
fnins-12-01005 December 24, 2018 Time: 16:50 # 1

ORIGINAL RESEARCH
published: 07 January 2019

doi: 10.3389/fnins.2018.01005

Edited by:
Yangming Ou,

Harvard Medical School,
United States

Reviewed by:
Yi Su,

Banner Alzheimer’s Institute,
United States

Sergey M. Plis,
The Mind Research Network (MRN),

United States

*Correspondence:
Flemming Littrup Andersen

flemming.andersen@regionh.dk

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 15 August 2018
Accepted: 13 December 2018

Published: 07 January 2019

Citation:
Ladefoged CN, Marner L,

Hindsholm A, Law I, Højgaard L and
Andersen FL (2019) Deep Learning

Based Attenuation Correction
of PET/MRI in Pediatric Brain Tumor

Patients: Evaluation in a Clinical
Setting. Front. Neurosci. 12:1005.

doi: 10.3389/fnins.2018.01005

Deep Learning Based Attenuation
Correction of PET/MRI in Pediatric
Brain Tumor Patients: Evaluation in a
Clinical Setting
Claes Nøhr Ladefoged, Lisbeth Marner, Amalie Hindsholm, Ian Law, Liselotte Højgaard
and Flemming Littrup Andersen*

Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark

Aim: Positron emission tomography (PET) imaging is a useful tool for assisting in correct
differentiation of tumor progression from reactive changes. O-(2-18F-fluoroethyl)-L-
tyrosine (FET)-PET in combination with MRI can add valuable information for clinical
decision making. Acquiring FET-PET/MRI simultaneously allows for a one-stop-shop
that limits the need for a second sedation or anesthesia as with PET and MRI in
sequence. PET/MRI is challenged by lack of a direct measure of photon attenuation.
Accepted solutions for attenuation correction (AC) might not be applicable to pediatrics.
The aim of this study was to evaluate the use of the subject-specific MR-derived AC
method RESOLUTE, modified to a pediatric cohort, against the performance of an
MR-AC technique based on deep learning in a pediatric brain tumor cohort.

Methods: The modifications to RESOLUTE and the implementation of a deep learning
method were performed using 79 pediatric patient examinations. We analyzed the 36
of these with active brain tumor area above 1 mL. We measured background (B), tumor
mean and maximal activity (TMEAN, TMAX), biological tumor volume (BTV), and calculated
the clinical metrics TMEAN/B and TMAX/B.

Results: Overall, we found both RESOLUTE and our DeepUTE methodologies to
accurately reproduce the CT-AC clinical metrics. Regardless of age, both methods
were able to obtain AC maps similar to the CT-AC, albeit with DeepUTE producing the
most similar based on both quantitative metrics and visual inspection. In the patient-by-
patient analysis DeepUTE was the only technique with all patients inside the predefined
acceptable clinical limits. It also had a higher precision with relative %-difference to the
reference CT-AC (TMAX/B mean: −0.1%, CI: [−0.8%, 0.5%], p = 0.54) compared to
RESOLUTE (TMAX/B mean: 0.3%, CI: [−0.6%, 1.2%], p = 0.67) and DIXON-AC (TMAX/B
mean: 5.9%, CI: [4.5%, 7.4%], p < 0.0001).

Conclusion: Overall, we found DeepUTE to be the AC method that most robustly
reproduced the CT-AC clinical metrics per se, closely followed by RESOLUTE modified
to pediatric cohorts. The added accuracy due to better noise handling of DeepUTE,
ease of use, as well as the improved runtime makes DeepUTE the method of choice for
PET/MRI attenuation correction.
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INTRODUCTION

Positron emission tomography/Magnetic Resonance Imaging
with the combination of MRI and radiolabeled amino acid
analog tracers such as O-(2-18F-fluoroethyl)-L-tyrosine (FET)
PET offer complimentary information when imaging cerebral
brain tumors (Watanabe et al., 1992; Buchmann et al., 2016),
especially when estimating the true tumor extent both in low-
and high-grade gliomas (Kracht et al., 2004; Vander Borght
et al., 2006). The combined information from the two modalities
can help to discriminate post-operative changes or radiation
damage from true tumor relapse presenting with a contrast-
enhanced region (Mullins et al., 2005; Vander Borght et al.,
2006; Galldiks et al., 2015a,b). The experience with FET-PET
in pediatric and adolescent patients is limited, but it has
been shown that FET-PET can add valuable information for
clinical decision making (Dunkl et al., 2015). For pediatric
patients, there is a clear advantage of acquiring FET-PET
simultaneously with conventional MRI, as it offers a one-stop-
shop examination, limiting the need for a second sedation or
anesthesia as with PET and MRI in sequence, as well as improves
co-registration (Henriksen et al., 2016). The advantage of a
simultaneous PET/MRI comes with the challenge of accurate
attenuation correction (AC) in order for the FET-PET images to
be quantitatively correct (Vander Borght et al., 2006).

