrdU+) cells 4 weeks after BrdU injection indicative of new cell survival. Data are means ± SEM of BrdU+ cell counts per mm2 (ANOVA: [F(3,19) = 0.8;
p = 0.4]; n = 5–6 mice/group) in the dentate gyrus of wild-type and BDNF+/− mice fed a control (white) or fish oil-enriched diet (black) for 12 weeks.
(C) Representative images of the dentate gyrus showing doublecortin-labeled (DCX+) cells in each experimental group. Scale bar: 50 µm. (D) Density of DCX+ cells
in the dentate gyrus, indicative of the presence of immature neurons. Data are means ± SEM of DCX+ cell counts per mm2 (ANOVA: [F(3,26) = 3.6; p = 0.025]) in
the dentate gyrus of wild-type and BDNF+/− mice fed a control (white) or fish oil-enriched diet (black) for 12 weeks. ∗p < 0.05: diet effect (n = 6–9 mice/group).

impact anxio-depressive-like behaviors. In a marked contrast,
long-term exposure to fish oil-enriched diet in BDNF+/− but
not in BDNF+/+ mice increased the activation of Erk and
decreased serotonergic tone. These molecular changes were
accompanied by an enhancement of neuronal differentiation
along with reproducible anxiolytic responses and robust
antidepressant-like effects. Together these results led us to
envision that fish oil could exert its beneficial effects on mood

specifically in patients displaying decreased BDNF signaling in
the hippocampus.

The effects of fish oil-enriched diet, an omega-3 PUFAs source,
on anxiety have been poorly documented. The limited data
available in rodents show that supplementation of diet with
omega-3 PUFAs favors anxiolytic-like activities (Pérez et al.,
2013; Pudell et al., 2014), whereas their deprivation produces
opposite effects (Lafourcade et al., 2011; Larrieu et al., 2012).
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FIGURE 5 | Fish oil-enriched diet induces anxiolytic- and antidepressant-like
activities in BDNF+/− mice. (A) Anxiety evaluated in the open field. Data are
means ± SEM of the number of entries in the center of the arena (ANOVA:
[F(3,20) = 7.1; p = 0.002]). (B) Anxiety evaluated in the elevated plus maze.

(Continued)

FIGURE 5 | Continued
Data are means ± SEM of the number of entries in the open arms (ANOVA:
[F(3,20 = 2.8; p = 0.11]). (C) Antidepressant-like activity evaluated in the
forced swim test (FST). Data represent means ± SEM of the immobility time of
wild-type and BDNF+/− mice fed a control (white) or fish oil-enriched diet
(black) for 12 weeks (ANOVA: [F(3,20) = 7.1; p = 0.002]). ∗p < 0.05,
∗∗p < 0.01: diet effect; #p < 0.05: genotype effect (n = 6 mice/group).

The latter findings are not consistent with the present results
since we failed to unveil beneficial effects of fish oil in wild-type
BDNF+/+ mice submitted to the OF and EPM. One possible
explanation for this relies on the fact that the control diet
used in the present study was not deficient in omega-3. Indeed,
the therapeutic benefits of fish oil supplementation have been
found only in omega-3 deficient individuals, while those without
baseline deficits were less prone to benefit from supplementation
(Horrobin and Bennett, 1999). Alternatively, one would expect
that fish oil-enriched diet specifically dampens anxiety under
pathological conditions. In agreement with this hypothesis,
evidence demonstrated that the anxiolytic-like effects of omega-3
PUFAs are detectable after acute or chronic stress (Harauma
and Moriguchi, 2011; Mathieu et al., 2011; Ferreira et al., 2013).
Of particularly interest in the context of the present study
unveiling anxiolytic-like effects of fish oil in BDNF+/− mice,
it has been reported that such diet displays similar behavioral
properties in bulbectomized rats, an animal model of depression
also characterized by reduced hippocampal BDNF levels (Pudell
et al., 2014). In keeping with the latter findings, omega-3 PUFAs
supplementation was shown to improve social interaction in
a strain of mice displaying a reduction of BDNF levels in
various brain regions (Pietropaolo et al., 2014). Collectively,
these results suggest that the down-regulation of BDNF may be
a prerequisite for the manifestation of fish oil’s anxiolytic-like
activity. These findings are important since previous studies
reported that BDNF+/− mice are not responsive to chronic
imipramine treatment (Ibarguen-Vargas et al., 2009) or to acute
paroxetine administration (Guiard et al., 2008). Hence, fish
oil-enriched diet might be used either alone or as an add-on
strategy to antidepressant drugs in treatment-resistant patients
(Laino et al., 2010, 2014; Hou and Lai, 2016; Mayor, 2016).

