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Among the monoaminergic modulatory neurotransmitters, norepinephrine is involved in
task orienting, hence noradrenergic genetic variants have been studied in connection
to attentional processes. The role of this catecholamine system is also highlighted by
the selective norepinephrine transporter blocking atomoxetine, which has proved to
be effective in the pharmacological treatment of Attention Deficit Hyperactivity Disorder
(ADHD). In the present genetic association study three single nucleotide polymorphisms
(rs28386840, rs2242446, rs3785143 SNPs) were analyzed from the 5’ region of the
norepinephrine transporter (NET, SLC6A2) gene, which have been linked to ADHD
previously. Attention problems scores of the mother-rated Child Behavior Checklist
(CBCL) were used in separate analyses of 88 preschoolers (59.1% male, 6 years
of age) recruited from the general population and 120 child psychiatry patients with
ADHD diagnosis (85.8% male, age: 9.8 £ 2.9). The NET SNPs showed associations
with attention problems, but the direction was different in the two groups. Regarding
the promoter variant rs28386840, which showed the most consistent association,
the T-allele-carrier patients with ADHD had lower CBCL attention problems scores
compared to patients with AA genotype (p = 0.023), whereas T-allele-carriers in the
community sample had more attention problems (p = 0.042). Based on previous
reports of lower NE levels in ADHD children and the inverted-U shape effect of NE on
cognitive functions, we propose that rs28386840 (-3081) T-allele, which is associated
with lower NET expression (and potentially higher synaptic NE level) would support
attention processes among ADHD patients (similarly as atomoxetine increases NE
levels), whereas it would hinder cortical functions in healthy children.

Keywords: catecholamine, noradrenaline, SLC6A2 (solute carrier family 6, member 2), ADHD (attention deficit
hyperactivity disorder), inattention
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INTRODUCTION

Attention problems have gained increasing interest during the
last decades, as the proportion of children with attention deficit
hyperactivity disorder (ADHD) diagnosis has risen dramatically
in many countries, creating social and scientific debates (Singh,
2008). Although the prevalence of ADHD increased in Western
societies, the worldwide prevalence seems to be a stable 5-6%
among school-age children (Polanczyk et al., 2014). Therefore,
identifying potential risk and protective factors at an early age
could help developing preventive strategies. Since both ADHD
diagnosis and attention problems show substantial genetic
background with complex inheritance, searching for genetic
markers has been in the center of many studies.

Importantly, heritability estimates of complex traits vary
widely from childhood to adulthood (Polderman et al., 2015).
Twin studies of children using parent or teacher ratings reported
high heritability estimates (h*> ~ 0.7) for attention problems
(Chang et al,, 2013; Kan et al., 2013). Heritability estimates of
attention problems based on self-report questionnaires decrease
in adolescents and adults (h? ~ 0.4-0.5, Kan et al, 2013).
Clearly, there is a substantial effect of the assessment method
(see examples listed by Faraone and Larsson, 2018), but the
underlying mechanisms may also change during development
(Chang et al., 2013). Therefore, our aim was to identify genetic
factor(s) of attention problems using a mother-rated symptom
scale in a community sample of children in addition to child
psychiatry patients, because childhood is potentially the most
sensitive period to detect genetic effects.

Attention is often modeled as separate networks responsible
for alerting, orienting, and executive control, which are linked
to specific neurotransmitter systems (Raz and Buhle, 2006). The
norepinephrine (NE) system projects to various cortical areas and
functions mostly in alerting, whereas the mesocortical dopamine
system 1is involved in executive control. For optimal cognitive
functioning appropriate levels of catecholamine (dopamine and
NE) transmitters were proposed, since both lower and higher
tone of catecholamines in the prefrontal cortex (PFC) can
worsen performance (Berridge and Arnsten, 2013), resulting in
inverted-U shaped modulatory effects of these catecholamines.
Therefore, association studies trying to identify genetic variations
of attention phenotypes have been focusing on catecholamine
neurotransmitter systems.

Recently, we have reported genetic associations of single
nucleotide polymorphisms (SNPs) of the norepinephrine
transporter gene (NET, SLC6A2) with ADHD symptom severity
but not with ADHD diagnosis per se (Angyal et al., 2018). In
the present study, we wanted to test if this genetic association
could be extended to a non-clinical range of inattention.
Therefore, we assessed attention problems with a widely used
parent-rated symptom list in both clinical and community
samples. Polymorphisms from the 5’ end of the NET gene were
chosen based on their previous associations with ADHD-related
phenotypes in different ethnic groups (Joung et al, 2010;
Sengupta et al, 2012; Hohmann et al, 2015). Importantly,
these SNPs were in high (but not complete) linkage in the
previously studied Hungarian population (Angyal et al., 2018).