The initial shortcomings of the vendor-provided AC have
been solved for examinations of adult brains without abnormal
anatomy to a clinically acceptable precision (Ladefoged et al.,
2016), whereas MR-based brain AC methods targeted toward
pediatric subjects are scarce. Traditional atlas-based methods are
likely to fail, since they are based on a database of adult subjects
with normal anatomy (Spick et al., 2016). A database of pediatric
age-matched subjects (Bezrukov et al., 2015) is difficult to obtain
and might not be sufficient to model anatomical deformations
following surgical intervention. An obvious alternative, the MR-
based segmentation methods, is often challenged by the fact that
traditional MR sequences are not able to distinguish bone and
air due to the short relaxation time in bone. However, with
special sequences such as ultra-short echo time (UTE) and zero
echo time (ZTE), cortical bone can have a high signal despite
its very short spin-spin relaxation time (Robson et al., 2003).
Unfortunately, the use of these sequences is often hampered
by incorrect representation of tissues at air/tissue interfaces
(Ladefoged et al., 2015; Sekine et al., 2016) that needs to be
specially addressed if a bias is to be avoided. We have recently
introduced a PET/MRI-AC method, RESOLUTE (Ladefoged
et al., 2015), that makes use of UTE images to calculate an
attenuation map with continuous bone representation, and
overcomes the air/tissue interface challenges by using anatomical
regional masks defined on an aligned template in MNI space.
Within these masks, possible bias from the bone surrogate signal
is limited. We have shown that RESOLUTE led to the same
clinical diagnosis as the reference CT-AC in a challenging cohort
consisting of adult post-surgical brain tumor patients with severe
anatomical deformations (Ladefoged et al., 2017). A prerequisite
for successful application of RESOLUTE to pediatric cohorts is
that these masks should be defined on pediatric templates.

Recently, deep learning using convolutional neural networks
have demonstrated that they are able to handle complex signals,
including noise, while maintaining a high level of accuracy (Han,
2017; Liu et al., 2017; Gong et al., 2018; Leynes et al., 2018). Using
this technique, it could therefore be possible to limit the air/tissue
interface noise without regional masks, thereby avoiding the need
for any registration, as well as benefitting from the improved
inference speed usually associated with deep learning. Several
techniques using deep learning for MR-AC have been proposed
(Han, 2017; Liu et al., 2017; Gong et al., 2018; Leynes et al., 2018),
but none have been evaluated on a challenging cohort such as
pediatrics.

The aim of this study was to modify the original RESOLUTE
method to a pediatric cohort, and implement an MR-AC
technique based on deep learning, that takes the UTE images as
input and returns an attenuation map without any registration
steps or need for regional masks. In a pediatric brain tumor
cohort, we evaluated the attenuated FET-PET images of the
modified RESOLUTE method, the proposed deep learning
method and the vendor-provided DIXON-AC method using CT-
AC as reference standard, with the methods evaluated regionally,
as well as with metrics used clinically for diagnosis and follow-up
examinations.

MATERIALS AND METHODS

Patients
We included children with suspected brain tumor examined
with FET-PET using our PET/MRI system (Siemens Biograph
mMR, Siemens Healthcare, Erlangen, Germany) (Delso et al.,
2011) between February 2015 and October 2017, and 86 FET-
PET examinations in total were identified of children under the
age of 14. Seven examinations were removed due to missing or
corrupt data, resulting in 79 scans used to develop the method
(average age: 8 years, min: 2 months, maximum 14 years). For
evaluation of the four AC-methods, we included patients with
an active tumor area above 1 mL. Patients were part of a larger
study of FET-PET/MRI in primary CNS tumors in children and
adolescents approved by the regional ethical committee (ID: H-6-
2014-095) and registered at clinicaltrials.gov (NCT03402425) and
their parents gave written informed consent for participation.

