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High angular resolution diffusion imaging (HARDI)-based tractography has been
increasingly used in longitudinal studies on white matter macro- and micro-structural
changes in the language network during language acquisition and in language
impairments. However, test-retest reliability measurements are essential to ascertain that
the longitudinal variations observed are not related to data processing. The aims of this
study were to determine the reproducibility of the reconstruction of major white matter
fiber bundles of the language network using anatomically constrained probabilistic
tractography with constrained spherical deconvolution based on HARDI data, as well as
to assess the test-retest reliability of diffusion measures extracted along them. Eighteen
right-handed participants were scanned twice, one week apart. The arcuate, inferior
longitudinal, inferior fronto-occipital, and uncinate fasciculi were reconstructed in the left
and right hemispheres and the following diffusion measures were extracted along each
tract: fractional anisotropy, mean, axial, and radial diffusivity, number of fiber orientations,
mean length of streamlines, and volume. All fiber bundles showed good morphological
overlap between the two scanning timepoints and the test-retest reliability of all diffusion
measures in most fiber bundles was good to excellent. We thus propose a fairly simple,
but robust, HARDI-based tractography pipeline reliable for the longitudinal study of white
matter language fiber bundles, which increases its potential applicability to research on
the neurobiological mechanisms supporting language.

Keywords: dMRI, tractography, tractometry, test-retest, language

INTRODUCTION

The characterization of the brain and language network and its development, disruption, and
changes over time represents one of the central themes of cognitive neuroscience. Diffusion
magnetic resonance imaging (dMRI)-based tractography has been proven to be a valuable tool
for the in vivo identification of white matter (WM) fiber bundles involved in language and
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the extraction of measures of their micro- and macro-structural
characteristics. However, the ability of this tool to reproduce
the same language fiber bundles’ morphology and micro- and
macro-structural characteristic measurements when dMRI data
is acquired twice from the same participant under the same
conditions (i.e., test-retest reliability), has yet to be clearly
demonstrated. In fact, while test-retest reliability has already
been reported for other neuroimaging techniques that are usually
employed in evaluating longitudinal changes in the language
brain network (such as resting state and task-based functional
MRI, voxel-based morphometry, and cortical thickness; e.g.,
Jovicich et al., 2009; Zhang et al., 2011; Braun et al., 2012; Birn
et al., 2013; Powers et al., 2013; Lin et al., 2015; Seiger et al.,
2015; Wang et al., 2016; Madan and Kensinger, 2017; Zhang
et al., 2017), test-retest reliability of dMRI-based tractography
has received comparatively less attention. This represents a first
necessary step to validate the use of this approach in longitudinal
studies on language.

It is increasingly accepted that WM associative fiber bundles
play a crucial role in mediating the transfer of information
among specialized language brain areas, distributed along two
main processing streams, namely the dorsal and ventral streams
(Hickok and Poeppel, 2000, 2007; Saur et al., 2008; Poeppel et al.,
2012; Dick et al., 2014). The central and most widely studied
WM fiber bundle of the dorsal stream is the arcuate fasciculus
(AF), putatively connecting Broca’s and Wernicke’s territories
(Catani and Thiebaut de Schotten, 2012). The AF has been
suggested to play a central role in the processing of phonological
information and complex syntax in both language production
and comprehension (Duffau et al., 2002, 2003; Friederici et al.,
2006; Brauer et al., 2011, 2013; Wilson et al., 2011). The major
fiber bundles of the ventral stream are the inferior longitudinal
fasciculus (ILF), the inferior fronto-occipital fasciculus (IFOF),
and the uncinate fasciculus (UF). Their specific contribution to
language processing is still a matter of debate. Both the ILF
and IFOF are bundles of long association fibers originating in
the occipital lobe (Dick et al., 2014). The ILF connects occipital
and temporal lobes, while the IFOF connects the occipital and
frontal lobes (Catani and Thiebaut de Schotten, 2008; Thiebaut
de Schotten et al., 2012; Dick et al., 2014). Both of these bundles
have been suggested to play a key role in semantic processing,
more specifically in reading and naming (Duffau et al., 2005,
2014; Duffau, 2008; Turken and Dronkers, 2011; Gil-Robles et al.,
2013; Han et al., 2013). The UF is a long-range association fiber
bundle connecting the anterior temporal lobe with the orbital and
polar frontal cortex (Thiebaut de Schotten et al., 2012). While the
role of this bundle in language is still controversial, it has been
suggested to support semantic retrieval (Lu et al., 2002; Grossman
et al., 2004; Catani and Mesulam, 2008) and simple syntactic
operations (e.g., processing of phrases) (Friederici et al., 2006).

