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Aim: The main objective of this work was to study the impact of repetitive Transcranial

Magnetic Stimulation (rTMS) treatment on brain activity in 8 patients with major

depressive disorder (MDD) and 10 patients with bipolar disorder (BP). Changes due

to rTMS stimulation of the left dorsolateral prefrontal cortex (DLPFC) were investigated

considering separately responders and non-responders to therapy in each of both

groups. The aim of the research is to determine whether non-responders differ from

responders suffered from both diseases, as well as if any change occurred due to rTMS

across consecutive rTMS sessions.

Methods: The graph-theory-based connectivity analysis of non-linearity measure of

phase interdependencies—Phase Locking Value (PLV)—was examined from EEG data.

The approximately 15-min EEG recordings from each of participants were recorded

before and after 1st, 10th, and 20th session, respectively. PLV calculated from data

was analyzed using principal graph theory indices (strength and degree) within five

physiological frequency bands and in individual channels separately. The impact of rTMS

on the EEG connectivity in every group of patients evaluated by PLV was assessed.

Results: Each of four groups reacted differently to rTMS treatment. The strength and

degree of PLV increased in gamma band in both groups of responders. Moreover,

an increase of indices in beta band for BP-responders was observed. While, in

MDD-non-responders the indices decreased in gamma band and increased in beta

band. Moreover, the index strength was lower in alpha band for BP- non-responders.

The rTMS stimulation caused topographically specific changes, i.e., the increase of the

activity in the left DLPFC as well as in other brain regions such as right parieto-occipital

areas.

Conclusions: The analysis of PLV allowed for evaluation of the rTMS impact on the EEG

activity in each group of patients. The changes of PLV under stimulation might be a good

indicator of response to depression treatment permitting to improve the effectiveness of

therapy.

Keywords: EEG, repetitive transcranial magnetic stimulation, brain connectivity, indices based on graph theory,

Phase Locking Value, major depression disorder, bipolar disorder, depression
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INTRODUCTION

Major depressive disorder (MDD) is one of the most common
mental disorders in the world and leads to a variety of emotional
and physical problems such us overwhelming feeling of sadness
and isolation, frequent anxiety and irritation, diminished self-
esteem and reduction in attention or concentration (American
Psychiatric Association (APA), 2013). According to recent
estimation about 300 million people suffer from depression
episodes, and, as a result, about 800,000 patients commit
suicide (World Health Organization (WHO), 1992, 2017;
National Institutes of Health (NIH), 2007). In psychiatry,
depression classification includes also the disease entity termed
bipolar affective disorder. It is marked by depressive and
manic episodes which occur in repeated periods. The origin
of MDD is associated with functional deficits, abnormal
structures of brain and defective activity of neurotransmitters.
Numerous researches have demonstrated the differences in
physiologic brain mechanisms between healthy people and
patients with depression. The pathophysiology is observed not
only in abnormal changes in structures in brain but also in
bioelectrical activity of neurons. The EEG-based methods show
various atypical patterns in electroencephalogram of depressed
people, such as frontal alpha EEG asymmetry and left frontal
hypoactivation (Koo et al., 2017).

Effective treatments for depression, either severe, moderate or
mild, are based on psychological therapy and pharmacotherapy.
In severe cases of depression, medical practice offers some
adjunctive methods of treatment such as the repetitive
Transcranial Magnetic Stimulation (rTMS). The left dorsolateral
prefrontal cortex (DLPFC), identified as clinically effective in
resistant depression treatment, is an area which ismainly targeted
in rTMS therapy at a frequency of 10Hz (Koenigs and Grafman,
2009; Wozniak-Kwaśniewska et al., 2014, 2015). The occurrence
of small current in the cortex causes depolarization and
hyperpolarization of the neurons triggering neuronal activation.
The consequence of this neurostimulation is the modulation of
the impaired functional and structural connectivity, associated
with depression (mostly brain networks in frontal cortical and
subcortical limbic regions; Janicak et al., 2013; Anderson et al.,
2016). rTMS is a relatively recent therapeutic approach and
has not yet been thoroughly investigated but current evidences
show its efficacy in some clinical trials (Markowitz et al., 2010;
Janicak et al., 2013; Anderson et al., 2016; Kimiskidis, 2016).
In 2008 through efficient meta-analysis, the FDA (Food and
Drug Administration) approved rTMS for treatment of patient
resistant to antidepressant trials (Markowitz et al., 2010). The
data has shown the usefulness of TMS not only for MDD patients
but also in treatment of patients with epilepsy, schizophrenia,
and other neurological diseases (Kimiskidis, 2016).