Acquisition of CT
A reference low-dose CT image (120 kVp, 36 mAs, 74 slices,
0.6 mm × 0.6 mm × 3 mm voxels) of the head using a whole-
body PET/CT system was used (Biograph TruePoint 40 and 64,
Siemens Healthcare) (Jakoby et al., 2009). The CT images were
acquired either on the same day as the PET/MRI examination, or
at a previous PET/MRI+CT examination with no brain altering
surgery in-between. The longest time for any patient between
PET/MRI and low dose CT was 8 month.

Acquisition of MRI
The scan protocol included two vendor-provided AC methods: a
two-point DIXON-VIBE AC sequence with repetition time (TR)
2,300 ms, echo time 1 (TE1) 1.23 ms, echo time 2 (TE2) 2.46 ms,
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flip angle 10◦, coronal orientation, 19 s acquisition time, voxel
size of 2.6 mm × 2.6 mm × 3.12 mm, and a UTE AC sequence
with TR/TE1/TE2 = 11.94/0.07/2.46 ms, a flip angle of 10◦, axial
orientation, 100 s acquisition time, software version VB20P, field
of view (FOV) of 300 mm2, reconstructed on 192 × 192 × 192
matrices (1.6 mm× 1.6 mm× 1.6 mm voxels).

Acquisition of FET-PET
Patients were positioned head first with their arms down on
the fully integrated PET/MRI system. Data were acquired for
40 min immediately following injection of 3 MBq/kg (86 ± 37)
MBq FET (Langen et al., 2006) over a single bed position of
25.8 cm covering the head and neck. For the purpose of this
study, the summed PET data 20–40 min after injection from
the PET/MRI acquisition were reconstructed offline (E7tools,
Siemens Medical Solutions, Knoxville, TN, United States) using
3D Ordinary Poisson-Ordered Subset Expectation Maximization
(OP-OSEM) with 4 iterations, 21 subsets, zoom 2.5 and 5 mm
Gaussian post-filtering on 344× 344 matrices (0.8× 0.8× 2 mm3

voxels) in line with the clinical protocol used at our institution.
For all images, default random, scatter and dead time correction
were applied.

Attenuation Correction Methods
Four methods for AC were applied to the data. First, the CT image
was co-registered to the UTE TE2 image, and was used as our
gold standard AC reference following conversion of Hounsfield
Units as implemented on the Siemens PET/CT system. Second,
vendor-provided MR-based attenuation map were derived using
the DIXON VIBE sequence (Martinez-Möller et al., 2009). Third,
our recently proposed AC method, RESOLUTE, was updated to
process the pediatric cohort on two areas: (1) the regional masks
were re-drawn on pediatric templates in MNI space (Fonov et al.,
2011) spanning the ages: 0–2 m, <1 year, 1–2, 2–4, 4–8, 8–
11, and 11–14 years, and (2) the R∗2-CT bone mapping was
calculated for the pediatric patients by the use of a sigmoid fit
rather than a polynomial (Juttukonda et al., 2015). RESOLUTE
was derived for each pediatric patient, where we used 2-fold
cross validation to ensure that the mapping was not performed
on the same patients used to recalibrate the mapping. Lastly,
we implemented an MR-AC method based on deep learning
convolutional neural networks, denoted DeepUTE. The network
was based on a modified version of the U-net architecture
(Ronneberger et al., 2015; Çiçek et al., 2016), where the max
pool operations were replaced with convolutions with stride 2
(Springenberg et al., 2014), and each convolution, initialized
using He normal initializer (He et al., 2015), is followed by a batch
normalization, a rectified linear unit (ReLU) activation function,
and a dropout layer with increasing fraction from 0.1–0.3 in
the encoding part, and vice versa in the decoding part of the
network (Supplementary Figure 1). The network takes as input
3D volumes consisting of 16 neighboring slices for each of the
three UTE images, the echo images and the derived R2

∗-map (16
slices × 192 voxels × 192 voxels × 3 channels), and outputs the
corresponding CT slices (16 slices× 192 voxels× 192 voxels× 1
channel). We used the HU-converted co-registered CT image as
our target. We trained the 3D-network in Keras (Chollet, 2015)

with TensorFlow backend (Abadi et al., 2016) using the Adam
optimizer (learning rate = 10−4) (Kingma and Ba, 2014), mean-
squared-error as loss function, batch size of 2 for 100 epochs. The
35 million parameters that were determined during the training
process took 2 days on a Titan V (NVIDIA Corporation, Santa
Clara, CA, United States) graphics processing unit. From our
cohort of 79 scans, we did a 4-fold cross validation, effectively
training 4 networks on approximately 60 scans and evaluation on
the remaining. During testing, we predicted the 3D pseudo-CT
volumes around each slice, and computed the average voxel value
for each of the overlapping volumes.

