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Brain volume measurements extracted from structural MRI data sets are a widely
accepted neuroimaging biomarker to study mouse models of neurodegeneration.
Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the
phase of experimental designs, as well as data analysis. In this work, we extracted the
brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired
from the same animals using accurate automatic multi-atlas structural parcellation, and
compared the corresponding statistical and classification analysis. We found that most
gray matter structures volumes decrease from in vivo to ex vivo, while most white matter
structures volume increase. The level of structural volume change also varies between
different genetic strains and treatment. In addition, we showed superior statistical and
classification power of ex vivo data compared to the in vivo data, even after resampled
to the same level of resolution. We further demonstrated that the classification power
of the in vivo data can be improved by incorporating longitudinal information, which is
not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific
changes, as well as the difference in statistical and classification power, between the
volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results
emphasize the importance of longitudinal analysis for in vivo data analysis.
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INTRODUCTION

In neuroimaging studies, quantitative analysis of neuroanatomy,
such as volumetric analysis of brain structures extracted from
magnetic resonance imaging (MRI) data sets, plays a crucial
role in the diagnosis of diseases at the early stages of pathology
before the onset of clinical symptoms (McEvoy and Brewer,
2010). This has been facilitated by automated analysis techniques
such as atlas-based parcellation, which enable large data sets
to be analyzed in a time efficient and unbiased manner. The
application of MRI to study mouse models is increasingly being
utilized to understand disease mechanisms as well as potential
treatment effects, and a number of mouse brain MRI atlases
are currently in existence to facilitate structural analysis of these
models (Ma et al., 2005, 2008, 2014; Bai et al., 2012). However,
whether to acquire data in vivo or ex vivo is always a debatable
question during experimental design. For brains scanned ex vivo,
there are no motion artifacts, and the prolonged scanning time
enables (1) increased image resolution (leading to less partial
volume effects), (2) improved signal to noise ratio, and (3)
enhanced tissue contrast (Montie et al., 2010; Lerch et al., 2012;
Holmes et al., 2017). The quality of images acquired ex vivo
can be further enhanced using high concentrations of contrast-
enhancement agents such as Gadolinium (Cleary et al., 2011).
The enhancement of image quality in the ex vivo data can increase
the statistical power to detect subtle volume changes when
performing cross-sectional comparison between normal and
disease groups (Lerch et al., 2012). However, samples prepared
for ex vivo imaging suffer from morphological disruption to the
tissues during processes such as fixation and perfusion (Lavenex
et al., 2009). On the other hand, most of the intrinsic physiological
and pathological characteristics of the animal’s tissues can be
preserved if they are imaged in vivo (Schulz et al., 2011).
Furthermore, with in vivo imaging, it is possible to trace the
morphological changes of each individual animal longitudinally.
This is especially important for monitoring disease progression
(Zhang et al., 2010), as well as potential treatment effects over
time using transgenic mouse models (Santacruz et al., 2005;
Holmes et al., 2016). The trade-offs between longitudinal in vivo
and cross-sectional ex vivo imaging data are an important factor
to be consider during experimental design.

Our current understanding of volume changes from in vivo
to ex vivo is inconclusive. Studies show inconsistent results on
both clinical (Schulz et al., 2011; Kotrotsou et al., 2014) and
preclinical imaging data (Ma et al., 2005, 2008; Zhang et al.,
2010; Oguz et al., 2013). Lerch et al. (2012) measured the
theoretical statistical power to compare in vivo and ex vivo
imaging. Meanwhile, Holmes et al. (2017) investigated the effect
size and sample size required for data analysis using tensor-based
morphometry (TBM). In this study, we aim to further study and
compare the volumetric analysis of individual structures using
either longitudinal in vivo data or single-time-point ex vivo data
acquired on the same animals.

Accurate structural parcellation is crucial for volumetric
analysis. Conventional methods used to obtain volumetric
information for regions-of-interest (ROIs) routinely implement
manual delineation methods, which are both time-consuming

and prone to human error (Ma et al., 2005; Richards et al.,
2011). Comparatively, automatic structural parcellation has been
continually improved and increasingly adopted to overcome the
disadvantages of manual methods (Calmon and Roberts, 2000;
Sharief et al., 2008; Almhdie-Imjabber et al., 2010). Recently,
multi-atlas based techniques have been shown to provide highly
accurate structural volumes in both clinical and preclinical
studies (Rohlfing et al., 2004; Warfield et al., 2004; Aljabar et al.,
2007; Cardoso et al., 2013; Ma et al., 2018).

In this study, we compared structural volumetric information
extracted from both in vivo and ex vivo mouse brain data
sets using a fully automated multi-atlas structural parcellation
framework (Ma et al., 2014). We sought to explore how changes
in volumes between in vivo and ex vivo in the mouse brain are
distributed across different brain tissues and structures; whether
the difference varies across different strains and treatment; and
whether those variations within structures affect the statistical
and classification power when comparing volumetric differences
with expected pathology changes of brain atrophy with and
without drug treatment. We also investigated whether including
longitudinal information can improve the analysis of group
differences.