It was found that the dynamic organization of brain in
depressed patients differ from that in healthy persons (Akar
et al., 2015; Anderson et al., 2016), what is manifested in
disconnection of links between frontal cortical and subcortical
limbic areas. The dysfunctions in these regions, occurring in
the microstructure of white matter, are correlated with an
inappropriate mood regulation (Anderson et al., 2016). It has

been shown that EEG of patients with depression can be
distinguished from the EEG of healthy controls using the
procedures based on selection of features representative for
MDD patients and on their appropriate classification. Different
methods have been applied by many researchers, including
spectral analysis (such as power spectral density in physiological
frequency band; Wozniak-Kwaśniewska et al., 2014, 2015; Liao
et al., 2017), Genetic Algorithm (GA), Linear Discriminant
Analysis (LDA) (Mohammadi et al., 2015), Discrete Wavelet
Transform (Akar et al., 2015), ICA or PCA (Mulders et al., 2015),
and also classification methods, based on predictive models,
such as the Decision Tree (DT) (Mohammadi et al., 2015),
Discriminant Analysis (MacCrimmon et al., 1993), and Artificial
Neural Network (Broniec, 2009). Among others, the previous
studies have demonstrated higher power spectral density in
alpha, theta, and beta bands in some brain areas for MDD
patients than for healthy subjects (Olbrich et al., 2014, 2015).
However, the study in which the same dataset was used as in
this work has shown slightly different results comparing MDD
responders and MDD-non-responders to rTMS stimulation
(Wozniak-Kwaśniewska et al., 2015). Group of MDD-responders
had higher power spectral density (PSD) in delta and theta
bands, whereas the lower PSD was found in alpha band as an
indicator of improvement of health state (Wozniak-Kwaśniewska
et al., 2015). Moreover, PSD in theta and beta bands was
higher in prefrontal cortex in BP compared to MDD patients.
The impact of stimulation time was investigated also for these
data (Wozniak-Kwaśniewska et al., 2015). It was shown that
the PSD decreased in left prefrontal areas for delta and theta
bands as well as in the contralateral DLFPC for beta and
gamma bands. Connectivity methods and indices based on graph
theory using EEG data are widely recognized as a valuable
research tool. Although, numerous studies have demonstrated
utility of EEG connectivity measures (Sporns et al., 2000, 2005;
Bassett and Bullmore, 2006, 2009; Stam and Reijneveld, 2007;
Stam et al., 2007, 2016; Bullmore and Sporns, 2009; He and
Evans, 2010; Stam, 2010; Friston, 2011; Sporns, 2011, 2013),
only a few of them concerned the study of brain response to
depression treatment with rTMS. To authors’ knowledge, only
a few study has applied non-linear EEG measures to predict
rTMS treatment outcome for depression patients. Arns et al.
(2014) found that non-linear measure (Lempel-Ziv Complexity)
analyzed in the alpha band allows to distinguish responders
and non-responders. Hu (2010) showed that the global phase
synchronization index of depression under the states of closed
eyes and mental arithmetic is much lower than that of
controls.

Another non-linear measure is Higuchi fractal dimension
(FD) which was extensively used in the EEG complexity analysis
(Klonowski et al., 2000, 2002, 2005, 2006; Olejarczyk, 2007, 2011;
Olejarczyk et al., 2009; Zappasodi et al., 2014, 2015; Cottone et al.,
2016, 2017). Several authors applied this method to show the
differences between EEG complexity of patients with depression
and healthy controls (Bahrami et al., 2005; Ahmadlou et al.,
2012; Bachmann et al., 2013, 2018; Akdemir Akar et al., 2015).
Lebiecka et al. (2018) showed among others that FD decreased
after rTMS in MDD-responders, as it was expected. Investigation
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of the origin of major depression disorder and the influence of
rTMS on depression treatment has generated a great number of
researches, including studies using EEG-based methods (Rossi
et al., 2009; Gaynes et al., 2014; Lefaucheur et al., 2014; Brunoni
et al., 2017; McClintock et al., 2018). The main aim of these
studies is to understand neural mechanisms of this process and
to estimate a treatment progress. In the accomplishment of this
goal, the comparison of different connectivity analysis methods
is important (Olejarczyk and Jernajczyk, 2017b; Olejarczyk et al.,
2017a,c), thus this issue requires further investigation to improve
the effectiveness of therapy.

In this paper the impact of rTMS on brain activity in
patients with MDD or BP was studied. The therapeutic response
was correlated to the evaluation of the changes in brain
functional connectivity between consecutive rTMS sessions and
also between non-responders and responders to treatment.
Comparison between MDD and BP patients was also performed.
The functional connectivity was estimated by means of Phase
Locking Value (PLV), which is a non-linear measure of the
phase relationships between EEG signals recorded at different
channels. Thus, the PLV, in contrast to FD, is a measure that
provides information about interactions between pairs of EEG
channels, and hence allows for investigation of changes in brain
connectivity caused by the rTMS. In particular, in this study we
tested the hypotheses that: (1) the degree and strength of phase
synchronization quantified by PLV change after application of
rTMS and these changes are frequency- and topographically-
specific as well they depend on time of stimulation; (2) groups
of non-responders differ from responders as well as groups of
MDD differ from BP. In the first case, a null hypothesis that no
changes of data before and after rTMS stimulation was verified
for every frequency band, every EEG channel, and every session,
respectively. Whereas, in the second case, a null hypothesis that
the compared groups are not different was tested.

MATERIALS AND METHODS

Subjects
The EEG data were collected at the Psychiatry Department of
Grenoble University Hospital, after approval by the local ethical
committee (ID RCB: 2011-A00114-37). All 18 participants gave a
written informed consent. The same data were already analyzed
using spectral power and complexity analysis (Wozniak-
Kwaśniewska et al., 2015; Lebiecka, 2018; Lebiecka et al., 2018).

