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Humans selectively process external information according to their internal goals.

Previous studies have found that cortical activity and interactions between specific

cortical areas such as frontal-parietal regions are modulated by behavioral goals.

However, these results are largely based on simple stimuli and task rules in laboratory

settings. Here, we investigated how top-down goals modulate whole-brain functional

connectivity (FC) under naturalistic conditions. Analyses were conducted on a publicly

available functional magnetic resonance imaging (fMRI) dataset (OpenfMRI database,

accession number: ds000233) collected on twelve participants who made either

behavioral or taxonomic judgments of behaving animals containing in naturalistic video

clips. The task-evoked FC patterns of the participants were extracted using a novel inter-

subject functional correlation (ISFC) method that increases the signal-to-noise ratio for

detecting task-induced inter-regional correlation compared with standard FC analysis.

Using multivariate pattern analysis (MVPA) methods, we successfully predicted the task

goals of the participants with ISFC patterns but not with standard FC patterns, suggests

that the ISFC method may be an efficient tool for exploring subtle network differences

between brain states. We further examined the predictive power of several canonical

brain networks and found that many within-network and across-network ISFC measures

supported task goals classification. Our findings suggest that goal-directed processing of

naturalistic stimuli systematically modulates large-scale brain networks but is not limited

to the local neural activity or connectivity of specific regions.

Keywords: top-down goals, naturalistic condition, inter-subject functional correlation, multivariate pattern

analysis, large-scale brain networks

1. INTRODUCTION

Selective processing of information according to behavioral goals is crucial for our interaction with
the complex environment. However, the organizational basis underlying this goal-directed behavior
is unclear. Electrophysiological and functional imaging studies have suggested that task goals
modulate the neural representation of a stimulus (Mirabella et al., 2007; Ptak and Schnider, 2010;
Gilbert and Li, 2013). Recently, using powerful multivariate pattern analysis (MVPA) methods
(Norman et al., 2006; Haxby et al., 2014), many studies have found that top-down behavioral goals
can be decoded with distributed activities across frontoparietal and sensory regions (Chiu et al.,
2011; Waskom et al., 2014; Loose et al., 2017; Long and Kuhl, 2018).
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Despite numerous studies, most neural investigations of goal-
directed behavior have employed simple stimuli, such as moving
dots, static faces and object images, which are functionally well-
characterized (Nastase et al., 2017). However, many common
perceptual tasks require combining low-level features of stimuli
to represent abstract semantic information in our brains. With
the recent observation that less-controlled naturalistic stimuli
such as movies evoke reliable neural responses across individuals
(Hasson et al., 2004, 2010; Simony et al., 2016), a few studies
have used natural paradigms to investigate how task contexts
modulate the neural representation of high-level visual and
semantic information (Cukur et al., 2013; Nastase et al., 2017,
2018). These pioneering studies have found that goal-directed
processing of different objects or semantic features in natural
movies modulates distributed cortical areas. However, these
studies mainly focused on the modulation effects of behavioral
goals on neural activity in certain brain regions but ignored
the interaction between distributed cortical areas, which are
increasingly recognized as the biological basis for cognition and
behaviors (Fox et al., 2005; Sporns, 2014;Mišić and Sporns, 2016).

Evidence from electrophysiology studies indicates the
important role of neuronal synchronization in goal-directed
behavior (Von Stein and Sarnthein, 2000; Engel et al., 2001;
Womelsdorf et al., 2007). Similar findings have also been
reported in recent functional magnetic resonance imaging
(fMRI) studies (Spreng et al., 2010; Al-Aidroos et al., 2012).
For example, activity in V4 is correlated more strongly with
activity in the fusiform face area in a face attention task and
with activity in the parahippocampal place area in a scene
attention task (Al-Aidroos et al., 2012). Notably, most of these
studies used rudimentary visual stimuli and primarily focused
on connections between a limited number of brain regions
that were selected based on prior anatomical knowledge or on
activation patterns during tasks. These preselecting methods
may lead to some regions being ignored, given that goal-directed
processing of external information recruits a wide variety of
brain regions (Corbetta and Shulman, 2002; Petersen and Posner,
2012; Vaziripashkam and Xu, 2017). Accordingly, examining
whole-brain functional connectivity (FC) may provide new
insights into top-down goals representation.

A standard method to characterize whole-brain FC is to
calculate a Pearson correlation between the time series of all pairs
of regions within each subject (van den Heuvel and Hulshoff Pol,
2010; Zalesky et al., 2012). However, a potential limitation of
this method is that the calculated FC measures consist of task-
evoked correlations, within-subject intrinsic neural fluctuations,
and non-neuronal artifacts, and these types of signals cannot be
reliably separated (Hasson et al., 2004; Simony et al., 2016). Given
that the FC structure during task performance has been shown to
be highly correlated with the intrinsic FC structure (Cole et al.,
2014), it would be difficult to reliably detect differences in FC
patterns across task contexts. Recently, a novel method termed
inter-subject functional correlation (ISFC) has been proposed
(Simony et al., 2016). By calculating inter-regional correlations
between subjects that are performing the same task, the ISFC
method increases the signal-to-noise ratio (SNR) for detecting
task-evoked FC, making it an effective method for examining

subtle differences between cognitive states (Simony et al., 2016;
Rosenthal et al., 2017).