The use of advanced probabilistic fiber tracking based on high
angular resolution diffusion imaging (HARDI) has proven to
be particularly suitable for the reconstruction of fiber bundles
with complex configurations (i.e., crossing, kissing, or fanning
fibers), such as language-related fiber bundles (Alexander et al.,
2002; Tuch et al., 2002; Tournier et al., 2012b; Descoteaux,
2015; Farquharson and Tournier, 2016; Jeurissen et al., 2017;

Maier-Hein et al., 2017). Up until recently, diffusion tensor
imaging (DTI) tractography based on dMRI data has been
considered a standard tool for the in vivo reconstruction of
fiber bundles. However, it has been demonstrated that DTI
fails to adequately represent the complex architecture of WM
fibers in the brain (Frank, 2001; Alexander et al., 2007; Behrens
et al., 2007; Descoteaux et al., 2007, 2009; Jeurissen et al.,
2010; Prckovska et al., 2012; Descoteaux, 2015). Standard DTI
analysis can represent only one fiber population per voxel,
whereas about 66% to 90% of voxels contain a complex fiber
configuration (Descoteaux and Deriche, 2008; Jeurissen et al.,
2010; Jeurissen et al., 2014). HARDI has been introduced to
mitigate some of DTI’s limitations in WM areas with a complex
geometry (Alexander et al., 2002; Tuch et al., 2002; Tournier
et al., 2012a; Descoteaux, 2015; Farquharson and Tournier, 2016).
HARDI measures the diffusion signal along 60 or more gradient
directions taken on the sphere in q-space (Descoteaux, 2015).
HARDI-based reconstruction techniques such as constrained
spherical deconvolution (CSD) aim to estimate the distribution
of different fiber orientations within a voxel using a mathematical
object known as the fiber orientation distribution function
(fODF) (Seunarine and Alexander, 2009). As opposed to the
tensor, the fODF allows the estimation of more than one fiber
population per voxel, which allows better characterization of
WM in regions with a complex architecture (Côté et al., 2013;
Descoteaux, 2015).

The combination of micro- and macro-structural measures
allows a more comprehensive analysis of WM fiber bundle
characteristics. Microstructural properties of bundles
reconstructed with tractography are usually inferred from
the extraction of different scalar metrics, such as fractional
anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD),
and axial diffusivity (AD). These measures are sensitive to
different fiber properties such as axonal ordering, myelinization,
and density (Jones et al., 2013). Although the specific
interpretation of these measures is still a matter of debate,
they are routinely used in both fundamental and clinical
neuroscience studies to provide insights into WM fiber bundles’
profile (Tournier et al., 2012b). The development of CSD based
on HARDI data allows the estimation of the number of fiber
orientations (NuFO) using the number of local maxima of
the fiber orientation distribution (FOD) (Dell’Acqua et al.,
2013). NuFO indicates the number of distinct fiber orientations
in each voxel, thus providing valuable information on WM
complexity. Interestingly, NuFO maps are highly consistent
across individuals, which could represent a sensitive marker
of age-related changes in WM complexity among healthy
populations or changes observed in clinical populations
(Dell’Acqua et al., 2013). Macrostructural measures provide
complementary information regarding the morphology of the
bundles, which includes the volume of the fiber bundles and the
mean length of streamlines (MLS) (Girard et al., 2014).