Ten patients enrolled in the study (6 females, age range
32–69, mean 48.7 ± 12.6) were diagnosed with BP and 8
patients (6 females, age range 44–64, mean 52.1 ± 7.8) suffered
from MDD according to Diagnostic and Statistical Manual of
Mental Disorder 4th ed (DSM-IV) criteria for Major Depressive
Episode (American Psychiatric Association (APA), 2000). Each
of these groups were also divided into responders and non-
responders to the therapy. Demographic and clinical data for
the patient groups are reported in the Tables 1, 2. Exclusion
criteria based on detailed interview and medical history were: age
under 18 years, drug abuse, previous electroconvulsive therapy,
neurological illness, convulsive disorders, current comorbid
major mental disorders assessed by clinical examination. The

TABLE 1 | Demographic data of the participants: number of patients in every

group, average age, and average duration of illness.

Number of patients Age Illness duration

MDD Response 4 53.3 ± 5.8 10.3 ± 6.1

Nonresponse 4 51.5 ± 7.5 10.3 ± 5.7

BP Response 6 49 ± 13 14.8 ± 9.5

Nonresponse 4 50 ± 10 24 ± 8.7

Total 18 48 ± 9.7 15.1 ± 9.6

TABLE 2 | Clinical characteristic of the participants: MADRS response test scores

in the successive sessions.

MADRS response test

1st session 10th session 20th session 1 score

MDD Response 33.3 ± 1.8 24.5 ± 6.2 9.3 ± 3.3 −9.0 ± 5.4

Nonresponse 18.0 ± 5.1 19.0 ± 7.8 – –

BP Response 22.0 ± 2.7 13.7 ± 7.2 3.5 ± 3.2 −9.0 ± 4.3

Nonresponse 25.2 ± 2.2 23.6 ± 4.7 24.0 ± 8.8 −3.6 ± 5.9

Total 24.0 ± 6.3 19.7 ± 7.6 20 ± 10 −4 ± 10

inclusion criterion was no response to pharmacological therapy
using minimum two distinctly different classes of antidepressant
medications for actual depressive episode occurring at the time
of enrolment or earlier.

All patients were on a range of medications. For bipolar
patients, mood stabilizer medication has been unmodified
for at least 2 weeks prior to the entry in the study, and
remained unchanged throughout the course of the study. No
benzodiazepines were administered two weeks before and during
rTMS treatment. For MDD patients, pre-treatment with an
antidepressant and/or mood stabilizer medication was kept
unmodified for at least 4 weeks prior to the entry in the study,
and remained unchanged throughout the course of the study.
Only cyanemazine and hydroxyzine were tolerated during the
study.

Demographics characteristics (gender and age) and clinical
characteristics (illness and episode duration, depression severity)
were evaluated for each patient using Montgomery Asberg
Depression Rate Scale (MADRS) (Montgomery and Asberg,
1979), 13-item Beck Depression Inventory (BDI-Short Form)
(Collet andCottraux, 1986; Bouvard et al., 1992; Beck et al., 1996),
and Clinical Global Impression (CGI). For bipolar patients,
maniac or mixed symptoms were evaluated with Young Mania
Rating Scale (YMRS) (Young et al., 1978). All patients were
assessed at inclusion, before the first EEG recording and after
each 5 rTMS sessions by the same senior psychiatrist (David
Szekely). The response to rTMS treatment was defined as at
least 50% reduction of the baseline MADRS scores. Patients were
qualified as remitters when MADRS score was <8. If YMRS
was more than 15, at inclusion or during the course of rTMS
treatment, patients were excluded from the trial. The absolute
changes in MADRS scores between baseline and the end of rTMS
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(4 weeks after the first evaluation) were used to calculate clinical
improvement.

The rTMS sessions were performed according to the standard
procedure for depression at Grenoble University Hospital. The
left DLPFC was stimulated using aMagPro x 100 TMS stimulator
(Tonica Elektronik A/S, Den- mark). Frequency of rTMS was set
to 10Hz and total number of pulses per session amounted to
2,000 continuously at 120% motor threshold. Fourteen patients
underwent treatment consisting of 20 sessions within a period
of 4 weeks. No patient response to the treatment was observed
in eight subjects. It was the cause of reduction of the number of
sessions to ten for four of them.

EEG Registration and Preprocessing
The ∼15-min EEG recordings from each of participants were
registered before and after 1st, 10th and 20th session, respectively.
A 64-channel elastic cap with Ag/AgCl electrode was used
(Fast’n’Easy Cap, Brain Products GmbH, Munich, Germany)
with a referential montage, where the reference electrode was
placed in FCz position. The data acquisition was performed at
2,500Hz sampling frequency with 16-bit resolution. Participants
kept closed eyes and were seated in a reclining armchair with
neck supported with a pillow during the EEG signal acquisition.

Preprocessing procedures were performed using EEGlab
toolbox in MATLAB environment before the EEG analysis.
Firstly, the digitalized data were down-sampled to 250Hz and
band-pass filtered with two-way least-squares FIR filtering.
Consecutive two steps were applied: low-pass filtering with
cut-off frequency at 45Hz and high-pass filtering with cut-off
frequency at 0.5Hz. Such prepared data were analyzed visually to
mark time segments contained artifacts. Fully automated artifact
cancellation methods using Independent Component Analysis
(ICA) were also applied for removal of ocular and muscular
artifacts.