In the present study, we applied the ISFC method to a
publicly available dataset to investigate how behavioral goals
modulate whole-brain FC. Dynamic video clips of animals
behaving in natural environments were used as stimuli. During
the fMRI experiment, participants were required to made either
behavioral or taxonomic judgments when exposed to identical
naturalistic video clips. We used MVPA methods to explore task
modulation of whole-brain FC. We show that ISFC patterns
support successful task classification and that task goals modulate
connections between large-scale brain regions that can be
assigned to a variety of canonical functional networks.

2. MATERIALS AND METHODS

2.1. Subjects
A publicly available dataset was used in this study (Nastase et al.,
2017, 2018). This dataset was obtained from the OpenfMRI
database (http://www.openfmri.org), and the accession number
was ds000233. A total of 12 right-handed healthy adults
(7 females; mean age = 25.4 ± 2.6 SD years) provided informed
consent and participated in the main experiment. The study
was approved by the Institutional Review Board of Dartmouth
College.

2.2. Experimental Design
The experimental paradigm was described clearly in the original
paper of Nastase et al. (2017, 2018). We briefly describe the
most relevant aspects of the experimental design here for
completeness. A total of 80 naturalistic clips of behaving animals
(each lasting 2 s), collected from the Internet, were used in
the experiment. Semantically, these clips could be partitioned
into five groups based on taxonomic categories (primates,
ungulates, birds, reptiles, and insects) or four groups based on
behavioral categories (eating, fighting, running, and swimming).
Each participant completed 10 experimental runs (each lasting
392 s) while viewing these clips under two task contexts. In
half of the runs, participants were instructed to pay attention
to taxonomy types in the presented clips (taxonomy task runs),
and in the other half of the runs, participants were instructed
to pay attention to the behavioral types of the stimuli (behavior
task runs). These 5 taxonomic attention runs and 5 behavior
attention runs were presented in a counterbalanced order across
participants. Note that the appearance order of movie clips
in each experimental run of each subject was randomized.
Therefore, the appearance orders of clips in the two tasks were
irregular, it is unlikely that the following MVPA results were
contributed by differences of stimulus sequences between the two
tasks.

In the taxonomy task runs, participants were asked to press
a button if two sequential clips contained the same taxonomic
category. In the behavior task runs, participants were asked
to press a button if two sequential trials contained the same
behavioral category. There were 4 repetition trials in each run that
required a response. These tasks required participants to attend to
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the taxonomic or behavioral features of clips in a corresponding
task context.

2.3. Image Acquisition
Functional and structural images were acquired on a 3 T
Philips Intera Achieva MRI scanner with a 32-channel head coil.
Functional images were obtained using single-shot gradient-echo
echo-planar imaging with a SENSE reduction factor of 2 (TR/TE
= 2,000/35 ms, flip angle = 90◦, resolution = 3 mm isotropic,
matrix size = 80 × 80, FOV = 240 × 240 mm2, 42 transverse
slices in an interleaved fashion). Each participant completed
10 experimental runs in a scanning session, with an additional
structural scan obtained at the end of the session using a high-
resolution T1-weighted 3D turbofield echo sequence (TR/TE =
8.2/3.7 ms, flip angle = 8◦, resolution = 0.938× 0.938× 1.0mm3,
matrix size = 256× 256× 220, FOV = 240× 240× 220mm3).

2.4. Image Preprocessing
Imaging data were preprocessed using SPM12 (http://www.fil.
ion.ucl.ac.uk/spm) andDPARSF (Chao-Gan and Yu-Feng, 2010).
Functional data were slice-time adjusted, motion-corrected,
and normalized to the Montreal Neurological Institute (MNI)
space using a segmented high-resolution gray matter structural
image and a gray matter template. The resulting images were
detrended to abandon linear trends. The nuisance time series,
including motion, white matter, CSF and their derivatives, were
regressed out using linear regressions. Low-frequency signals
were removed using a high-pass filter (>0.08 Hz).We did not use
a low-pass filter, as in resting-state fMRI studies, as this allowed us
to retain potentially informative task signals at higher frequencies
(Shirer et al., 2012; Cole et al., 2013). Signals corresponding
to stimulus presentation were further removed using standard
general linear regression models of task events (Cao et al.,
2014; Cole et al., 2014). Specifically, task events were modeled
by convolving stimulus onsets with the standard hemodynamic
response function. These regressors were then regressed out from
voxel activities. The resultant residual time series were used for
the following functional network analyses.