While there is growing interest in the use of tractography
and tractometry in longitudinal studies to investigate language-
related fiber bundles’ changes over time (e.g., Forkel et al., 2014;
Lam et al., 2014; Mandelli et al., 2016; Takeuchi et al., 2016;
Asaridou et al., 2017; Chow and Chang, 2017), the test-retest
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reliability of HARDI-based tractography and tractometry for
language-related fiber bundles has yet to be demonstrated.
Test-retest reliability refers to the reproducibility of a measure
repeated twice for the same participant (Berchtold, 2016). In
order for an instrument to be used to detect a change, it has to
be able to distinguish between a real change in individuals and
a random variation due to the measurement instrument itself
(Guyatt et al., 1987). This entails that one of the most crucial
aspects to look at when assessing the reliability of a method for
longitudinal designs is the test-retest reliability of measurement
instruments (Berchtold, 2016). To date, most studies have not
integrated reproducibility assessment of their diffusion measures
and fiber bundles. This is a critical issue because different
factors may affect intra-subject reproducibility such as imaging
acquisition parameters (e.g., Jones, 2004; Bisdas et al., 2008; Gao
et al., 2009), tractography pipelines (Wang et al., 2012; Kristo
et al., 2013; Cousineau et al., 2017), and subject physiological
noise (e.g., Pfefferbaum et al., 2003; Farrell et al., 2007). Previous
studies have provided evidence of good to excellent test-retest
reliability for other methods of analysis of dMRI data, such
as tract-based spatial statistics (TBSS), region-of-interest (ROI)-
based approaches, and DTI-tractography (Ciccarelli et al., 2003;
Heiervang et al., 2006; Danielian et al., 2010; Vollmar et al.,
2010; Magnotta et al., 2012; Wang et al., 2012; Cole et al., 2014).
However, the test-retest reliability of HARDI-tractography and
tractometry has received less attention. Promising evidence of
test-retest reliability of this approach comes from the work of
Besseling et al. (2012), Kristo et al. (2013) and Cousineau et al.
(2017). These studies have demonstrated the overlap of WM fiber
bundles reconstructed by means of HARDI-based tractography
and the reproducibility of their micro- and macro-structural
measures, based on dMRI data obtained from healthy subjects
in separate MRI acquisition sessions. Even though these studies
were crucial in determining the potential of this approach in
longitudinal studies, the only language-related bundle included
in all of them is the AF which yielded conflicting results. Thus, the
test-retest reliability of HARDI-tractography and tractometry in
the main language-related fiber bundles remains to be validated.

In order to fill this gap, the aim of the present study is to
assess test-retest reliability of the reconstruction, as well as the
micro- and macro-structural characteristics of the major WM
fiber bundles associated with language processing reconstructed
using probabilistic HARDI-tractography. To this aim, we have
collected dMRI data from a sample of healthy individuals
at two time-points, one week apart, and reconstructed major
WM fiber bundles supporting language functions within the
left and right hemispheres (AF, ILF, IFOF, and UF). We
expect that no measurable changes in the micro- and macro-
structural characteristics of the tracts under study would be
observed in that short time period. The test-retest reliability
of the fiber bundles’ morphology was obtained by calculating,
for each subject, the spatial overlap between each tract’s
reconstruction at the two time-points as proposed in Cousineau
et al. (2017). Additionally, macro-structural characteristics
such as volume and MLS, as well as mean microstructural
measures such as the tensor-based metrics FA, MD, RD, AD,
and the FOD-based measure NuFO (Dell’Acqua et al., 2013)

were extracted for each bundle and their reproducibility was
assessed.

MATERIALS AND METHODS

Participants
Eighteen right-handed cognitively unimpaired participants (age:
M = 64.61 y.o. ± 7.99; education: M = 16.16, ± 3.42 years; 9
women, 9 men) with no history of psychiatric or neurological
conditions were scanned at two time-points, one week apart.
The study was approved by the research ethics committee of
the Center intégré universitaire de santé et de services sociaux
du Nord-de-l’Ile-de Montréal (Project #MP-32-2018-1478) and
written informed consent was obtained from all participants.