The best quality 1-min segments of each recording were
chosen visually. Data were normalized and segmented into 20–s
epochs and they were analyzed in five frequency bands separately:
delta (1–4Hz), theta (3.5–7Hz), alpha (7.5–13Hz), beta (14–
30Hz), gamma (30–45Hz).

Phase Locking Value
The Phase Locking Value (PLV) is a bivariate method allowing
for quantifying interactions between signals. It provides the
information about phase coupling between two EEG signals.

The instantaneous phase of signal x(t) can be calculated
using the Hilbert transform HT{·} (Rosenblum et al., 1997, 2001;
Mormann et al., 2000):

φ(t) = arctan

(

Im
{

z(t)
}

Re
{

z(t)
}

)

= arctan

(

HT
{

x(t)
}

x(t)

)

;φ ∈ [−π ,π]

(1)

z(t) is analytic signal obtained from x(t):

z(t) = x(t)+ i ·HT{x(t)} = A(t) · ei·φ(t) (2)

where A(t) and 8(t) are the amplitude and phase of signal x(t),
respectively.

A pair of real signals x1(t) and x2(t), which phases are 81(t)
and 82(t) respectively, are synchronized if their relative phase
812(t) is constant:

φ12(t) = φ1(t)− φ2(t) = const. (3)

The PLV can be computed as Aydore et al. (2013) and Niso et al.
(2013):

PLV =
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(4)

where i is the imaginary unit, 1t is the time interval between two
successive samples and N is the total number of samples.

The PLV ranges from 0 to 1. The lower PLV, the less likely there
is any phase synchronization between two signals. The value 1
describes situation when relative phase is constant.

The PLV calculations were performed using HERMES toolbox
(Niso et al., 2013), which provides numerous commonly
used linear and non-linear indexes of functional and effective
connectivity with dedicated visualization methods.

Indices Based on Graph Theory
In graph theory the brain is modeled as a graph composed of
nodes, representing brain regions or simply by EEG channels,
and links between them, representing functional connections
determined here by PLV. For each of the graphs, the basic
indices, such as degree and strength, were calculated (Rubinow
and Sporns, 2010) to detect connectivity patterns characteristic
for different brain states before and after TMS depending on kind
of disorder and on patient responsiveness as well as on time of
stimulation. These indices are the starting point for determining
other more complex indices such as indices of integration,
separation, centrality, resilience (Rubinow and Sporns, 2010)
as well as inter-hemispheric, and fronto-posterior asymmetry
(Olejarczyk and Jernajczyk, 2017b).

The degree of an individual node is equal to the number
of links connected to that node. Thus, this index reflects the
importance of a node in the network. The degree is one of
the most used measures of centrality concerning importance
of individual nodes in interaction with other nodes in the
network. The high-degree nodes (hubs) play a key role in network
resilience and facilitates functional integration, i.e., they have an
ability to rapidly combine specialized information from different
brain regions (Rubinow and Sporns, 2010). The weighted variant
of the degree, termed the strength, is defined as the sum of all
neighboring link weights (Van Wijk et al., 2010; Bassett and
Lynall, 2013) connected to the node. The strength of k-th node
is defined as:

strengthk =
∑K−1

i
cik (5)

where K is a total number of nodes and cik is a weight of link
between node k and i.
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To perform the calculations of these indices, every graph was
presented in the form of a matrix of connections between every
pair of EEG channels, so called adjacency matrix. All adjacency
matrices constructed from PLVs computed from each recording
were thresholded and tested against a null model separately.
To evaluate the statistical significance of these PLVs matrices
the standard procedure was performed using HERMES software
(Niso et al., 2013). In this case, the results of PLV calculated for
63 EEG electrodes were stored for each subject in a 63 × 63
matrix. When the multivariate surrogate data test was performed
an additional 63 × 63 matrix of p-values was produced for
each subject. The null hypothesis of independence of the time
series was tested at the statistical significance level p = 0.05. All
non-statistically significant values of PLVmatrix were set to zero.

The results of all-to-all functional connectivity were visualized
using the MNE toolbox, an open-source Python software for
analyzing and visualizing neurophysiological data (Gramfort
et al., 2013, 2014). Connectivity circle plot bases on PLVs
connectivity matrices between all pairs of 63 EEG electrodes.
Such graphical presentation of functional EEG connectivity was
applied for the first time in this paper. The changes between both
brain states, before and after rTMS stimulation, were visualized in
form of differential plots, i.e., in place of the PLV values in each
of both states, the differences between them were shown.

Statistical Analysis
The following procedures were performed to evaluate the effect of
rTMS in the four groups of patients as well as to find differences
between them.

The size of the datasets was not equal in all sessions. In the
last, third session the data were acquired only in 13 from 18
patients. Thus, the PLV was calculated for each recording from
2 sessions in group of 18 patients and from 3 sessions in group
of 13 patients. The significance of PLV values from each matrix
was determined using surrogate data analysis (Theiler et al.,
1992). The amplitudes of signals were maintained while their
frequency relationships were modified by shuffling of the data in
frequency domain. The signal values were then obtained again
from surrogate data transformed to time-domain. The number
of surrogates was set to 100 which is a sufficient value for chosen
p-value. The adjacency matrices were constructed from data with
p-value below the 0.05 threshold. Then, these matrices were
analyzed using indices based on graph theory. For each of the
graphs, the indices degree and strength were calculated.