2.5. Definition of Nodes
A 264-node brain atlas was used for FC analysis. This atlas was
derived from both resting and task FC meta-analyses (Power
et al., 2011) and has been widely used in network analyses
(Vatansever et al., 2015; Schultz and Cole, 2016). Each of
the 264 nodes was assigned to one of the 14 subnetworks in
the original publication (Cole et al., 2013). Among these 14
subnetworks, we focused on 10 well-established subnetworks,
including the frontoparietal, cingulo-opercular, salience, dorsal
attention, ventral attention, default mode, somatomotor (hand
and mouth), auditory, visual, and subcortical networks. The
other three networks, including the cerebellum network, the
memory retrieval network, and a network of uncertain function,
were also involved in our analyses, but they were treated as
a single subnetwork (the others network) for convenience.
Therefore, the 264 nodes were assigned to 11 subnetworks
in this study. The nodal-mean time series were extracted by
averaging the time series over all voxels in each of the 264

nodes, resulting in a neural signal matrix X, which has the
form of a P × N matrix containing time series from P nodes
over N time points. The neural signal matrix of each subject
and each experimental run was used for the following network
constructions.

2.6. Inter-subject Functional Correlation
We used the recently proposed ISFC to assess task-evoked FC
(Simony et al., 2016). The ISFC method effectively eliminates
intrinsic signals by calculating the inter-regional correlations
between different subjects who perform the same task. Assuming
we have a neural signal matrix Xk for each subject k, k = 1, ...,K
with each regional time series normalized to a zero mean and
unit variance. In contrast to the standard FC measure, which is
calculated within each neural signal matrix, the ISFC of subject k
is defined as the Pearson correlation between this subject and the
average of all other subjects:

Ĉk =
1

N
Xk[

1

K − 1

∑

q 6=k

XT
q ] (1)

which is a P × P correlation matrix where each element (i, j)
represents a correlation between node i of subject k and the mean
series of node j of the other subjects. To increase the normality of
the distribution of correlation values, each correlation coefficient
was converted to a z-score using Fisher’s r-to-z transformation.
To further impose symmetry, the final ISFC matrix of subject k

was given by (Ĉk + Ĉk
T
)/2. The group-based ISFC matrix was

calculated by averaging the ISFC matrixes across subjects:

Ĉ =
1

K

∑

k

Ĉk (2)

2.7. Similarity Analysis
A key question of this study was whether goal-directed visual
processing modulates whole-brain FC. Conceptually, if the task
goal modulates ISFC, similarities between ISFC patterns from
the same task should be higher than those from different tasks.
To confirm this hypothesis, we performed a similarity analysis
as follows. First, the neural signal matrices of each subject were
averaged across the 5 behavioral task runs and the 5 taxonomic
task runs, resulting in two neural signal matrices (one for
the behavioral task and one for the taxonomic task) for ISFC
pattern estimations. Then, the 12 subjects were randomly split
into two independent groups of 6 subjects, and group-based
ISFC matrices were calculated for each group and each task
according to Equation (2). Next, we calculated the between-task
ISFC similarity and within-task ISFC similarity across the two
groups. Specifically, the between-task ISFC similarity was defined
as the spatial Pearson correlation between the ISFC matrices
from different groups and different tasks (e.g., group 1 task 1
vs. group 2 task 2). The within-task ISFC similarity was defined
as the spatial Pearson correlation between the ISFC matrices
from different groups and the same task (e.g., group 1 task
1 vs. group 2 task 1). We repeated this procedure 462 times
(all possible situations with the 12 subjects divided into two
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groups of 6 subjects) and compared the mean within-task ISFC
similarities and mean between-task ISFC similarities across all
situations.

2.8. ISFC Classification of Attention Task
We further used MVPA methods to examine whether the task
goals of subjects could be predicted using whole-brain ISFC
patterns. A leave-one-subject-out-cross-validation (LOSOCV)
procedure was employed to assess the classification performance.
In each iteration of the LOSOCV, we left out the data of one
subject as the test set and use the data of the other subjects as
the training set. A template-matching method was used for task
label predictions (Simony et al., 2016). Similar to the similarity
analysis, neural signal matrices were first averaged across tasks
for each subject within the training set. Then, the group-based
ISFC matrices were calculated according to Equation (2) for each
attention task based on the corresponding neural signal matrices.
Therefore, based on the training data, we obtained one ISFC
matrix, Cbeh, for the behavioral task and one ISFC matrix, Ctax,
for the taxonomic task. These two matrices were used as ISFC
templates for the two attention tasks. Note that the test data were
never used to derive the ISFC templates.