MATERIALS AND METHODS

Experimental Data
We used the rTg4510 transgenic mouse strain, which faithfully
recapitulates several key features of clinical Alzheimer’s disease
(AD) and frontal temporal dementia (FTD) including progressive
atrophy of the forebrain regions and the accumulation of
neurofibrillary tangles of tau (NFTs) (Santacruz et al., 2005).
The NFT overexpression level and accompanying volumetric
brain changes in the rTg4510 mouse can be attenuated using
doxycycline, (Holmes et al., 2016); thus, this mouse model offers
a unique paradigm to test the sensitivity of the analysis toward
the level of structural changes.

17 rTg4510 and 8 litter-matched wild-type controls were bred
on a mixed FVB/NCrl + 129S6/SvEvTa background for Eli Lilly
and Company by Taconic (Germantown, MD, United States) and
received on site 2 weeks before the initiation of the study. Only
female mice were included to control the effect of sex differences.
The rTg4510 mouse model exhibit early and fast progressing tau
pathology (Santacruz et al., 2005), with mature NFTs observable
between 3 and 5.5 months (Yue et al., 2011) and rapid progressing
neuronal loss in the CA1 region of hippocampus by 5.5 months
of age (Santacruz et al., 2005; Spires et al., 2006). Therefore, out
of the 17 rTg4510, 10 received no intervention (untreated group),
and the remaining 7 were administered with doxycycline from 3.5
months of age to coincide with early NFT formation, and enable
potential treatment effects to be studied in both the in vivo and
ex vivo data sets.

Longitudinal in vivo scans were performed at age of 4.5
months, 5.5 months, and 7.5 months to capture disease
progression and doxycycline treatment in the corresponding
groups. T2-weighted images were acquired using a 3D fast spin-
echo sequence with a 72 mm birdcage radiofrequency (RF) coil.

Frontiers in Neuroscience | www.frontiersin.org 2 January 2019 | Volume 13 | Article 11

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00011 January 22, 2019 Time: 16:47 # 3

Ma et al. In vivo/ex vivo Mouse Brain Volumetric Analysis

The animals were sacrificed immediately after the 7.5 months
in vivo scan, to enable a direct comparison of structural brain
changes from the in vivo and ex vivo data sets. An active staining
technique was used to enhance the contrast for ex vivo imaging,
by perfuse-fixing the animals using buffered formalin saline
doped with 8 mM Magnevist, and soaking the decapitated brains
in-skull at 4◦C in this solution for 9 weeks prior to imaging
(Cleary et al., 2011). A 35 mm birdcage RF coil was used for
ex vivo imaging. The in vivo and ex vivo images were scanned
using different RF coils and imaging gradient sets. The gradient
scaling errors and non-linearity was calibrated to eliminate
scaling effects (O’Callaghan et al., 2014). The detailed in vivo and
ex vivo scanning protocols can be found in Holmes et al. (2017).
The resolution of the in vivo and ex vivo images was 150 µm
isotropic and 40 µm isotropic, respectively.

Automatic Structural Parcellation
Brain structures were extracted using the multi-atlas
segmentation propagation framework, which has been validated
on both in vivo and ex vivo mouse brain MRI data and
demonstrated accurate segmentation results (Ma et al., 2014;
Powell et al., 2016). We adopted a publicly available MRM
NeAt atlas database created by Ma et al. (2008) which includes
35 manual labeled anatomical structures for 10 in vivo and 10
ex vivo images (Ma et al., 2005) with structure labels created
using the same manual segmentation protocol. The left/right
hemispheres were automatically separated as described in Ma
et al. (2014) to make them more biologically plausible.

In the preprocessing step, the test images were first reoriented
to the same orientation of the atlas (PLS), and then corrected
for intensity inhomogeneities using the N4 algorithm (Tustison
et al., 2010). The images from the atlas were then registered to
the pre-processed test images, first globally with a symmetric
block-matching affine approach (Ourselin et al., 2000; Modat
et al., 2014), followed by a local non-rigid registration step with
asymmetric scheme based on a cubic B-Spline parametrization
of a stationary velocity field and similarity measurements based
on normalized mutual information (Rueckert et al., 1999; Modat
et al., 2014). A deformation map between each atlas image
and test image pair was generated from the image registration,
which was then applied to transform the corresponding manually
segmented brain structural labels of the atlas image to the test
image space. The normalized mutual information ensures that
the image similarity measurement is insensitive to the intensity
profile difference between the registered image pairs (Rueckert
et al., 1999). Gradient descent optimization was implemented
to maximizing the image similarity, and the global (affine) to
local (non-rigid) registration framework help to prevent the
optimization scheme from been caught in the local minimum
(Crum et al., 2004). The registered structural labels were ranked
and fused using local normalized cross-correlation similarity
measurements to obtain the best consensus structure label
(Cardoso et al., 2013).