Image Acquisition
The diffusion MRI protocol was acquired using a Skyra 3T MRI
scanner (Siemens Healthcare, United States) at the radiology
department of Hôpital du Sacré-Coeur of Montreal. At each of
the two scanning occasions participants underwent the same
acquisition sequence. One high resolution 3D T1-weighted
(T1w) image (TR = 2200 ms, TE = 2.96 ms, TI = 900 ms,
FOV = 250 mm, voxel size = 1 mm × 1 mm × 1 mm,
matrix = 256× 256, 192 slices, flip-angle = 8) was acquired using
a Magnetization Prepared Rapid Gradient Echo (MP-RAGE)
sequence. A diffusion weighted imaging (DWI) sequence was
also acquired (TR = 8051 ms, TE = 86 ms, FOV = 230 mm,
voxel size = 2 mm × 2 mm × 2 mm, flip angle = 90◦,
bandwidth = 1698; EPI factor = 67; 68 slices in transverse
orientation) with one image (b = 0 s/mm2) and 64 images
with non-collinear diffusion gradients (b = 1,000 s/mm2) in a
posterior-anterior (PA) acquisition, as well as two additional
images (b = 0 s/mm2): one in a PA acquisition, namely in the same
direction as the diffusion gradients, and the other in an anterior-
posterior (AP) acquisition, namely in the opposite direction of
the diffusion gradients.

dMRI Data Analysis
All analysis steps were conducted using the Toolkit for Analysis
in Diffusion MRI (TOAD) pipeline1.

Pre-processing
Pre-processing steps included denoising, motion/eddy/distortion
corrections, upsampling, registration, segmentation and
parcellation, and masking. First, DWI was noise-corrected using
overcomplete local principal component analysis (PCA) using
the Matlab toolbox DWI Denoising Software (Manjo et al., 2013)
The FMRIB Diffusion toolbox EDDY of FSL 5.0.11 (publicly
available neuroimaging software2) (Jenkinson et al., 2012) was
used to correct all images for subject movement, eddy-currents,
and susceptibility-induced distortions using AP-PA images.
Gradient directions were corrected corresponding to motion
correction parameters (motion for each subject at each timepoint

1http://www.unf-montreal.ca/toad
2http://www.fmrib.ox.ac.uk/fsl/

Frontiers in Neuroscience | www.frontiersin.org 3 January 2019 | Volume 12 | Article 1055

http://www.unf-montreal.ca/toad
http://www.fmrib.ox.ac.uk/fsl/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-01055 January 10, 2019 Time: 18:52 # 4

Boukadi et al. Test-Retest Reliability of HARDI-Tractography

is reported in the Supplementary Material). T1w images were
processed with Freesurfer’s pipeline 6.0.0 (Dale et al., 1999;
Desikan et al., 2006) for segmentation and parcellation of gray
and WM into anatomical regions. DWI was upsampled to
1 mm isotropic resolution using a trilinear interpolation (Girard
and Descoteaux, 2012; Raffelt et al., 2012; Smith et al., 2012;
Tournier et al., 2012a; Dyrby et al., 2014) and the segmented and
parcellated T1w was registered to the DWI using FMRIB’s linear
registration tool (FLIRT) from FSL. This step allowed us to carry
out anatomically constrained tracking (ACT) (see next section
for further details). Finally, a mask image was obtained from the
segmented T1w image and served to seed streamlines on the gray
matter-white matter interface (Tournier et al., 2012a).

Tractography
Fiber orientation distribution functions (fODFs) were estimated
using CSD. A whole-brain tractogram was computed using
MRtrix3’s probabilistic tractography algorithm with ACT3