For each run r of the left-out subject, we attempted to predict
its task label by comparing its ISFC matrix with the two ISFC
templates. We calculated an ISFC matrix, Cbeh,r , between the
run r and the average neural signal matrix corresponding to the
behavior task from the training set. Similarly, we also obtained an
ISFC matrix, Ctax,r , for the taxonomic task. The predicted label
for this run was then given by the attention task m ∈ {beh, tax}
that maximized the Pearson correlation between Cm,r and the
templates Cm:

m̂r = argmin
m∈{beh,tax}

{Corr(Cm,r ,Cm)} (3)

This procedure was repeated for each subject and each run, and
the classification accuracy was then computed as the proportion
of times that an experimental run was assigned to the correct task
context.

2.9. FC Classification of Attention Task
For comparison, we also used standard FC to classify task goals.
This procedure was similar as the ISFC classification procedure
described above except the FC matrixes were calculated within
subjects. We obtained a correlation matrix for each subject and
each experimental run by calculating the Pearson correlation
coefficient between every pair of nodes. The correlation matrixes
of the same task were further averaged within each subject.
Averaging correlation matrixes of each task increased the signal-
to-noise ratio (SNR) of estimated FC templates. Previous MVPA
studies have suggested that this average step often improve
classification performance to some degree (Isik et al., 2013;
Hebart et al., 2018). For the employed template-matching
method in this study, the testing sample was assigned the label of
the FC template with which it is maximally correlated. Therefore,
we would expect a better classification performance by increasing
the SNR of estimated FC templates. Then, using training data,
we obtained two FC templates Cbeh and Ctax by averaging the

correlation matrixes of the behavioral tasks and taxonomic tasks
across subjects, respectively. For a run r of the test subject, we
obtained its within-subject FC matrix Cr , and the label of this
FC matrix was predicted as the task that maximized the Pearson
correlation between Cr and the templates Cm:

m̂r = argmin
m∈{beh,tax}

{Corr(Cr ,Cm)}. (4)

2.10. Identifying Discriminative
Connections
Connections contribute differently to classification. To determine
discriminative connections that contributed more to task
classification, we performed an edge-based analysis similar to a
previous study (Finn et al., 2015). Computationally, the Pearson
correlation of two normalized vectors (zero mean, unit variance)
was calculated as the sum of the element-wise products. Thus,
an element with a large positive product contributes more to
the correlation coefficient. In this classification procedure, we
calculated Pearson correlation coefficients between the ISFC
matrix derived from the test data and the templates derived from
the training data, and the task label was chosen as the one that
resulted in the largest correlation coefficient. Conceptually, the
product of a discriminative connection should be large when the
test data and the template are from the same task. In contrast,
the product should be small when the test data and the template
are from different tasks. Therefore, given a test ISFC matrix
Cm,r for run r and templates Cm,m ∈ {beh, tax}, we defined the
discriminative measure of edge e as:

φm,r(e) = Comp(Cm(e) ∗Cm,r(e),Cu(e) ∗Cm,r(e)) u ∈ {beh, tax}, u 6= m

(5)
where Comp(a, b) = 1 if a > b, otherwise Comp(a, b) = 0.
The first term of the function, Comp(), is the within-task edge-
wise product, and the second term is the between-task edge-wise
product. The discriminative measures were then averaged across
all iterations of the LOSOCV to obtain a single value, φ(e), for
each connection e. A connection with a large φ(e) is thought to
be discriminative.

2.11. Subnetwork-Based Classification
To further assess the classification ability of individual canonical
subnetworks, we conducted the same LOSOCV procedure as
described above. However, this time, only within-network
connections calculated between regions from a specific
subnetwork or across-network connections calculated between
regions from two different canonical subnetworks were used for
task classification.

2.12. Effects of Scan Length on
Classification
Since an experimental run consisted of a relatively long time
series (196 time points), we further explored whether task goals
could be predicted using fewer time points. We varied the
number of time points n that were used to calculate the ISFC
measures between 20 and 180 in increments of 10. Following
previous studies (Finn et al., 2015; Greene et al., 2018), for each
number of time points n, we randomly chose the start time
point, and then extracted n continues time points beginning
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with that starting point to calculate the ISFC measures for task
classification. We did not extract time points randomly from
the whole series, because this strategy may ignore the temporal
autocorrelation of fMRI time series (Woolrich et al., 2001)
and thus bias the estimation of functional connectivity. This
procedure was repeated 10 times, and the mean classification
accuracies for these times were obtained.

2.13. Effects of Atlas on Classification
To test whether the task classification accuracy based on
ISFC measures was sensitive to the specific choice of atlas
and network assignments, we conducted the aforementioned
classification analyses using an additional 268-node atlas
provided by Shen et al. (2010). This atlas functionally
divides the brain into 268 regions by maximizing the
similarities of the voxel-wise time series within each
node and assigns each region to one of the following
subnetworks: subcortical-cerebellum, frontoparietal, default
mode, medial frontal, motor, visual 1, visual 2, or visual
association.