To unravel the putative links between BDNF deficiency and
behavioral effects of fish oil-enriched diet, we examined the
functional activity of two proteins kinases in the hippocampus
(i.e., Erk and Akt). Doing so, we observed that BDNF+/−

mice displayed a significant reduction in the level of Erk
phosphorylation/activation whereas fish oil diet increased this
deficit. Such reversal effect might have contributed, at least in
part, to the anxiolytic properties of fish oil diet in these mutants.
In support of this hypothesis, we recently demonstrated that
an increase in hippocampal p-Erk correlates with a decrease
in the latency to feed in the novelty suppressed feeding test
(Quesseveur et al., 2015). Conversely, evidence showed that
rats microinjected with a specific inhibitor of Erk in the
hippocampus for seven consecutive days display anxiety-like
behaviors in the open field and the elevated plus maze (Qi
et al., 2009). Having shown that fish oil diet increases p-Erk
and exert anxiolytic effects specifically in BDNF+/− mice, we
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then explored to what extent the serotonergic system could be
involved an additional and possible component in the behavioral
characteristic of fish oil-enriched diet. Here, we report an increase
in basal [5-HT]ext in the ventral hippocampus of BDNF+/−

mice, which is normalized in response to fish oil-enriched diet.
Interestingly, evidence indicated that an abnormally elevated
5-HT tone favors anxiety through the activation of specific post-
synaptic 5-HT receptors including the 5HT1A, 5-HT2A/C or
5-HT3 subtypes (Hamon, 1994). Although the impact of fish oil-
enriched diet on hippocampal [5-HT]ext levels remains elusive, a
recent study pointed out that omega-3 PUFAs supplementation
in diet increases tissue 5-HT contents in hippocampus and
cortex associated to reduced 5-HIAA levels in 3 months-old
rats (Vines et al., 2012). The latter findings are relevant in light
of our microdialysis data since an accumulation of tissue (i.e.,
intracellular) 5-HT in fish oil fed animals could reflect lower
[5-HT]ext, notably if the release process is dampened (Kodas
et al., 2004). It is noteworthy that the putative inhibitory influence
of fish oil-enriched diet on [5-HT]ext levels in the hippocampus
of BDNF+/− mice may also result from mechanisms involving
the tryptophan hydroxylase 2 (TpH2), the rate-limiting enzyme
of 5-HT synthesis, and/or the monoamine oxydase (MAO), an
enzyme important in the catabolism of 5-HT. However, the
observations that omega-3 PUFAs enhance the expression of
tryptophan hydroxylase-2 (TPH-2) (McNamara et al., 2009),
while attenuating that of MAO-A/B in the brain (Delion et al.,
1997; Chalon et al., 1998; Naveen et al., 2013) are not compatible
with our neurochemical data. Because the serotonin transporter
SERT is an alternative target through which 5-HT tone may be
regulated, we studied this molecular element in the hippocampus.
As previously described, we found that BDNF+/− mice exhibited
lower levels of SERT protein expression in the hippocampus
(Guiard et al., 2008) thereby resulting in an elevated 5-HT
tone. Fish oil-enriched diet restored normal hippocampal SERT

expression, a process that contributed to normalize 5-HT tone
in the hippocampus in BDNF+/− mice and probably in other
brain regions. Hence, we demonstrated that fish oil-enriched
diet corrected SERT down-regulation directed at minimizing
the basal hyperserotonergic phenotype reported in BDNF+/−