Since the CT coverage were usually less than the PET/MRI
coverage, we added the DIXON-AC attenuation map outside
the CT field-of-view. This was also done for the subsequently
generated RESOLUTE and DeepUTE attenuation maps to allow
for a fair comparison to the reference.

Image Processing and Analysis
Image processing and analysis were performed similar to our
previous analysis of adult post-operative brain tumor FET-
PET patients (Ladefoged et al., 2017). First, a background (B)
region of interest was delineated in healthy appearing gray and
white matter at a level above the insula in the contralateral
hemisphere to the tumor. The biological tumor volume (BTV)
of FET-PET was measured using a 3D auto-contour using
Mirada XD software (Mirada Medical, Oxford, United Kingdom)
defining tumor tissue at a threshold above 1.6 of the mean
standardized uptake value (SUV) in the background ROI (Floeth
et al., 2005) for each AC method separately. Extratumoral
areas with high FET uptake, e.g., vascular structures, pineal
body and skin, were identified on either the T1w or FET-
PET image and removed from evaluation. The delineation
was performed by a nuclear medicine specialist experienced in
pediatric neurooncology (LM).

We assessed the different AC methods ability to produce
accurate FET-PET images on a patient-by-patient basis using
the most commonly semi-quantitative clinical metrics in the
diagnostic workflow. We measured the biological tumor volume
(BTV), mean (TMEAN) and max (TMAX), and the ratios TMEAN/B
and TMAX/B were calculated. For the BTV we analyzed the
tumor contours relative to the CT-AC reference using the Jaccard
similarity metric, and a measurement of shape deviations. The
calculated ratios were compared to the ratios calculated with
the reference CT-AC. These metrics are commonly used as a
criterion to identify active tumor tissue from reactive changes.
As described previously (Ladefoged et al., 2017), we defined
acceptance criteria of < ± 0.05 and 0.1 or 5% for the TMEAN/B
and TMAX/B ratios, respectively, and ± 2mL or 10% for the
BTV. These were based on differences in clinical practice that
may be considered clinically relevant in identifying biologically
active tumor tissue or treatment related change in activity (Piroth
et al., 2011). The mix of both an absolute and relative cut-
off reflects that larger absolute change is acceptable in large or
very active tumors. For each clinical metric we calculated the
mean difference, 95% confidence intervals (CI) and limits of
agreement on the log-transformed data, as the data was found
to have log normal distribution. Exponentiation was applied to
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these results to express the differences as ratios on the original
scale and report them as percentage differences. We corrected for
repeated measurements from the repeated examinations (Bland
and Altman, 1999).

RESULTS

A total of 28 patients met the inclusion criteria of 1 mL
active tumor area, 6 of which had one or more follow up
examination, resulting in a total of 36 examinations used for
evaluation (Supplementary Table 1). Both RESOLUTE and
DeepUTE were able to derive attenuation maps for all pediatric
patients regardless of the age. Ten of the 28 patients (35%)
had titanium implants present. Overall, DeepUTE had improved
accuracy over RESOLUTE: the Jaccard index was 0.57/0.62 in
air, 0.74/0.79 in soft tissue and 0.53/0.70 in bone tissue for
RESOLUTE/DeepUTE, respectively. The improved accuracy was
also apparent in a direct visual comparison of the estimation of
regional attenuation values in the nasal cavities, the skull base
and the mastoid processes, and can be appreciated in Figure 1,

where two patients with challenging anatomy are shown for
RESOLUTE-AC, DeepUTE-AC and CT-AC, and the relative
difference PET image in Supplementary Figure 2. Another
example of a typical patient is given in Figure 2. There was also
a significant improvement in AC runtime with values of 4 s for
DeepUTE and ∼3 min for of RESOLUTE, which although small,
improves the overall imaging workflow.