2.14. Statistical Analysis
We used a non-parametric permutation test (Nichols and
Holmes, 2002) to assess whether the difference between
the mean within-task similarity and the mean between-task
similarity was significant. We first combined the 462 within-
task similarities and the 462 between-task similarities into
one group. Then, we randomly split the group into two
equal-size groups and calculated the difference between the
means of these two groups. We repeated this procedure 1,000
times and obtained a null distribution of the differences.
The p-value was then calculated as the number of null-
hypothesis differences that were equal to or greater than
the observed true difference divided by 1,000. With this
approach, the smallest p-value that can be reported is
1/1, 000 = 0.001.

A non-parametric permutation test was also used to assess
the statistical significance of the task classification accuracy. In
brief, we first shuffled the labels of all the experimental runs
and then performed the aforementioned LOSOCV procedure for
ISFC features to obtain a classification accuracy. We repeated
this procedure 1,000 times, resulting in a null distribution of
accuracies. The p-values were calculated as described above.

For subnetwork-based classifications, to control for the
presence of multiple comparisons (Nichols and Holmes,
2002), we obtained the maximum classification accuracy
across all subnetworks in each iteration of the permutation.
These maximum values were used to construct the null
distribution of accuracies. Similarly, for classifications based
on variations in scan length, the maximum accuracies for
each assessed time point were used to construct a null
distribution.

To determine the discriminative connections, we obtained
the maximum discriminative measure for all connections at
each iteration of the permutation. The null distribution was
constructed using these maximum discriminative measures.
Connections with true discriminative measures larger than the

95th percentile of the null distribution were considered to be
discriminative (i.e., p < 0.05).

3. RESULTS

3.1. Behavioral Results
As stated in the original publication of the dataset (Nastase et al.,
2017), participants performed very well in both the behavior
task (mean accuracy: 0.994, SD: 0.005) and the taxonomy task
(mean accuracy: 0.993, SD: 0.005). A paired t-test revealed no
significant task-related difference in detection accuracy [t(11) =

0.469, p = 0.91]. In addition, response times were also not
significantly different between the two conditions [paired t-
test: t(11) = 0.015, p = 0.99), though the small number of
response trials might hinder a robust estimation of response
times. Therefore, it is unlikely that the subsequent classification
analyses were influenced by differential behavioral responses.

3.2. Modulation of Whole-Brain FC
We used a similarity analysis to examine the top-down
modulation of whole-brain FC. As shown in Figure 1A, when
the ISFC method was used to extract task-evoked FC patterns,
the within-task similarities were larger than the between-task
similarities, with most of the data points falling below the
diagonal. This difference was significant, as indicated by a
permutation test (p = 0.001). This finding indicates that whole-
brain FC was modulated when humans processed the same
stimulus with different task goals. In contrast, the standard
FC method resulted in very similar values for within-task
similarity and between-task similarity (Figure 1B), with no
significant difference observed between the two types ofmeasures
(p = 0.19). This result is consistent with recent findings that
connections observed during different tasks are highly correlated
(Cole et al., 2014). The successful detection of attentional
modulation of FC using the ISFCmethodmay be attributed to the
effectiveness of the ISFC method in eliminating intrinsic signals
(Simony et al., 2016; Kim et al., 2017).

3.3. Classification of Task Contexts
Having confirmed that task contexts modulated whole-brain
FC, we further applied MVPA methods to investigate the
possibility of task goals prediction. We used the ISFC method
to extract task-evoked FC for each of the tasks and used a
template-matching method to predict the task label of each
experimental run of a left-out subject. The LOSOCV procedure
showed an accuracy of 90% (Figure 2), which was significantly
higher than chance (50%), as indicated by a permutation test
(p = 0.001). We also performed the same LOSOCV procedure
using standard FC patterns (Figure 2A). In this case, the
accuracy was much lower and did not reach significance
(54.17%, p = 0.13). Together with the similarity analyses, these
results suggest that the ISFC method is powerful in detecting
subtle differences between cognitive states. Since the classification
accuracy was much higher with ISFC patterns than with standard
FC patterns, we focused on ISFC patterns in the following
analyses.
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FIGURE 1 | Modulation of whole-brain FC under different tasks. (A) Scatter plot of within-task correlation values vs. between-task correlation values calculated using

ISFC patterns. The within-task correlation value was significantly higher than the between-task correlation value (p = 0.001, permutation test), indicating that ISFC

patterns are more similar when subjects perform the same task than when they perform different tasks. (B) Scatter plot of within-task correlation values vs.

between-task correlation values calculated using standard FC patterns. The two types of measures were highly correlated, with no significant differences observed

(p = 0.63), suggesting that standard FC patterns are less sensitive at detecting modulated connections. Each data point corresponds to a random partition of the

subjects.