(Tournier et al., 2012a). ACT uses the T1w (i.e., the segmented
anatomical image obtained from Freesurfer) to limit potential
false-negatives (i.e., no-connections) and improve WM coverage
in general (Guevara et al., 2011; Girard and Descoteaux, 2012;
Smith et al., 2012; Girard et al., 2014; Mori and Tournier,
2014). The AF, ILF, IFOF, and UF were reconstructed from the
tractogram using the White Matter Query Language (WMQL)
(Wassermann et al., 2016). WMQL is a user-friendly method
to carry out WM bundle extraction from tractography in
a nearly automatic way. It allows us to consistently define
bundles across subjects without manually specifying regions of
interest. It consists in writing queries with the WMQ language
describing the WM bundles to be reconstructed using anatomical
definitions from Freesurfer’s Desikan-Killiany atlas. In order to
be able to extract the fiber bundles using the written queries,
Freesurfer’s gray and WM parcellation was overlaid on the
tractogram. The queries were then automatically interpreted by
tractography tools. The queries used to reconstruct the fiber
bundles are presented in the Supplementary Material. Outlier
streamlines were then removed from each tract using a tract-
filtering algorithm (Côté et al., 2015). The following diffusion
and bundle measures were extracted along each fiber bundle for
each participant: FA, MD, AD, RD, NuFO (Dell’Acqua et al.,
2013), volume, and MLS. All tractography steps were performed
in native space since non-linear normalization with diffusion
MRI data requires local reorientations and warping which
affects the gradient table at every voxel (bval/bvec) (Vollmar
et al., 2010). Bringing the T1-w image into native diffusion
space with linear affine registration and using the Freesurfer
parcellation in this space is more robust (Girard et al., 2014,
2015).

Statistical Analysis
Test-retest analyses were carried out in two steps. First, we used
the weighted dice similarity coefficient (wDSC) to determine the
degree of overlap between the reconstructed fiber bundles at
Times 1 and 2 as in Cousineau et al. (2017). DSC is a statistical

3https://github.com/jdtournier/

metric that ranges between 0 and 1 and is used to assess the degree
of overlap between two volumes (Dice, 1945). The wDSC is a
variation of this metric and gives more weight to voxels with more
streamlines. This is important to take into account considering
the fact that WM bundles have more streamlines in their middle
than in the extreme portions (Cousineau et al., 2017). In the
two previous studies which used this measure to assess the
test-retest reliability of CSD-based reconstruction of WM tracts
(Besseling et al., 2012; Cousineau et al., 2017), the minimum
value of Dice was 0.70. Therefore, this value was used as the
acceptable threshold for a good wDSC in our study. The wDSC
was computed using the following formula from Cousineau et al.
(2017):

D
(
Wi , Wj

)
=

6v′ Wi,v′ + 6v′Wj,v′

6v Wi,v′ + 6vWj,v

where Wi and Wj, respectively, represent the bundles at Time 1
and Time 2, and v′ represents the voxels from the two
reconstructions of the bundles (Wi and Wj) that overlap.

To do so, T1-weighted images in diffusion space taken at
Time 1 were registered linearly to anatomical images taken at
Time 2 (i.e., seven days later) for each subject with Advanced
Normalization Tools (ANTs), version ≥ 2.1 (Tustison et al.,
2014)4. Transformation matrices were applied to all Time 1
bundles using TractQuerier’s tract_math tool (Wassermann et al.,
2016). Once the two fiber bundles of each subject were in the
same space, wDSCs were computed with the tractometry pipeline
from the Sherbrooke Connectivity Imaging Lab (SCIL) http:
//scil.dinf.usherbrooke.ca/?lang=fr. The right UF bundle could
not be reconstructed in one participant. Analyses were therefore
conducted with a sample of 17 participants for that bundle.

In a second step, we combined two complementary analyses,
the intra-class correlation coefficient (ICC) and the Bland-
Altman plots to assess the test-retest reliability of each of the
measures extracted in each reconstructed fiber bundle. The
intra-class correlation coefficient (ICC) (Shrout and Fleiss, 1979;
McGraw and Wong, 1996) is a widely used statistical approach
to assess agreement in test-retest reliability studies in different
fields, including neuroimaging (e.g., Zhang et al., 2011; Braun
et al., 2012; Birn et al., 2013; Duda et al., 2014; Duan et al.,
2015). The ICC is calculated from an analysis of variance and
can be broadly defined as the ratio of between-subject variance to
the total variance (including within-subject variance and residue)
(Berchtold, 2016). ICC values range from 0 to 1 and can be
categorized into four levels of test-retest reliability: excellent
(ICC > 0.75), good (ICC = 0.60 to 0.74), fair (ICC = 0.40 to
0.59), and poor (ICC < 0.40) (Fleiss, 2003). ICC estimates and
their 95% confidence intervals were calculated using SPSS version
25 based on a single measurement, absolute-agreement, two-way
mixed-effects model. The formula used for computing this ICC
(McGraw and Wong, 1996) is as follows:

MSR − MSE

MSR +
(
k− 1

)
MSE +

k
n (MSC − MSE)

4http://stnava.github.io/ANTs/

Frontiers in Neuroscience | www.frontiersin.org 4 January 2019 | Volume 12 | Article 1055

https://github.com/jdtournier/
http://scil.dinf.usherbrooke.ca/?lang=fr
http://scil.dinf.usherbrooke.ca/?lang=fr
http://stnava.github.io/ANTs/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-01055 January 10, 2019 Time: 18:52 # 5

Boukadi et al. Test-Retest Reliability of HARDI-Tractography

where MSR is the mean square for rows, MSC is the mean square
of columns, MSE is the mean square for error, k is the number of
measurements, and n is the number of subjects.

We also created Bland and Altman plots which provide
a visual assessment of the agreement of the two time-points
(test and retest) of each measure in all four fiber bundles
bilaterally (Bland and Altman, 1999). The created graphs are
scatter plots with the Y axis representing the difference between
the measurements at the two timepoints and the X axis
representing the mean of these measures. Good agreement
between measurements at two time-points exists if 95% of
the data falls within ± 2 standard-deviations of the mean of
differences.

RESULTS

The degree of overlap was good for all four reconstructed fiber
bundles (AF, ILF, IFOF, and UF, bilaterally) between Time 1 and
Time 2, with wDSC values ranging between 0.71 and 0.87 (values
for each fiber bundle are reported in Table 1). Figure 1 illustrates
the bundle overlap for a representative subject. One must note
that the figure reflects the raw bundle overlap rather than the
weighted overlap represented by the wDSC which gives more
weight to voxels with more streamlines.

Table 1 shows the ICC estimates, their 95% confidence
intervals, and p values of the diffusion measures of interest,
namely FA, MD, RD, AD, NuFO, volume, and MLS. FA, AD, MD,
RD, and MLS measures showed consistently good to excellent
test-retest reliability (ICCs = 0.62−0.95) across all four WM fiber
bundles, bilaterally. Volume showed fair reliability in the right
IFOF and UF (ICC = 0.41−0.58), and good to excellent reliability
in all other bundles. NuFO showed the lowest reliability; test-
retest reliability was fair in the ILF bilaterally and good in all other
bundles.

In Figure 2, we only present the Bland and Altman plots
created for the FA measure for the sake of brevity and
clarity. Bland–Altman analysis showed high reproducibility (95%
CI = 0.019, −0.01 for the left AF; 0.025, −0.04 for the right AF;
0.03, −0.04 for the left ILF; 0.03, −0.03 for the right ILF; 0.02,
−0.02 for the left IFOF; 0.03, −0.02 for the right IFOF; 0.04,
−0.04 for the left UF; and 0.2, −0.2 for the right UF) with little
difference (mean difference = 0.005 for the left AF,−0.006 for the
right AF,−0.004 for the left ILF,−0.003 for the right ILF,−0.0008
for the left IFOF, 0.002 for the right IFOF, 0.001 for the left UF,
and 0.03 for the right UF). A total of 88% (right AF, left and right
UF) to 94% (Left AF, left and right ILF, left and right IFOF) of data
points were within these limits. The 6 other plots are reported in
the Supplementary Material. All plots were consistent with the
ICC analyses.

DISCUSSION

The aim of this study was to demonstrate the test-retest
reliability of the reconstruction and micro- and macro-structural
characteristics of major WM language fiber bundles using TA
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FIGURE 1 | Overlapped 3D volume representations of the reconstructed fiber
bundles at the two scanning time-points in a representative subject. Please
note that these do not reflect the wDSC values. Blue = time 1, red = time 2,
purple indicates the overlap. AF, arcuate fasciculus; ILF, inferior longitudinal
fasciculus, IFOF, inferior fronto-occipital fasciculus; uncinate fasciculus; L, Left;
R, Right.