Across all pediatric patients, the Jaccard index of the tumor
delineation was 0.73 ± 0.20 for DIXON-AC, 0.90 ± 0.07
for RESOLUTE and 0.92 ± 0.07 for DeepUTE. The tumor
configuration did not change for any of the patients when using
RESOLUTE or DeepUTE compared to CT-AC but for DIXON-
AC this was found in 4 examinations (mean difference: 1.6 mL),
and was completely missed for an additional examination (BTV
with CT-AC: 2 mL).

The comparison of the clinical metrics can be seen in Figure 3,
together with the defined acceptable limits. Across all metrics,
using DeepUTE, none of the patients were outside the acceptable
limits, whereas two patients fall short of the TMAX/B limit and a
single patient in the TMEAN/B limit when using RESOLUTE. In
these patients, the largest difference was TMAX/B overestimation

FIGURE 1 | Sample cases for two pediatric patients with irregular anatomy. (A) show the T1w MPRAGE, (B) CT-AC, (C) RESOLUTE-AC, and (D) DeepUTE-AC. The
top rows show a 5-year-old patient with post-operative subcutaneous soft tissue swelling in the occipital region. RESOLUTE erroneously fills in a dual layer bone
layer on both sides of the swelling, along skin and bone. The bottom rows show a 6-year-old patient with air pockets anteriorly in the lateral ventricles that appeared
after surgical intervention, and are not imaged in RESOLUTE. Also in this case RESOLUTE crafts a dual layered skull in the occipital region. For both patients,
RESOLUTE is challenged in the definition of facial and skull base attenuation value. DeepUTE captures the morphology more confidently.
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FIGURE 2 | Comparison of CT (A), RESOLUTE (B), and DeepUTE (C) attenuation maps in the sagittal, axial and coronal orientation, respectively. (D,E) shows (B,C)
subtracted (A), respectively, and (F,G) shows the resulting relative difference in the PET images between RESOLUTE and DeepUTE relative to CT-AC, respectively.
The improved accuracy in the nasal cavities, the skull base and the mastoid processes, leads to a clear reduction of the errors in the surrounding regions, e.g., in the
medulla. It also appears that, for this patient, a small underestimation of the densities within the brain in DeepUTE leads to a small underestimation globally within the
brain. The tumor delineation is show on the sagittal view in (D–G).

of 0.13 a.u. due to overestimated bone area in the skull base.
In comparison, DIXON-AC gave a TMAX/B difference over the
acceptable limit in 23/36 (64%) examinations, and 13/36 (36%)
examinations had changes to BTV over the acceptable limit.

The relative %-difference in the diagnostic measures was
similar between RESOLUTE and DeepUTE, again with DeepUTE
with the reduced error and variation (Table 1). BTV measured
using DeepUTE was underestimated by 2% on average (95%
CI: −5 to 1%) compared to −1% (95% CI: −5 to 4%) with
RESOLUTE. None of the metrics had statistically significant
differences compared to the reference CT-AC. In comparison,
DIXON-AC had statistically significant differences in all three
clinical metrics (p < 0.001).

DISCUSSION

Magnetic resonance imaging is the method of choice to diagnose
brain tumor patients, but FET-PET can add valuable information
for clinical decision making (Dunkl et al., 2015). Examining
pediatric and adolescent patients on a hybrid PET/MRI can be

preferred over PET/CT to reduce the number of examinations,
which is especially relevant when anesthesia is required, and
is important for both child and parents. A prerequisite for a
confident clinical evaluation of the cohort with PET/MRI is an
accurate AC. The skull shape, density, thickness, and composition
change considerably during development in childhood especially
the first three years after which the sutures and fontanelles
gradually calcify and close (Li et al., 2015). Especially the rapid
growth of skull thickness and bone density will highly influence
attenuation leading to errors in atlas-based methods that cannot
account for the thin, low-density infant cranium.