FIGURE 2 | Accuracy in task classification. (A) Accuracy of each single subject and mean accuracy across the LOSOCV using ISFC and FC patterns. The horizontal

dashed line shows the chance level (50%). (B) Permutation test of accuracy when ISFC patterns were used for classification. The histogram shows the null distribution

of accuracy values when task labels were randomly permuted, and the solid red line indicates the accuracy obtained for the true task labels. The classification

accuracy (90%) was significantly higher than the chance level (p = 0.001).

3.4. Connections Contribution to
Classification
The discriminative connections that largely contributed to
the classification were determined using edge-wise analysis.
Specifically, for each edge, a mean discriminative measure was
calculated across the LOSOCV procedure and compared to a
null distribution constructed from 1,000 random permutations.
We then identified discriminative edges as those that possessed
discriminative measures larger than the 95th percentile of the
null distribution. We found 383 discriminative connections
among all 34980 possible connections. These discriminative
connections are displayed in a circle plot (Figure 3) and
projected to a surface rendering of a human brain (Figure 4)
using the BrainNet viewer (Xia et al., 2013). The majority of
the discriminative connections are within the visual network
and between the visual network and other networks, mainly
including the dorsal attention, somatomotor, and default mode
networks.

3.5. Subnetwork-Based Classification
We have shown that the top-down behavior goals could
be reliably classified using whole-brain ISFC patterns and
found that discriminative connections were distributed across
several networks. However, whether a specific subnetwork
(e.g., the dorsal attention network) supports task classification
was not clear. To explore this possibility, we performed
classification analyses using the within-network ISFC measures
from each of the 11 canonical networks separately. As shown
in Figure 5, the classification accuracies of the somatomotor
(74.16%, p = 0.001), cingulo-opercular (67.50%, p = 0.003), visual
(89.170%, p= 0.001), frontoparietal (68.33%, p = 0.001), salience
(70.83%, p= 0.001), dorsal attention (78.33%, p = 0.001) and the
others network (75.83%, p = 0.001) were significantly higher than
chance (50%).

We also tested whether the across-network ISFC measures
between two subnetworks (e.g., connections between the visual
and dorsal attention networks) would support the classification
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(Figure 5). This analysis revealed many discriminative across-
network measures, mainly related to the visual, dorsal attention,
frontoparietal, and somatomotor networks. To further assess
the classification ability of each specific network, we averaged
the accuracies obtained using across-network ISFC measures
between each network and every other network. As shown
in Figure 5, all across-network measures showed significant

FIGURE 3 | Distribution of discriminative connections identified by edge-wise

analysis. Brain regions are arranged and color-coded according to 11

canonical subnetworks: frontoparietal (FPN), cingulo-opercular (CON), salience

(SAN), dorsal attention (DAN), ventral attention (VAN), default mode (DMN),

somatomotor (SMN), auditory (Aud), visual (Vis), subcortical (Sub), and a

network with other regions (Others).

accuracies. These results suggest that the modulated connections
are distributed across the brain and not limited to specific
subnetworks.

3.6. Effects of Scan Length on
Classification
To explore how the number of time points used for ISFC
estimation influenced the classification accuracy, we performed
the classification with ISFC calculated using a varying number of
time points between 10 and 180. We observed accuracies ranging
from 57.94 to 88.33%, with higher accuracies obtained using
larger numbers of time points (Figure 6). Permutation testing
revealed that the accuracies were significantly higher than chance
with scan lengths as short as 20 time points (40 s), suggesting
that attentional modulation of ISFC can be reliably detected using
relatively short scan lengths.

3.7. Effects of Atlas on Classification
We repeated the classification analyses using ISFC measures
calculated from a 268-node atlas that divides the human brain
into 8 networks. As expected, the subnetwork-based analysis
revealed a large number of within-network and across-network
ISFC measures that were discriminative in task classification
(Figure 5B). In addition, the average classification accuracies
found using across-network ISFC measures between a certain
subnetwork and every other subnetwork were significantly higher
than chance. For classifications using shorter time courses, the
use of this 268-node atlas led to similar accuracies as the
264-node atlas, with accuracies ranging from 59.39 to 81.11%
(Figure 6). These results suggest that our main findings have
robust reproducibility.

FIGURE 4 | Discriminative connections shown in sagittal (left/right), axial (top/bottom), and coronal (front/back) views. Nodes indicate brain regions, and edges

represent connections between regions. Only regions that formed discriminative connections are shown.
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FIGURE 5 | Classification accuracy using ISFC patterns of subnetworks. (A) Left: matrix representing the classification accuracy based on ISFC measures within and

between canonical subnetworks. Rows and columns represent predefined subnetworks based on the 264-node atlas. Only accuracies significantly higher than the

chance level (50%) are shown in the matrices (p < 0.05, corrected). The abbreviations for each subnetwork are the same as in Figure 3. Right: average accuracy

based on across-network ISFC measures between a specific subnetwork on the x-axis and all the other subnetworks. The horizontal dashed line shows the chance

level. Each of the subnetworks reached significance (all p = 0.001, corrected). (B) Similar information as presented in A, but with a different 268-node atlas that

contained 8 subnetworks: medial frontal (SMN), frontoparietal (FPN), default mode (DMN), subcortical-cerebellum (SubC), motor (MT), visual 1 (V1), visual 2 (V2), and

visual association (VA).