The promoter SNPs rs28386840 (-3081 A/T) and rs2242446
(-182 T/C) can potentially influence gene expression (Zill et al.,
2002; Kim et al., 2006; Sigurdardottir et al., 2016), hence can
have functional consequences. A recent brain imaging study
showed differential genetic effects of these NET promoter
variants on transporter density in ADHD patients and controls
(Sigurdardottir et al, 2016). Therefore, we conducted the
symptom-scale based genetic association analyses separately in
the clinical and community samples. Case-control analyses were
not run for these samples, because larger ADHD and control
groups were compared earlier in our meta-analysis of NET
polymorphisms (Angyal et al., 2018).

METHODS

The study was designed in compliance with the Helsinki
Declaration and was approved by the Local Scientific and
Research Ethics Committee of the Hungarian Medical Research
Council. The participating parents (mostly mothers) provided
written informed consent. The two samples and genotyping
methods are described in details by Angyal et al. (2018) and
Birkas et al. (2006). Briefly, DNA was isolated from buccal
swabs, and NET SNPs were genotyped with pre-designed
TagMan probes (rs28386840: C__60398891_10, rs2242446:
C__26354911_10, rs3785143: C__27481932_10) on 7300
Real-Time PCR System (Applied BioSystem). No significant
deviations from Hardy-Weinberg equilibrium (p > 0.1) were
detected for the NET polymorphisms in any of the tested
samples. Both the clinical and the community samples were
ethnically homogeneous Caucasian origin and consisted of
unrelated individuals.

For psychiatric symptom assessment, the Hungarian version
of the Child Behavior Checklist (CBCL, Achenbach, 1991;
Gadoros, 1996) was used, applying the standardized T-scores,
as these were corrected for sex and age differences. CBCL
was available for 88 children in the community sample (mean
age: 6.3 £ 0.2 years, 59.1% boys). In the clinical sample,
120 patients (mean age: 9.8 + 2.9 years, 85.8% boys) had
ADHD according to DSM-IV criteria (American Psychiatric
Association, 1994) either as primary or secondary diagnosis.
Additional 72 patients diagnosed with tic-disorders (but not
with ADHD) had CBCL data, yielding a total number of
192 patients comprising an extended child psychiatry patient
sample (mean age: 10.0 £ 3.2 years, 81.3% boys). Comorbid
conditions were assessed by the Hungarian child version of
the Mini-International Neuropsychiatric Interview (MINI-Kid;
Balazs et al., 2004). Among the 120 patients with ADHD, 30% had
Tourette syndrome, 14.2% obsessive compulsive disorder, 27.5%
learning disorder, 23.3% conduct disorder, and 14.2% anxiety
disorder. In the extended child psychiatry sample, 62.5% had
ADHD, 35.4% Tourette syndrome, 34.4% obsessive compulsive
disorder, 19.3% learning disorder, 16.1% conduct disorder, and
26.0% anxiety disorder.

Statistical analyses were carried out with SPSS 20 for
Windows, using the T-score of the CBCL attention problems
scale as dependent variable and the genotype categories (main

Frontiers in Neuroscience | www.frontiersin.org

January 2019 | Volume 12 | Article 1051


https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Nemoda et al.

Attention Problems and NET Polymorphisms

allele homozygotes vs. minor allele carriers) as independent
variable, with sex and age covariates in univariate analysis
of variance in the clinical samples. Whereas CBCL T-scores
were compared between the two genotype groups by Mann-
Whitney U-tests in the community sample. Quantitative analyses
of estimated haplotypes were performed with the THESIAS
program (Tregouet and Garelle, 2007).

RESULTS

Genetic associations of the CBCL attention problems were tested
separately in the community and the patient samples (Table 1). In
these quantitative analyses the rare homozygote and heterozygote
genotypes were grouped together to increase statistical power.
In the community sample, the promoter rs28386840 and the
intronic rs3785143 showed nominally significant associations
with attention problems (Z = -2.03, p = 0.042, and Z = -1.97,
p = 0.049, respectively). Among patients with ADHD, the two
promoter SNPs showed associations with attention problems
(rs28386840: F(1,116) = 5.33, p = 0.023, 12 = 0.04, observed
power: 0.63; 1s2242446: F(1,116) = 5.53, p = 0.020, 12 = 0.05,
observed power: 0.64). Similar associations (with higher power)
were detected in the extended child psychiatry patient sample:
1s28386840: F(1,188) = 11.55, p = 0.001, n? = 0.06, observed
power: 0.92; 1s2242446: F(1,188) = 9.40, p = 0.002, 12 = 0.05,
observed power: 0.86). Importantly, the means of the genotype
groups showed different patterns in the clinical and community
samples (Table 1).