In designing the clinical study, we were acutely aware of
these unresolved AC issues and choose to include a separate
low-dose CT acquisition. This could be performed safely in
all children, although it involved moving sensitive patients to
a different scanner for additional radiation exposure and, for
some children, extending anesthesia. This additional stress on
the patients was regarded ethically acceptable so that future use
of hybrid PET/MRI in pediatric brain tumors, which could be
one of the most important applications, could be performed with
the best possible assessment of risk to the patient caused by
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FIGURE 3 | Bland-Altman plot of TMEAN/B (top), TMAX/B (middle) and BTV (bottom) for the two AC-methods RESOLUTE and DeepUTE against the reference
standard CT-AC. The black lines indicate the acceptance criteria of TMEAN/B of ± 0.05 or 5%, TMAX/B of ± 0.1 or 5%, and BTV of ± 2mL or 10%, respectively.
Points that exceed the criteria have been colored. The age of the children exceeding the threshold using RESOLUTE are 7, 7, and 11 years, respectively. Note the
difference on the axes. The dashed gray line indicates the mean value.

quantitative inaccuracies using accepted standard metrics within
the field.

We modified the already thoroughly evaluated RESOLUTE
method to be applied on pediatric patients, as well as introduced
an MR-AC method based on a deep learning convolutional
neural network, and also included DIXON-AC. The novelty
of DeepUTE does not lie in the chosen type of architecture,
but rather in the data that went into training the model. This
manuscript is, to the best of our knowledge, the first of its kind to

train a deep learning network for MR-AC purposes on a pediatric
cohort of this size. The included patients in the evaluated cohort
are well suited to test the method’s ability to adapt to anatomy
changes across different ages.

Pediatric patients are a challenging cohort to examine due to
motion, often leading to sedation or anesthesia of the patients.
The patients included in this study had, as expected, a larger
amount of noise in the MR images than adult patients, leading
to increased amount of noise in the bone surrogate signal. The
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TABLE 1 | Summary of the relative %-difference∗ to the reference CT-AC of each
clinical metric for the MR-AC methods.

Measured
parameter
values

Mean % difference 95% lower
limits of

agreement

95% upper
limits of

agreementMean 95% CI p

DIXON-AC

TMEAN/B 2.2 1.5 to 2.8 < 0.001∗∗ −1.6 6.0

TMAX/B 5.9 4.5 to 7.4 < 0.001∗∗ −2.2 14.7

BTV 32 21 to 45 < 0.001∗∗ −22 124

RESOLUTE

TMEAN/B 0.2 −0.3 to 0.7 0.38 −2.6 3.1

TMAX/B 0.3 −0.6 to 1.2 0.54 −4.9 5.8

BTV −1 −5 to 4 0.77 −21 25

DeepUTE

TMEAN/B −0.1 −0.2 to 0.5 0.38 −1.7 2.0

TMAX/B −0.1 −0.8 to 0.5 0.67 −3.7 3.6

BTV −2 −5 to 1 0.15 −19 17

∗Exponentiation was applied to results from analysis on log scale, and results were
expressed as percentages. ∗∗ Indicates a statistical significant (p < 0.05) found by a
paired t-test. CI = 95% confidence interval for mean difference. BTV is measured in
mL. A single examination without BTV with DIXON-AC was left out of this analysis.

strength of the DeepUTE method is that it is able to robustly
handle this noise, which the deep learning methods are known
for. An example of the improved noise handling is evident in
Figure 1, where DeepUTE better models both the thin bone and
noise at the posterior part of the head.

Titanium alloy clamps, that were present in 33% of the patients
to fix the craniotomy, showed up as small signal voids in the MR
images with a size similar to the implants seen on CT. Visual
reading showed that both RESOLUTE and DeepUTE filled the
signal void with a density similar to dense bone, similar to what
has previously been observed (Ladefoged et al., 2017). This meant
that a valid attenuation map without artifacts could be calculated
in all scans using RESOLUTE and DeepUTE.

Overall, we found both RESOLUTE and our DeepUTE
methodology to accurately reproduce the CT-AC clinical metrics
with similar accuracy as was seen for RESOLUTE when
evaluating adult FET-PET brain tumor patients (Ladefoged et al.,
2017). Regardless of age, both methods were able to obtain AC
maps similar to the CT-AC, albeit with DeepUTE producing
the most similar based on both quantitative metrics and visual
inspection. In the patient-by-patient analysis, all patients were
inside the predefined acceptable clinical limits with DeepUTE,
where three patients (7–11 years old) were outside the limits
in the TMAX/B or TMEAN/B metrics when using RESOLUTE
(Figure 3). A similar result was obtained with RESOLUTE
for the adult FET-PET brain tumor patients (Ladefoged et al.,
2017) where 5/68 studies exceeded the predefined limit. The
errors from RESOLUTE were due to an overestimation of bone
density in known “problem” areas near the skull base, but none
of the errors impacted the clinical reading of the images. In
comparison, the same patients obtained with DeepUTE-AC had
a higher precision in the skull base, leading to more accurate
measurements. The confidence interval was narrower when using
DeepUTE compared to RESOLUTE (Table 1). This indicates that

there is a smaller variation of the errors in DeepUTE compared
to RESOLUTE.