3.8. Effects of Head Motion
Previous studies have suggested that head motion can influence
the estimation of FC (Power et al., 2012; Van Dijk et al., 2012).
However, motion artifacts are unlikely to have contributed to
the observed successful task context classification using ISFC,
given that the classification accuracy determined using classic
FC measures was much lower than that of the ISFC measures.
To remain conservative, however, we further examined the
motion estimates for the two attention tasks. Using the motion
parameters generated during the motion correction procedure
during preprocessing, we calculated the average frame-to-frame
motion for each experimental run and each subject (Power et al.,
2012). This process resulted in a total of 60 (12 subjects, each
performed 5 runs per attention task) values for each task. These
values were assessed using paired t-tests to compare the head
motion difference between the two attention tasks.We found that
the difference between the two attention tasks was not significant
(t(59) = 1.568, p = 0.12). Therefore, the successful classification
of task goals is unlikely to be based on motion artifacts.

4. DISCUSSION

In this study, we investigated how behavioral goals modulate
the whole-brain FC of subjects. In contrast to previous
goal representation studies that used rudimentary stimuli

designed for a laboratory setting, dynamic, complex naturalistic
stimuli that conveyed rich information were used in this
experiment. This naturalistic paradigm suitably mimicked goal-
directed behavior in a real-life context. Given that top-down
information processing recruits wide swaths of brain regions,
we examined large-scale FC across the whole brain. We
employed a novel ISFC method to isolate task-evoked FC
from intrinsic neural fluctuations and non-neuronal artifacts.
We first conducted a similarity analysis and showed that
ISFC patterns were more efficient in representing specific
task context than standard FC patterns. We then employed
MVPA methods to examine whether attention tasks could be
predicted from the corresponding ISFC patterns. We found that
ISFC reliably distinguished one attention task from another
with a high classification accuracy, even with relatively short
scan lengths. We further identified many within-network and
across-network ISFC measures that enabled task classification,
suggesting a global modulation of connectivity patterns by task
contexts.

Multivariate approaches ensure high sensitivity to fine-
grained discriminative patterns (Norman et al., 2006; Zeng
et al., 2012; Haxby et al., 2014), and recent MVPA research
investigating task representation has shown that distributed

patterns of activity in the parietal, medial and lateral prefrontal
cortex (PFC) represent top-down tasks (goals) (Chiu et al., 2011;
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FIGURE 6 | Classification accuracy using shorter time series. ISFC patterns

were calculated with shorter time series and processed through the same

classification procedure. Solid lines and shaded areas indicate the mean

accuracies and SEMs across the 10 randomizations, respectively. Two

different atlases were used for this analysis.

Waskom et al., 2014; Long and Kuhl, 2018). However, these
findings were largely based on simple stimuli and task rules
and overlooked the interactions between regions. Our results
extend these studies by showing that selective processing of
complex visual information conveyed by naturalistic stimuli
modulated large-scale brain networks and that this modulation
contained highly predictive information on the task contexts. We
employed a LOSOCV procedure to estimate task classification
performance. This across-subject MVPA can be challenging,
given high levels of interindividual variability (Finn et al., 2015).
For example, in a previous study with a LOSOCV setting,
standard FC patterns successfully predicted which task a subject
was performing, but the classification accuracies were relatively
low (Cole et al., 2013). In the present study, the accuracy
obtained using standard FC patterns was not significant, which is
consistent with the similarity analysis showing that the standard
FC patterns of the two tasks were highly correlated. This negative
result may be attributed to the complex information contained in
the naturalistic stimuli, which drives complex neural responses
and thus hinders the detection of subtle differences between
two tasks. On the other hand, the modulation of FC measures
was possibly overwhelmed by intrinsic FC patterns, as previous
studies have found that resting-state FC largely matches the FC
during task performance (Cole et al., 2014; Kim et al., 2017).
In contrast, we obtained a high level of accuracy when using
ISFC patterns for the classification, and the accuracies remained
significant even when very short time courses were used for ISFC
pattern estimation. By repeating the MVPA procedure using
another brain atlas, we have also shown that the performance
was not specific to the choice of atlas. Along with previous
ISFC studies (Simony et al., 2016; Kim et al., 2017; Rosenthal
et al., 2017), the current successful classification of attention tasks
shows promise for the utilization of the ISFC method in other

contexts to investigate subtle differences between task-evoked FC
patterns.