mice. It is noteworthy that increased anxiety-related behaviors
were observed in adult SERT−/− mice (Holmes et al., 2003;
Kalueff et al., 2010; Sakakibara et al., 2014) which display
spontaneous higher [5-HT]ext. A corollary of this observation is
that a functional SERT is necessary to promote long-term fish
oil-induced anxiolysis as reported herein. In humans, a short
promoter variant in the SERT gene is linked to lower SERT
expression, leading to a reduced 5-HT reuptake (Bengel et al.,
1998; Murphy and Lesch, 2008). This short variant has also been
associated with anxiety-related personality traits (Lesch et al.,
1996; Hariri and Holmes, 2006; Canli and Lesch, 2007) and
it would be relevant to determine whether long-term exposure
to fish oil is effective in this specific population of patients.
Again, fish oil-enriched diet had no effect on serotonergic activity
in wild-type animals. This is likely due to the fact that these
mice display normal levels of anxiety and 5-HT transmission at
baseline.

As regards the antidepressant-like effects of fish oil in
BDNF+/− mice, it is difficult to envision that decreased
immobility observed in the FST relates to the decreased
serotonergic tone since an activation of 5-HT neurotransmission
is required to hinder behavioral despair in this paradigm (Page
et al., 1999). Alternative mechanisms are likely responsible for the
antidepressant response induced by long-term exposure to fish
oil-enriched diet. It is noteworthy that changes in hippocampal
TrkB/BDNF transmission strongly influence MAP kinases
signaling pathways, which in turn regulates depressive-related
symptoms (Schmidt and Duman, 2010; Lepack et al., 2016).
For example, interventions producing antidepressant-like effects

FIGURE 6 | Schematic representation of hippocampal neurochemical, molecular and cellular targets of fish oil-enriched diet and its behavioral effects in BDNF+/−

mice. In BDNF+/− mice, a decrease in the extracellular 5-HT concentrations and an increase in the level of Erk phosphorylation are observed in response to
long-term exposure to a fish oil-enriched diet. These effects might have contributed to positively reverberate on anxiety and despair. However, because the
enhancement of BDNF synthesis/release and related-signaling (Erk activation) in the hippocampus relies on the activation of local 5-HT tone, the results presented
herein cannot draw a cause and effect relationship between BDNF signaling and 5-HT neurotransmission. We propose that the beneficial behavioral effects of fish-oil
in BDNF+/− mice involved two distinct mechanisms leading on one hand, to decrease extracellular 5-HT concentrations (favorable for anxiolysis) and on the other
hand, to stimulate BDNF signaling and neuronal maturation (favorable for anxiolysis and antidepressant response).
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such as electroconvulsive shocks or chronic administration
of antidepressant drugs are generally associated with an
up-regulation of BDNF and downstream signaling pathways in
various brain regions including the hippocampus (Nibuya et al.,
1995; Balu et al., 2008; Quesseveur et al., 2013). Based on this
evidence, we can infer that the ability of fish oil to increase
p-Erk levels in BDNF+/− mice leading to a complete recovery
of initial hippocampal levels played an important role in the
induction of antidepressant-like effects. This is consistent with
the observation that addition of DHA to rat primary culture of
cortical astrocytes induced BDNF protein expression, an effect
blocked by a MAPK inhibitor (Rao et al., 2007). Moreover, it
is noteworthy that blunted Erk activation has been observed
both in depressed patients and in relevant animal models of
depression (Dwivedi et al., 2001; Feng et al., 2003; Gourley et al.,
2008; Yuan et al., 2010) whereas inhibition of kinases such as
MEK or Erk produced despair-like behaviors and prevented the
antidepressant-like effects of SSRIs in rodents (Shirayama et al.,
2002; Duman et al., 2007). The observation that fish oil-enriched
diet had no effect on Erk activation in wild-type animals is
consistent with the lack of effects of this diet on behavioral
parameters. The putative enhancement of BDNF signaling, as
suggested by Erk phosphorylation/activation in response to
fish-oil enriched diet in BDNF+/− mice, also draw our attention
because MAP kinases play an important role in the regulation
of adult hippocampal neurogenesis including the stimulation
of proliferation/differentiation of neural progenitor cells (Lee
et al., 2002; Sairanen et al., 2005; Li et al., 2008; Taliaz et al.,
2010), the maturation of newborn neurons and their survival (Lee
et al., 2002; Sairanen et al., 2005; Rossi et al., 2006; Wang et al.,
2015). However, comparing densities of surviving BrdU+ cells,
no differences were detected between wild-type and BDNF+/−