Multivariate analysis of variance (ANOVA) is a statistical test
used to assess the impact of many independent variables (factors)
on the value of the dependent variable. The ANOVA can be
performed if the following two assumptions are fulfilled: (1)
each population has a normal distribution, and (2) variances in
populations are equal. To verify these assumptions the Shapiro-
Wilk test was carried out before the analysis of variance was
performed.

The five following factors were considered: GROUP
(MDD-responders, MDD-non-responders, BP-responders,
BP-non-responders), BAND (delta, theta, alpha, beta, gamma),
CONDITION (baseline or after sessions), CHANNEL (63

channels), SESSION (1st, 10nd, and 20th session) for applying
the ANOVA analysis in several steps.

Firstly, statistical analysis was carried out for data of 18
patients and 2 sessions conducting ANOVA tests with factors:
BAND, CONDITION, and CHANNEL to investigate the impact
of rTMS stimulation on functional connectivity. The adjacency
matrices were analyzed separately by every group and averaged
over all sessions (see Figure 1, left green block). Secondly, the
impact of time stimulation was analyzed using data from 13
patients in 3 sessions. For this purpose, the ANOVA with factors:
SESSION, BAND, and CHANNEL in each condition and in
each group separately was performed (see Figure 1, middle
green block). Finally, to investigate differences between groups,
three factors were used: BAND, CHANNEL, and CONDITION
separately for every pair of groups. Four pairs were compared:
MDD_responders vs. MDD_non-responders, BP_responders vs.
BP_non-responders, MDD_responders vs. BP_responders and
MDD_non-responders vs. BP_non-responders (see Figure 1,
right green block).

Analysis of variance is a test that allows to verify the zero
hypothesis H0 of the equality of mean values in the considered
populations having a normal distribution with equal variances
at fixed level of significance α. If we reject the null hypothesis,
we accept an alternative H1 hypothesis that at least two averages
are not equal. In the analysis of variance, the most commonly
used distribution is the right-skewed asymmetric F distribution,
which is the ratio of two chi-square distributions. The shape
of each chi-square distribution depends on degrees of freedom.
The verification of hypotheses should be carried out in such
a way that ensure the lowest probability of making a mistake.
Two types of errors should be considered to decide whether
reject the null hypothesis, i.e., type I error consisting in rejection
of a true null hypothesis with the probability equal to the
significance level α, and type II error consisting in accepting
a false null hypothesis. In order to verify the type II error,
the calculated value of the F-test should be compared with
the statistical limit value read out from the tables for a given
significance level α and for a given number of degrees of
freedom of each factor of one or two-way ANOVA. If the
calculated F is greater than the limit of the F statistic, then
the null hypothesis H0 should be rejected in favor of the
alternative H1 hypothesis (otherwise there is no reason to reject
H0).In this study, the type II error was verified using the
probability distribution calculator provided by the STATISTICA
software.

RESULTS

Differences Between Conditions
No significant differences in strength and degree of PLV before
and after stimulation were found for any of the four groups.
However, when the indices after stimulation were compared to
the baseline for the five frequency bands separately, significant
differences were found for some of them in all groups. In
the BP-responders group the increase of two indices (strength
and degree) occurs in beta and gamma bands after stimulation
(degree index only in Figure 2C). MDD-responders group had
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FIGURE 1 | Block diagram illustrating the individual steps of EEG signal analysis.

Frontiers in Neuroscience | www.frontiersin.org 6 January 2019 | Volume 12 | Article 1037

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zuchowicz et al. EEG Connectivity in Depression

FIGURE 2 | Degree of PLV for MDD-responders (A), MDD-nonresponders (B), BP-responders (C), and BP-nonresponders (D) for each EEG band before and after

rTMS stimulation. The significant differences are marked by asterisks.

overall higher strength and degree indices in gamma after
stimulation (Figure 2A for degree index). The index strength
increased also in delta band after stimulation. Moreover, the
decrease of both indices in the alpha band was observed. The
ANOVA results for MDD-responders and BP-responders are
summarized in Tables S1–S4.

The results for both groups of non-responders were different
than the results for the responders. A significant decrease of
degree and strength after stimulation in gamma band and
increase of these indices in beta band have been observed for
MDD-non-responders (Figure 2B for degree index). Moreover,
the index strength was lower after stimulation in alpha band for
BP- non-responders (not shown).

The biggest differences in strength of PLV between conditions
(before and after rTMS stimulation) were in gamma bands
for MDD-responders (Figure 2A for degree index) and in
beta and gamma bands for BP-responders (Figure 2C for
degree index) since they were illustrated in form of graphs.

The all-to-all functional connectivity for significant differences
between conditions have been visualized as circular graphs. Such
visualization provided information about interdependencies and
their strength between EEG channels. Only the 30 strongest PLV
connections were considered to show the differences between
conditions.