The edge-based analysis and subnetwork-based analysis found
that ISFC measures within the visual network and between this
network and many other networks largely contributed to task
classification, indicating that connections with visual regions
are extensively modulated by behavioral goals. The activity of
visual regions is modulated in a variety of attention tasks,
possibly reflects the differentiated representation of visual stimuli
under specific task context (Mirabella et al., 2007; Reynolds and
Heeger, 2009; Jehee et al., 2011). Recent MVPA studies have also
found that activity in the visual cortex provides discriminative
information on which visual dimension of a stimulus the subjects
are processing (Waskom et al., 2014). In addition to biased neural
activity, many neuroimaging studies have found that interactions
with visual regions are modulated by behavioral goals (Maunsell
and Treue, 2006; Al-Aidroos et al., 2012). Attention to different
visual categories modulates connections between the occipital
and ventral temporal cortexes (Al-Aidroos et al., 2012). And
interactions between primary visual regions and frontoparietal
regions were enhanced when visual stimuli were attended (Griffis
et al., 2015). We provide additional evidence that connections
within the visual network and across-network connections
between the visual network and many other networks, including
the dorsal attention, frontoparietal, and default mode networks,
support the reliable discrimination of tasks under naturalistic
conditions. Interactions between the frontoparietal and sensory
regions are widely thought to play crucial roles in the biased
processing of goal-relevant sensory information (Miller and
Cohen, 2003; Vossel et al., 2014). Furthermore, enhancements
in the connections between the dorsal attention network and
the visual network have been observed during natural movie
watching, with the possible function of controlling attention to
the display (Kim et al., 2017). Our findings are well aligned
with these studies. Although there is evidence that the biasing of
sensory areas emerges from the frontoparietal regions (Bressler
et al., 2008; Baldauf and Desimone, 2014), we cannot investigate
this causal relationship because of the use of Pearson correlations
to represent interactions between regions. Methods such as
dynamic causal modeling (Friston et al., 2003) or Granger
causality (Roebroeck et al., 2005) may be employed for future
explorations of the direction of influences between regions.

The employed MVPA methods also revealed many other
within- and across-network ISFC measures that were modulated
by top-down goals. Indeed, we found that almost every
canonical subnetwork formed discriminative connections with
other subnetworks. Within-network connections in the dorsal
attention network and across-network connections between the
dorsal attention network and other networks such as the default
mode, somatomotor, and frontoparietal networks resulted in
high classification accuracies. Recent human neuroimaging
experiments and studies in stroke patients have suggested that
the dorsal attention network is largely involved in mediating the
top-down guided voluntary allocation of attention to locations
or features (Ptak and Schnider, 2010; Vossel et al., 2014). Regions
from the dorsal attention and frontoparietal networks have also
been consistently highlighted in task context representations
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(Chiu et al., 2011; Waskom et al., 2014; Long and Kuhl, 2018).
Our MVPA results are consistent with these findings, suggesting
that functional connections with frontoparietal regions are
differentially modulated by behavioral goals. The successful task
classification based on across-network connections with the
somatomotor network may be due to the biased processing
of action information in the behavioral attention task, since
action observations activate the somatomotor regions (Buccino
et al., 2001) and engage a network of sensorimotor brain regions
called the action observation network (Gardner et al., 2015).
Natural vision has been shown to modulate large-scale network
interactions, and recent attention studies using naturalistic
paradigms have demonstrated that attention to complex semantic
information changes the neural activity of widely distributed
regions (Cukur et al., 2013; Nastase et al., 2017). Our current
findings of distinct changes in broadly distributed within-
network and across-network connectivity suggest that goal-
directed behavior under naturalistic conditions is reflected not
solely by local changes in specific activations or connectivity but
likely by systematic changes across large-scale brain networks.
One limitation of this study is that the sample size of the publicly
available dataset we used is relatively small (12 subjects). This
relatively small sample size may compromise the reliability of
experimental results to some degree. In the future, we should
collect more fMRI data by ourselves to enhance the experimental
results.

In summary, using the novel ISFC method, we show
that selective processing of complex visual information under
naturalistic conditions modulates large-scale FC and that this
modulation supports the reliable discrimination of top-down
task goals. We identified a large number of within-network
and across-network discriminative connections, suggesting that
goal-directed processing of naturalistic stimuli modulates the
coordination of wide swaths of brain regions that belong to

different canonical functional networks. This analysis based on
large-scale brain networks extends previous studies of goal-
directed behavior that focused on changes in local neural activity
by showing that the modulation of connectivity between brain
regions is broadly distributed. Our study may shed light on
the role of large-scale brain networks in goal-directed behavior
and suggests that the ISFC may provide an efficient method for
identifying task-evoked networks.
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