AUTHOR=Breckwoldt Michael O. , Bode Julia , Sahm Felix , Krüwel Thomas , Solecki Gergely , Hahn Artur , Wirthschaft Peter , Berghoff Anna S. , Haas Maximilian , Venkataramani Varun , von Deimling Andreas , Wick Wolfgang , Herold-Mende Christel , Heiland Sabine , Platten Michael , Bendszus Martin , Kurz Felix T. , Winkler Frank , Tews Björn TITLE=Correlated MRI and Ultramicroscopy (MR-UM) of Brain Tumors Reveals Vast Heterogeneity of Tumor Infiltration and Neoangiogenesis in Preclinical Models and Human Disease JOURNAL=Frontiers in Neuroscience VOLUME=12 YEAR=2019 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.01004 DOI=10.3389/fnins.2018.01004 ISSN=1662-453X ABSTRACT=

Diffuse tumor infiltration into the adjacent parenchyma is an effective dissemination mechanism of brain tumors. We have previously developed correlated high field magnetic resonance imaging and ultramicroscopy (MR-UM) to study neonangiogenesis in a glioma model. In the present study we used MR-UM to investigate tumor infiltration and neoangiogenesis in a translational approach. We compare infiltration and neoangiogenesis patterns in four brain tumor models and the human disease: whereas the U87MG glioma model resembles brain metastases with an encapsulated growth and extensive neoangiogenesis, S24 experimental gliomas mimic IDH1 wildtype glioblastomas, exhibiting infiltration into the adjacent parenchyma and along white matter tracts to the contralateral hemisphere. MR-UM resolves tumor infiltration and neoangiogenesis longitudinally based on the expression of fluorescent proteins, intravital dyes or endogenous contrasts. Our study demonstrates the huge morphological diversity of brain tumor models regarding their infiltrative and neoangiogenic capacities and further establishes MR-UM as a platform for translational neuroimaging.