mice fed a control or a fish oil-enriched diet. However, from these
results we cannot provide definitive conclusion on cell survival
as long as the number of new generated cells is not assessed in
all experimental groups. Given that some studies have described
a neurogenic effect of omega-3 PUFAs through its ability to
stimulate neuronal maturation (Grundy et al., 2014; McCall
et al., 2015), we also quantified immature neurons, using DCX
immunolabeling. Interestingly, we observed increased numbers
of DCX+ cells in the dentate gyrus of BDNF+/− mice fed a fish
oil-enriched diet, suggesting that adult neurogenesis is impacted.
Whether increased numbers of DCX+ cells reflect a preferential
engagement of newborn cells toward a neuronal fate or a delay in
terminal neuronal differentiation remains to be explored.

In an attempt to identify the putative beneficial effects of
fish oil, we have to take into consideration the possibility
that it might act by modulating inflammatory processes.
Indeed, systemic administration of (LPS), widely used to create
neuroinflammation, is known to precipitate depression-related
behaviors in rodents (Dantzer et al., 2008) whereas evidence
indicates that the antidepressant-like effects of fish-oil result, at
least in part, from its ability to attenuate this state (Moranis
et al., 2012; Delpech et al., 2015; Fourrier et al., 2017). A recent
study reported that the TrkB agonist 7,8-dihydroxyflavone
(7,8-DHF) reversed LPS-induced depression-like phenotype
and morphological changes (i.e., spine density) in the mouse

hippocampus (Zhang et al., 2014). These findings suggest that
the enhancement of BDNF signaling could be a prerequisite to
decrease neuroinflammation (Xu et al., 2017) and to promote
the beneficial effects of fish oil in BDNF+/− mice. Nevertheless,
different reports indicated that BDNF+/− mice are protected
from inflammation not only in the whole brain (Javeri et al., 2010)
but also in peripheral tissues such as the heart and the gut (Yang
et al., 2010; Halade et al., 2013). Although these findings argue
against the fact that BDNF+/− mice could display hallmarks
of neuroinflammation, further investigations are warranted to
determine to what extent inflammatory processes such as
increases in the expression of pro-inflammatory cytokines,
activation of ubiquitous indoleamine 2,3-dioxygenase (IDO) or
recruitment of microglial cells are altered in these mutants and
whether fish-oil enriched diet positively reverberates on these
specific markers in the hippocampus.

CONCLUSION

Our data demonstrate that BDNF+/− mice were more sensitive
to the effects of fish oil-enriched diet than wild-type mice.
As depicted in Figure 6, the present study strongly suggests
that fish oil positively reverberates on emotionality through
its ability to decrease hippocampal extracellular 5-HT levels
and to increase the activation of Erk that might contribute by
itself to stimulate neuronal plasticity. It should be borne in
mind that fish-oil is a mix of omega-3 fatty acids including,
for example, eicosapentaenoic acid (EPA), docosahexaenoic
acid (DHA) or α-linolenic acid (ALA). Given that these
components display distinct effects on behavioral paradigms
assessing antidepressant-like activities (Jin and Park, 2015; Choi
and Park, 2017), it would be interesting to precise which of them
interfere specifically on neurobehavior. This will help optimize
an “add-on” strategy based on the combination of fish oil and
SSRI in animal models resistant to conventional monoaminergic
antidepressant drugs. In particular, it will be interesting to
determine the effects of fish oil-enriched diet in mice exposed to
chronic stress (e.g., restraint stress, unpredictable chronic mild
stress or even social defeat).
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FIGURE S1 | Fish oil-enriched diet induces anxiolytic-like activities in BDNF+/−

mice. (A) Anxiety evaluated in the open field. Data are means ± SEM of the time
spent in the center of the arena (ANOVA: [F(3,20) = 7.1; p = 0.002]). (B) Anxiety
evaluated in the elevated plus maze. Data are means ± SEM of the time spent in
the open arms (ANOVA: [F(3,20) = 2.8; p = 0.11]). ∗p < 0.05: significantly different
from the corresponding group fed a control diet (n = 6 mice/group).

TABLE S1 | Fatty acids content in control and fish oil-enriched diet.
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