Using all three NET SNPs in the estimation of haplotype effect,
the rs28386840-T~rs2242446-C~rs3785143-T (abbreviated as
T-C-T) haplotype group showed significantly higher attention
problems scores in the community sample than the most frequent
A-T-C haplotype group (p = 0.031, see 95% CI error bars above
the baseline on Figure 1A). For patients with ADHD, there
were no significant differences between the three most frequent
haplotype groups, however, in the extended child psychiatry
patient sample, both the T-C-C and the T-C-T haplotype
groups showed significantly lower attention problems scores
compared to the A-T-C haplotype group (T-C-C: p = 0.031,
T-C-T: p = 0.005), indicating the importance of the promoter
polymorphisms.

DISCUSSION

The involvement of the NE system in attentional networks and
in ADHD pathogenesis has long been demonstrated (Ehlers
and Todd, 2017; Faraone and Larsson, 2018). For example, the
effectiveness of the selective norepinephrine transporter inhibitor
atomoxetine was shown in ADHD treatment (Hazell et al., 2011).
Furthermore, since the availability of dopamine transporter is
low in the cortex, but NET is relatively abundant and can take
up extracellular dopamine (Moron et al., 2002), imbalances in
NET expression may contribute to attention problems due to
suboptimal cortical catecholamine (both dopamine and NE)
functioning.

Previously, we reported genetic associations between NET
gene polymorphisms and inattention symptom severity on the
ADHD-Rating Scale among ADHD patients (intronic rs3785143-
T and promoter rs2242446-C allele carriers showed lower
inattention scores, Angyal et al., 2018). Our haplotype analyses
indicated that a combination of three SNPs from the 5
end of the NET gene, namely the rs28386840-T~rs2242446-
C~rs3785143-T haplotype group had significantly different
score compared to the most common A-T-C haplotype group.
These associations were now supported in the same group of
ADHD patients using different, mother-reported questionnaire
data (Table 1). In order to test genetic markers in the full
range of attention (dis)functioning, we extended our analyses
to healthy preschoolers recruited from the general population.
The associations observed in this community sample, however,
were in the opposite direction (Table 1), indicating that the
underlying mechanisms may be more complex. Since other
quantitative analyses of NET polymorphisms and attention
problem scores reported mostly non-significant differences
among ADHD patients (Joung et al, 2010; Park et al, 2012;
Sengupta et al., 2012) and in a community sample (Hohmann
et al., 2015), it remains to be seen if our genetic findings could
be supported by replication studies.

Based on the inverted-U shape effect of NE (first described
by Gold and van Buskirk, 1978, for more details see Arnsten,
2009), we propose that the NET rs28386840-T~rs2242446-
C~1s3785143-T haplotype and/or the functional rs28386840
(—3081) T-allele have differential effects on attentional
performance (Figure 1B). The —3081 T-allele showed reduced
transcriptional efficiency in vitro (Kim et al., 2006), potentially
resulting in relatively higher catecholamine levels in cortical
areas. However, we have to note that an in vivo study using
positron emission tomography to measure subcortical NET
levels in adult ADHD patients and controls showed opposite
effect of the -3081 T-allele in the thalamus of control subjects
(no difference in NET density was observed among ADHD
patients by the NET promoter genotypes, Sigurdardottir et al.,
2016). Unfortunately, cortical areas could not be measured in
this study, leaving the question open if either SNP could affect
NET expression in the cortex.

We acknowledge that attention problems have multiple
components, and genetic variants contributing to cortical
NET expression would represent only a small part in attention
processes. Since genetic factors potentially interact with
each other and with environmental factors, the differential
susceptibility model was tested (for more details on the
model, see Belsky and Pluess, 2009). According to this model,
the NET promoter polymorphism(s) could act as plasticity
allele(s), resulting in opposite effects in positive and negative
environments (reflecting that psychiatry patients have more
stressful life events). In order to test this hypothesis, interaction
analyses were performed in the community sample, where
(mother-reported) stressful life events data was available.
Since no significant interaction of life stress and genotype was
observed, we rejected this model.