The graphs for beta band are presented in Figure 3A. They
provided information about increase of strength between some of
right centro-parietal (CP3, CPz) and parietal areas (P3, P7) and
mostly frontal channels (AF7, FC1, Fpz, F4) in BP-responders.
Whereas, in MDD-responders except the strengthening the
connections between centro-parietal (CP1, CP3, CP5) or parietal
(P3, P5, P7) areas and the frontal ones (Fp2, AF7, FT9, FC6),
more additional connections appeared with right hemisphere
(C4, PO8, TP10, FC6). Moreover, inMDD-responders the frontal
and left temporal areas were more interconnected (F5-T7, Fp2-
FC6). Some hubs are clearly visible in both graphs as well. In
MDD-responders the strength of hub placed at F2 decreased after
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FIGURE 3 | All-to-all differential connectivity of PLV (30 strongest connections before and after rTMS stimulation) for responders groups in beta (A) and gamma bands

(B).

TMS, while in BP-responders a decrease of strength was seen
mainly in right parietal (P8, PO8), left central (C5, C3, C1, Cz,
CP5), and frontal (Fp2, Fp1) areas.

The graphs for gamma band are presented in Figure 3B.
The strength of PLV between right central (C2, C4), left
centro-parietal (CP5, CP3, CPz, P7), and frontal (AF7, Fp2, FT8)

Frontiers in Neuroscience | www.frontiersin.org 8 January 2019 | Volume 12 | Article 1037

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zuchowicz et al. EEG Connectivity in Depression

areas increased for MDD-responders. A decrease of strength was
observed in some hubs in frontal (Fz, F2, F4) and left parietal
(P3, P5) areas as well. BP-responders showed a general increase
of connectivity in various areas with hubs in centro-parietal (CP3,
CP1, Cpz, P5, P3) and frontal (AF7, AF3, Fp1, Fz, Fpz, F2, FC6)
and also right parietal areas (P2, P4, PO8, TP10) areas in gamma
band.

Changes Across Consecutive Sessions
To investigate the interdependencies between sessions the three-
way ANOVAwith factors: SESSION, BAND, and CHANNELwas
applied.

The dataset recorded in 13 patients before rTMS stimulation
and after 1st, 10th, and 20th session was analyzed to evaluate the
influence of stimulation time.

The three-way ANOVA results revealed significant differences
for factor SESSION in both groups of responders: MDD-
responders and BP-responders. The significant increase in degree
index have been observed between all sessions for BP-responders
(Figure 4A, Table S5) and between 1st and 10th and between 1th
and 20th sessions for MDD-responders (Figure 4B, Table S5). A
similar difference was found for strength index except differences
between 1st and 10th session for BP-responders (Table S6). No
significant differences for MDD-non-responders and BP-non-
responders have been observed.

The differences between consecutive sessions in each of group
were also analyzed for different EEG frequency bands. The
results obtained for both degree and strength indices were very
similar. Therefore, the results of strength index analysis only are
provided.

For MDD-responders a significant increase was observed
between 1st and 10th session in all bands, except alpha band
(Figure 5B and Table S7). The strength of alpha band decreased
between 1st and 10th session, but the changes were not
permanent. Then, a significant increase of strength index in alpha
band occurred between 10th and 20th session.

The increase in delta, theta, and gamma rhythms in function
of the number of sessions was observed also for BP-responders.
The indices in delta and theta rhythm are higher between 1st
and 20th as well as 10th and 20th session (Figure 5A and
Table S8). The significant differences between 1st and 10th, 1st
and 20th session occur in gamma band. In alpha band indices
were significantly higher in the 10th session.

The results for non-responders were different. In MDD-non-
responders group a significant increase between 1st and 10th,
1st and 20th session only in theta and beta bands occurred
(Figure 5D and Table S9). However, between 10th and 20th
session the index dropped for beta band to the previous value.
The index decreased also in delta and gamma bands between 10th
and 20th session (Table S9).

In BP-non-responders the degree and strength indices
decreased in delta, theta, alpha, and gamma bands mainly
between 1st and 10th session. Comparing the differences between
1st and 10th with differences between 10th and 20th sessions
revealed that the longer stimulation caused an opposite effect to
the shorter stimulation (Figure 5C and Table S10).

No significant differences between consecutive sessions were
observed in the individual EEG channels when whole frequency
range was considered. Whereas, the topographical analysis
between consecutive sessions for different frequency bands
showed increase of strength index in delta band for MDD-
responders (Figure 6A) and BP-responders (Figure 6B). The
significant and permanent increase of degree index (between 1st
and 10th or 1st and 20th or 10th and 20th session) was marked
with red color. No significant results have been seen for other
bands.

Differences Between Groups of Patients
Finally, to find the differences between groups of patients,
the three-way ANOVA with factors: GROUP, CONDITION,
and BAND was performed. The following groups of patients
were compared: MDD-responders vs. MDD-non-responders;
BP-responders vs. BP-non-responders; MDD-responders vs. BP-
responders, and MDD-non-responders vs. BP-non-responders.

MDD-Responders vs. MDD-Non-responders

In MDD-responders patients the indices degree and strength
were lower for responders than for non-responders before as
well as after stimulation (c.f. Figure 7A and Table S11 for degree
index). However, MDD reacted in a different way than BP to the
rTMS stimulation. The difference between responders and non-
responders was bigger after stimulation than before stimulation
for BP group. An opposite effect was observed in MDD group.
The degree of PLV was significantly higher in MDD patients
than in BP patients independently on the condition (compare
Figures 7A,B).