The processing in RESOLUTE was the same for all patients,
except for the combination of the segmented tissue maps within
regional masks, as these are different depending on the patient
age. In DeepUTE, the same method was applied regardless of
patient age. Further dividing the training patients into smaller
groups depending on age might further reduce the variance, but
requires more data, as training a deep learning network with
too few patients leads to overfitting. We did not apply transfer
learning in this study, as it has been shown that training a deep
learning network using less than 30 patients is feasible (Han,
2017; Liu et al., 2017; Gong et al., 2018; Kläser et al., 2018; Leynes
et al., 2018). However, using transfer learning, e.g., from a larger
adult cohort might further improve the results presented here, as
the low-level information are to be expected similar between the
cohorts.

In software version VB20P on the Siemens mMR, two
vendor-provided solutions for AC is available – DIXON-AC and
UTE-AC, that both have been used in the published pediatric
neuro-oncology PET/MRI literature (Garibotto et al., 2013;
Preuss et al., 2014; Fraioli et al., 2015), however, encompassing
only 6 and 12 patients, respectively. This small patient sample
may reflect hesitation from the clinical community to use
PET/MRI routinely in this difficult patient group because of the
well-documented systematic underperformance of particularly
DIXON-AC (Andersen et al., 2014; Ladefoged et al., 2017), which
is also apparent from our study. DIXON-AC was the only vendor-
provided method capable of producing attenuation maps for the
full pediatric cohort. In four patients, UTE-AC was not able to
produce an attenuation map of patients, aged 0–2 years, which is
why we chose to exclude UTE-AC from the comparison.

In this study, we only had 6 patients with repeat examinations.
We found that the change of TMEAN/B, TMAX/B and BTV
between two examinations with RESOLUTE or DeepUTE were
in congruence with the change when measured with CT-AC, as
none of the differences were outside the acceptable limit. A larger
number of repeat examinations should confirm this.

Limitations
We did not have pediatric data available after the software
upgrade to VE11P, which adds a model-based AC method (Paulus
et al., 2015; Koesters et al., 2016), but we speculate that the
method would be unsuccessful for the younger pediatric cohort
since the method was developed for adults.

Both RESOLUTE and DeepUTE are based on the UTE
sequence, so while we expect DeepUTE to be directly transferable
to any Siemens mMR, which is the case for RESOLUTE, neither
method is able to produce attenuation maps from PET/MRI data
from other vendors. The fundamental idea behind DeepUTE is
not limited to UTE data, and retraining the network on other MR
sequences such as the T1w MPRAGE or ZTE could allow for a
multi-vendor method. However, it would require a large pediatric
dataset across several vendors to confirm this.

Although, the limits of agreement using RESOLUTE and
DeepUTE are encouragingly narrow (Table 1), the number of
patients in each age category is still small. Thus, we cannot
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rule out artifacts caused by other combinations of anatomy and
pathology.

CONCLUSION

The present study performed on FET-PET/MRI examinations
of pediatric patients revealed that both RESOLUTE and our
deep learning method DeepUTE are able to robustly produce
attenuation maps similar to the reference CT-AC. The clinical
metrics were within acceptable limits of the reference CT-AC,
making either method suitable for imaging of pediatric brain
tumor patients – a cohort that is especially challenging for atlas-
based methods. For clinical use of any MR-AC map, however,
we recommend visually inspection for artifacts with particular
attention to areas close to the skull base, anatomically distorted
tissue and metal implants. The added accuracy due to better noise
handling of DeepUTE, ease of use without the need for regional
masks, as well as the improved runtime makes DeepUTE the
method of choice for PET/MRI AC. Further refinement of the
deep learning method with age-specific data input is likely to
improve the performance.
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