In conclusion, our results showed opposite genetic effects
of NET promoter polymorphisms on attentional problems in a
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TABLE 1 | CBCL attention problems scores according to the NET genotypes in the community and clinical samples.

Community sample N = 88 Patients with ADHD N = 120 Child psychiatry patients N = 192

N Mean + SD N Mean + SD N Mean + SD
rs28386840 (—3081 A/T)
AA 40 55.80 + 6.32 71 72.72 + 8.38 106 70.61 + 9.31
AT 39 59.10 £+ 8.31 43 69.49 +7.78 75 66.16 + 9.16
T 9 59.00 + 7.43 6 67.33 + 9.61 11 66.0 +£ 10.95
AT+ TT 48 59.08 + 8.08 49 69.22 + 7.94 86 66.14 + 9.33
p-value 0.042 0.023 0.001
rs2242446 (—182 T/C)
TT 40 56.05 + 6.75 68 72.74 + 8.55 100 70.45 + 9.46
CT 39 58.85 + 8.05 43 70.19 £ 7.50 77 66.90 + 9.28
CC 9 59.00 £+ 7.43 9 65.67 + 8.38 15 65.13 £ 9.64
CT+CC 48 58.88 + 7.86 52 69.40 + 7.77 92 66.61 + 9.31
p-value 0.064 0.020 0.002
rs3785143 (intronic C/T)*
CC 66 56.71 +£ 7.02 102 71.65 +£8.18 158 69.27 +£9.10
CT 22 60.23 + 8.30 18 69.28 + 9.26 34 65.53 + 11.11
p-value 0.049 0.209 0.030

In the clinical sample 120 patients had ADHD as primary or secondary diagnosis. With further 72 patients diagnosed with tic-disorders (but not with ADHD) an extended
sample of 192 child psychiatry patients was also tested in a separate analysis of variance (with sex and age covariates). *At the intronic SNP only 2 children had TT
genotype in the larger patient group (N = 192), who were grouped together with CT heterozygotes. Where three genotype groups were present, the minor allele carrier

group was compared to the main allele homozygote group (shown in bold).

A B
Oy - : : health
¢ | community sample child psychiatry A . y
T patients 2 psyc.hlatry children
6 1 S| patients AA
44 g T+ +
-C- -C- =]
M % TCC TCT 21 g4
0 o0 o Vad
o A-T-C 5
4] .CT TC-C &
-6 1 8
8 ‘ >
-104  attention problems score difference NE level in the PFC
FIGURE 1 | Effect of NET gene variants on attention processes. (A) Difference scores of CBCL attention problems at the NET haplotype groups in the community
and the extended child psychiatry patient samples. Haplotypes are constructed from rs28386840, rs2242446, rs3785143 alleles. The differences in attention
problems scores are presented with 95% CI of the estimated rs28386840-T ~ rs2242446-C ~ rs3785143-T haplotype (dark symbols, T-C-T) and T-C-C haplotype
(shaded symbols) compared to the most frequent A-T-C haplotype (open circle), based on THESIAS calculations. (B) Proposed mechanism of the differential genetic
effect of the rs28386840 (-3081) A/T SNP. The T+ group represents both AT and TT genotypes. Groups of child psychiatry patients are indicated in red.

community sample of children compared to patients recruited
at a child psychiatry clinic. The inverted-U shape modulatory
effect can explain the observed contradictions if lower baseline
cortical catecholamine levels are assumed in ADHD patients
(see Figure 1B). According to earlier reports, disturbance of
both dopamine and NE can be hypothesized in the background
of ADHD (Oades, 2002). For example, measures of blood
and urinary NE metabolite 3-methoxy-4-hydroxyphenylglycol
indicated lower NE functioning in ADHD children (Hanna et al,,
1996; Halperin et al., 1997; Llorente et al., 2006), although

comorbid conditions can change the ratio of dopamine/NE
(Halperin et al,, 1997; Oades and Miiller, 1997). Therefore,
further studies are required to reveal the exact nature of
neurotransmitter imbalances in ADHD in order to draw a more
precise model for our NET genetic findings.

Limitations of our study include the relatively small sample
size, which did not allow testing gene-gene interactions, and the
high comorbidity rates in the clinical sample, thus it cannot be
regarded as a purely ADHD patient sample. In addition, due to
potential rater bias and cultural effects on the attention problems
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scale of the CBCL (Crijnen et al., 1999), our findings should be
replicated in other cultural settings and/or with teacher- or self-
report data. Future studies should also test adult patients and
control subjects to see if this differential noradrenergic genetic
effect is stable over time.
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