The analysis considering each of frequency band separately
showed significant differences between MDD-responders and
MDD-non-responders before as well after stimulation. The
degree index was higher for MDD-responders in alpha band
before stimulation. The lower degree index for MDD-responders
compared to MDD-non-responders was in delta band before and
after stimulation as well as in theta bands before stimulation
(Figure 8A). The results for strength index were similar, except
for alpha band, for which no significant differences were detected
between groups after stimulation (Table S12).

The topographical differences were found between MDD-
responders and MDD-non-responders for indices degree
(Figure 9A) and strength (Figure 9B). After stimulation the
degree and strength indices had lower values inMDD-responders
than in MDD-non-responders at several channels in left frontal
area (channels marked in red color on Figure 8).

BP-Responders vs. BP-Non-responders

After stimulation the degree index was significantly higher
for responders than non-responders in group of BP patients
(Figure 7 and Table S13) when all frequency bands were
considered.

The analysis of differences between BP groups for different
frequency bands showed higher values in theta in both conditions
and in beta after stimulation in BP-responders (Figure 8B and
Table S14). The similar results were obtained for degree index.
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FIGURE 4 | Degree of PLV for BP-responders (A) and MDD-responders (B) in consecutive sessions.

No topographical differences were found between both groups
of BP patients.

MDD-Responders vs. BP-Responders and

MDD-Non-responders vs. BP-Non-responders

Differences between subjects suffered from MDD and BP disease
were also investigated separately for responders and non-
responders. The significant differences between these groups
were found in each of frequency bands in both conditions.

The responders showed significant higher strength index for
MDD than for BP group in delta and gamma band in both
conditions as well as in alpha band before stimulation. Moreover,
the strength index was lower in MDD-responders in beta band
after stimulation (Figure 8C). The similar results were obtained
for degree index (Tables S15, S16).

The differences between both diseases were found also in
the group of non-responders. The degree index was higher for
MDD-non-responders in theta and gamma before as well as after
stimulation. Moreover, before stimulation the degree index was
lower for alpha band in MDD-non-responders than in BP-non-
responders (Figure 8D and Table S17). The results for strength
index were similar.

The topographical differences were found between both
groups of non-responders. The degree and strength indices were
higher for MDD-non-responders than for BP-non-responders in
left frontal (F7, FC5) and right centro-parietal areas (C2, CP4,
P4) independently on condition. The topographical differences
for degree index are shown in the Figure 10.

DISCUSSION

Despite many studies carried out so far, the understanding of
pathophysiology of depression still needs systematic researches
for providing a consistent neuropsychophysiologic model of

this disease. The main goal of this work was to investigate
and elucidate the organization of neural networks implicated
in the pathogenesis of major depressive disorder and bipolar
depression. In this study, the graph-theory based connectivity
analysis was performed using PLV, a non-linear measure
quantifying phase interdependencies between the EEG signals,
recorded in MDD and BP patients subjected to repetitive
transcranial stimulation. The rTMS stimulation was targeted to
the left DLPFC, which is functionally connected to the limbic
areas of the brain that is highly involved in regulation of mood
(Kito et al., 2016). The study of the dynamical properties of brain
activity could permit for better prediction of treatment outcome
and help to discriminate patients from healthy subjects. The effect
of the rTMS therapy was evaluated by the comparison of the
analyzed measures (degree and strength of PLV) before and after
stimulation.

Frequency-dependent differences in the reactivity to the rTMS
therapy were found between four groups of patients. The analysis
of PLV indices in each frequency band separately showed their
increase in both groups of responders after stimulation in gamma
band. The indices increased also in beta band for group of BP-
responders. This finding is similar to results obtained by Olbrich
et al. (2014, 2015) who analyzed the Phase Lag Index (PLI),
another measure of synchronization. They reported that the PLI
increased after rTMS for beta band in some prefrontal areas.
Other authors found an increase of gamma band power in left
DLPFC, which correlated with the improvement in depression
symptoms in MDD patients subjected to rTMS stimulation (Kito
et al., 2014; Pathak et al., 2016). The results for gamma bands are
in line with results of Bailey et al. (2018) who found an increase
of connectivity evaluated in gamma band using weighted PLI
in MDD-responders 1 week after rTMS therapy. We observed
a decrease of PLV indices (degree and strength) in alpha band
for MDD-responders also. The results obtained in other studies
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FIGURE 5 | Strength of PLV for BP-responders (A), MDD-responders (B), BP-non-responders (C), and MDD-non-responders (D) in consecutive sessions in each of

frequency bands.

FIGURE 6 | Topographical differences between degree of PLV in consecutive sessions for MDD-responders (A) and BP-responders (B) in delta band. An increase of

degree was marked with red color.
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FIGURE 7 | Degree of PLV for MDD-responders and MDD-non-responders (A) and for BP-responders and BP-non-responders (B) after and before stimulation.

were ambiguous. Ulrich et al. (1984) observed the reduction of
alpha activity, whereas other studies demonstrated increase of
global alpha activity inMDDpatients (Knott et al., 2001; Leuchter
et al., 2012; Olbrich et al., 2014, 2015; Fingelkurts and Fingelkurts,
2015).

The analysis of topographical differences between conditions
showed an increased connectivity after stimulation in left/right
frontal, left centro-parietal/parietal, and right central/parietal
channels in gamma band for MDD responders. In BP-responders
an increased connectivity was observed mainly between frontal
and left centro-parietal or parietal areas in beta and gamma band.
Moreover, the right hemisphere reacted strongly to rTMS in
gamma band.