probabilistic CSD-tractography based on HARDI data. The
dMRI data were obtained on a group of healthy subjects
at two timepoints, spanning one week. First, the results
demonstrated that all the reconstructed fiber bundles have
a good overlap between the two timepoints. Secondly, tract-
specific measures usually used in studying microstructural WM
characteristics, such as FA, MD, RD, and AD, as well as the
macrostructural measure MLS showed good to excellent test-
retest reliability in the AF, ILF, IFOF, and UF, bilaterally. Volume,
another macrostructural property, showed good to excellent
reproducibility for some fiber bundles (AF, ILF, as well as the
IFOF, and UF in the left hemisphere) but only fair reproducibility
for others (IFOF and UF in the right hemisphere). NuFO showed

good test-retest reliability for all fiber bundles, except the ILF
which showed only fair test-retest reliability. Our results agree
with and, at the same time, critically expand on previous studies
that investigated the test-retest reliability of probabilistic CSD-
tractography (Besseling et al., 2012; Cousineau et al., 2017).
These results represent a first necessary validation protocol for
longitudinal studies in research in the cognitive neuroscience of
language. Assessing test-retest reliability of the reconstruction of
fiber bundles and of their micro- and macro-structural measures
is of paramount importance for the use of this approach in
longitudinal studies, as it allows to ascertain that the observed
variations truly reflect the changes that may take place in WM
over time and are not due to the variability inherent to dMRI data
processing, instead (Cousineau et al., 2017).

Diffusion MRI tractography is presently the only method that
allows the reconstruction of WM fiber bundles in vivo. For this
reason, in the last decades it has gained tremendous popularity
in the field of neuroscience and its potential to map the human
connectome is widely recognized. In the last years, an increasing
number of big data initiatives has been developed in order to
collect longitudinal dMRI data in healthy individuals with the
ultimate goal to describe the changes of dMRI over the lifespan
and to link these changes to cognitive performance (Howell et al.,
2017). In order to fully benefit from the potential of longitudinal
dMRI data, it is necessary to demonstrate the test-retest reliability
of dMRI-based tractography. The present work provides critical
information to investigate two important questions. When we
obtain dMRI data in two separate acquisition sessions one week
apart in the same subjects, using probabilistic CSD-tractography
with ACT and tractometry based on HARDI data, can we 1)
reconstruct overlapping WM language fiber bundles? and 2)
extract similar micro-and macro-structural measure values?

Regarding the first question, our data seem to provide an
affirmative response. The obtained wDSC values determining
the degree of overlap of the bundles reconstructed at the two
timepoints using probabilistic CSD-tractography ranged between
0.71 and 0.87. Based on the minimum value (0.70) of Dice
found in the two studies which used this metric to assess
the test-retest reliability of CSD-based reconstruction of WM
tracts (Besseling et al., 2012; Cousineau et al., 2017), our wDSC
values indicate that all the fiber bundles investigated in the
present study have good test-retest reliability. In addition, our
wDSC values are consistent with the values obtained in previous
studies aimed at validating test-retest reliability of probabilistic
CSD-tractography in other fiber bundles, such as the cingulum,
optic radiation, and the corpus callosum (Besseling et al., 2012;
Cousineau et al., 2017). We also report excellent overlap for
the AF and IFOF, which is consistent with Cousineau et al.
(2017) who used a similar tractography pipeline. The overlap
obtained in our study is greater than what has been reported
by Besseling et al. (2012) in which, in order to reconstruct
the AF, they only used seed and target ROIs. Considering the
complex anatomy of the AF, a tractography method allowing
the use of more specific anatomical priors, as we did in
the present study, might improve the reconstruction of this
complex tract and thus allow for a better reproducibility of its
morphology.
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FIGURE 2 | Bland-Altman Plots for the FA metric in all four fiber bundles, bilaterally. The Y axis represents the mean difference between the measurements at the
two timepoints and the X axis represents the mean of these measures. The upper and lower dashed lines represent the two limits of agreements at ± 2
standard-deviations of the mean of differences (i.e., the 95% confidence interval). The solid line represents the mean of the differences between the two timepoints.
The dots represent the individual subjects. FA, fractional anisotropy; AF, arcuate fasciculus; ILF, inferior longitudinal fasciculus; IFOF, inferior fronto-occipital
fasciculus; UF, uncinate fasciculus; T1, time 1; T2, time 2.