Additional information has been found investigating the
alteration of the PLV indices across the consecutive sessions.
The indices increased in delta and theta bands for both groups
of responders. The changes in delta band was manifested
in topographical increase of PLV in left frontal, parieto-
occipital/occipital areas in delta band for both groups of
responders, and also in right central area only for BP-responders.
These results are partly in line with the study of Park et al. (2007).
The authors performed the connectivity analysis using another
non-linear measure (Synchronization Likelihood). They found
a greater synchronization in delta band in healthy persons than
in MDD patients, particularly in frontal and left temporal areas,
which means that the impact of rTMSmanifesting in the increase
of indices in the delta band was beneficial.

The analysis of PLV indices allowed to find the differences
between groups of patients. The PLV indices were greater in
gamma band after rTMS for both groups of responders in relation
to non-responders. Whereas, for delta band the indices were
greater in responders than in non-responders before as well as
after stimulation.

Comparing MDD and BP patients revealed higher phase
synchronization of delta and gamma bands in MDD than in
BP independently on the responsiveness and on the condition.
Whereas, the indices for alpha band before stimulation were

lower in MDD-non-responders than in BP-non-responders but
higher in MDD-responders than in BP-responders. Moreover,
the indices were bigger in theta band in both conditions in
MDD-non-responders than in BP-non-responders but lower for
MDD-responders than for BP-responders in beta band after
stimulation.

This study reuses the data presented also in other papers
where spectral power (Wozniak-Kwaśniewska et al., 2015) and
Higuchi’s Fractal Dimension (Lebiecka et al., 2018) were used.
Every of these measures carries other information about the
signal. Spectral power density (PSD), in contrast to PLV, gives
an information on amplitude of the EEG signal but does not
consider nether its phase nor phase dependencies between
signals from different channels. Whereas, FD, another non-
linear method, which was used in study analyzing the same
dataset (Lebiecka, 2018; Lebiecka et al., 2018), is a measure of
signal complexity. Both, PSD and FD, do not give information
about interactions between signals from different channels.
Thus, all these methods should be considered as independent,
complementary markers of brain state changes under influence
of rTMS. Nevertheless, the comparison of different measures
allows to find relationships existing between them. For example,
it was found that an increase of phase synchronization (PLV)
after rTMS in higher frequencies (beta and gamma bands) in
MDD-responders corresponded to a decrease of the EEG signal
complexity (FD) in this group of patients (Lebiecka et al., 2018).

CONCLUSIONS

In this paper, the impact of rTMS on the EEG connectivity
evaluated by PLV was studied for the first time. The main
findings were that the PLV indices were increased in function of
stimulation time for both disease groups. Thus, the PLVmight be
a good marker of recovery from depression.

Our results suggest that the rTMS of left DLPFC caused
the increase of the activity in the left DLPFC and other
regions functionally connected to this area of the brain. The
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FIGURE 8 | Degree of PLV for MDD-responders and MDD-non-responders (A), BP-responders and BP-non-responders (B), MDD-responders and BP-responders

(C), MDD-non-responders, and BP-non-responders (D) before and after stimulation in each of frequency bands. The significant differences between groups are

marked by asterisks.
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FIGURE 9 | Topographical differences between MDD-non-responders and MDD-responders after stimulation. The higher degree (A) and strength (B) indices in

MDD-non-responders than in MDD-responders were marked in red color.

FIGURE 10 | Topographical differences in degree of PLV between MDD-non-responders and BP-non-responders after (A) and before (B) stimulation. The higher

degree in MDD non-responders than in BP-non-responders was marked with red color.

topographical analysis showed an increase of connectivity
between left frontal and right parieto-occipital areas of brain after
stimulation. Therefore, this increase of phase synchronization
might be considered as a indicator of response to depression
treatment.

These results will need to be replicated on a larger and better
standardized cohort because one of the limitations of this study
is a small number of subjects in all groups. Moreover, the patients
under examination were not drug free, which could have an
influence on the brain activity. The k-NN algorithm (Olejarczyk
et al., 2012; Jozwik, 2013; Olejarczyk, 2018) could be applied to
evaluate the error of subjects’ classification to one of four groups
of patients, basing on the PLV indices. Such approach would
allow also to choose a set of the best features (in our case the

set of PLV indices). In this study the principal indices (degree
and strength) were considered only. Future research will include
other indices like measures of integration (clustering coefficient,
local efficiency, modularity), separation (characteristic path
length, global efficiency), betweenness centrality, resilience
(Rubinow and Sporns, 2010) as well as inter-hemispheric, and
fronto-posterior asymmetry (Olejarczyk and Jernajczyk, 2017b).
Such plenty of indices and factors considered in this study
justifies even more the application of the k-NN algorithm.
Furthermore, the dependence of other indices on degree should
be considered. The indices should be analyzed in function
of threshold (Olejarczyk and Jernajczyk, 2017b; Olejarczyk
et al., 2017a). The results of classification errors for different
thresholds using k-NN method could be compared also. Finally,
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the directional measures of brain connectivity (Olejarczyk and
Jernajczyk, 2017b; Olejarczyk et al., 2017a,c; Zuchowicz, 2018)
should be considered in the future studies to better understand
the mechanism of action in depression.
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