Our study also confirms the reproducibility of tensor metrics
and MLS. Test-retest reliability of tensor metrics (FA, MD,
RD, and AD) has been previously studied using DTI-based
tractography (Ciccarelli et al., 2003; Heiervang et al., 2006;
Danielian et al., 2010; Vollmar et al., 2010; Wang et al., 2012;
Buchanan et al., 2014). However, studies using this approach
have not always reported satisfactory results. For example, in
one study, poor test-retest reliability was observed with AD
across all studied fiber bundles (Danielian et al., 2010), whereas
others reported tract-specific variability of the reproducibility
of FA and MD (Wang et al., 2012). There are several sources
of variability in diffusion MRI that can affect the test-retest
reliability of tractography or the measures of WM structural
characteristics (Danielian et al., 2010). These include, but are
not limited to, partial volume effects introduced by the DTI
model, bad anatomical priors, as well as potential inter- and
intra-rater reliability of ROI placement in seed-based approaches
for tractography (Wakana et al., 2007; Danielian et al., 2010;
Cousineau et al., 2017). In the present study, we used an approach
that attempts to reduce variability from these sources by using
HARDI-based state-of-the-art tracking algorithms based on ACT
and probabilistic tracking algorithms which have the potential
to yield fuller, longer bundles that better reach the cortex (Mori
and Tournier, 2014; Maier-Hein et al., 2017), novel approaches
to extract the bundles from the tractogram (i.e., WMQL), as
well as good anatomical priors (Conturo et al., 1999; Catani
et al., 2002; Hagmann et al., 2003; Huang et al., 2004; Wakana
et al., 2007). Using this approach, we were able to demonstrate
good to excellent reliability of all tensor-based metrics which
are the microstructural measures most commonly used in dMRI
studies on language, and MLS, a macrostructural measure, in
all language fiber bundles. This represents an important step
towards the validation of this approach in the longitudinal study
of language fiber bundles. On the other hand, the test-retest
reliability of NuFO was less than good in some tracts. To the best

of our knowledge, no previous study has investigated the test-
retest reliability of this measure. Our results seem to encourage
further longitudinal validation of this measure before adopting
it in longitudinal studies. Additionally, our results for the
volume, another macrostructural measure, were consistent with
previous studies that reported inconsistent test-retest reliability
for this measure across fiber bundles, using probabilistic CSD-
tractography (Besseling et al., 2012) or DTI-based tractography
(Wang et al., 2012).

Even though the present results are very promising,
particularly for the tensor metrics and MLS, future studies should
be designed in order to confirm our findings. First, these results
should be reproduced in larger groups. Secondly, the use of
CSD allows to resolve multiple fiber orientations at reasonable
angles with a properly data-driven response function at lower
b-values and 64 directions as in the present study (Tournier et al.,
2007; Descoteaux et al., 2009; Raffelt et al., 2012). Nevertheless,
utilizing multi-b-value sequences, such as b = 1000 s/mm2,
b = 2000 s/mm2, b = 3000 s/mm2, or b = 1000 s/mm2, and
b = 3000 s/mm2, could help to interpret the differences obtained
in the present study by considering other available measures, such
as intracellular, extracellular, and isotropic volume (Raffelt et al.,
2012).

CONCLUSION

In conclusion, in an era where initiatives to collect dMRI
longitudinal data are multiplying and fiber tracking is considered
one of the most popular tools to follow changes in the language
network over time, the question of test-retest reliability of
dMRI tractography is of paramount importance. Our study
provides critical evidence indicating the test-retest reliability of
probabilistic CSD-tractography. As in previous studies which
demonstrated test-retest reliability of TBSS or DTI-tractography
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(e.g., Kitamura et al., 2013; Forkel et al., 2014; Poudel et al.,
2015), the present results support the use of probabilistic CSD-
tractography to study language fiber bundles in longitudinal
studies in healthy and clinical populations interested in language
related fiber bundles.
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