Careful quality assurance (QA) was performed on each
automatically generated brain mask, which is the summation of
all the parcellated structural labels. Manual corrections of the
brain mask were applied on regions where voxels of external

CSF were sometimes misclassified as brain tissue at the edge of
the brain mask. The misclassified voxels happened mostly in the
data from the untreated transgenic groups (for both in vivo and
ex vivo), when the shrinkage of the brain tissues induced excessive
amounts of external CSF to accumulate in the subarachnoid
space. This phenomenon mostly appeared in the posterior part
of the brain. Post-QA, the volume of each brain structure was
extracted from the parcellation result with corrected brain mask.

The resolution of the ex vivo data is higher than the in vivo
data because of the longer image acquisition time, the T1-
shortening effects of the contrast agent, and the use of a smaller
imaging gradient set; in order to eliminate effects simply due
to the difference in image resolution, we also down-sampled
the ex vivo images from the original resolution (40 µm) to
the same resolution of the in vivo image (150 µm) with
spline interpolation, and applied the same multi-atlas structural
parcellation pipeline using the same atlas.

Gray-Matter/White-Matter
Contrast-to-Noise Analysis
We compared the gray-matter/white-matter (GM/WM)
contrast-to-noise ratio (CNR) between the in vivo and ex vivo
images, for each of the treated and untreated rTg4510 groups,
and the wild-type controls, using the following formula:
CNR =

(
SiginalGM − SignalWM

)
/Noise. We grouped the labels

for all the GM structures as well as for all the WM structures
and measured the mean intensity across the entire GM and WM
regions accordingly as their signal intensities. To measure the
background noise, we first affinely registered images of all the
subjects to a common groupwise space by randomly selecting one
subject as the reference. We took the average of all the affinely
registered images and manually defined a region of interest
(ROI) in the image background which doesn’t contain any tissue
signals and is ghost-free. We then propagated the ROI back
to all the subjects by taking the inverse transform of the affine
matrix generated from the groupwise registration. The noise
for each image was then measured as the standard deviation of
the propagated background ROI. Manual QA was performed
to ensure the propagated ROI was located in the background
for all subjects. The background noise for each image was then
defined as the standard deviation within the background ROI.
We compared the CNR with an unpaired one-tail Student t-test.
Multiple comparisons were corrected with a false discovery rate
(FDR) of 0.05 (Chumbley and Friston, 2009; Storey, 2010).

Structure Volume Comparison of
Between in vivo and ex vivo
Measurement
Subsequently, we used the Bland–Altman analysis to investigate
the proportional differences in structural volumes measured from
in vivo and ex vivo data at the same time-point (7.5 months)
in order to explore the local variation of volume changes across
structures using the automatically parcellated structural labels. To
control for partial volume effects due to the resolution difference,
we compared the in vivo structure volume to the down-sampled
ex vivo volume to ensure same resolution (150 µm).
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The Bland–Altman plot is often the method of choice in
medical research for measuring the agreement or difference
between two measurements (Altman and Bland, 1983; Martin
Bland and Altman, 1986; Myles and Cui, 2007). It is
recommended by Pollock et al. (1992) that, when the variability
of the measurement differences is related to the magnitude of
the measurements, one should plot the proportional difference to
the magnitude of the measurements on the y-axis of the Bland–
Altman plot instead of the absolute difference. In this study,
the difference in the measured volume should be represented
as the proportional of the underlying structural size. Therefore,
we plotted the percentage volume difference (PVD) between
structural volumes as a proportion of the mean structure size
(Eq. 1). For each structure:

PVD =
Vex − Vin

(Vex + Vin) /2
× 100% (1)

where V in and Vex are the individual structure volumes extracted
from in vivo and ex vivo brains, respectively.

We compared the in vivo and ex vivo measurements for each
structure across all subjects within all groups through paired
t-tests for all the parcellated structures to investigate whether
the observed volume differences were statistically significant.
Multiple comparisons were corrected with FDR = 0.05. We also
compared the mean in/ex vivo structural volume differences
among the three different groups using an analysis of variance
(ANOVA) followed by Bonferroni post hoc test to compensate
for multiple tests for each structure. Multiple comparisons across
different structures were further controlled with FDR set to 0.05.

Group Difference Analysis
Volumetric analysis is often used as a surrogate imaging
biomarker to distinguish subjects from different groups. In the
next step, we assessed and compared the statistical analysis
results measuring the group difference using the parcellated
structures from the in vivo data and that from the ex vivo data.
We included only the rTg4510 transgenic animals in this step,
in order to control for effects due to genetic differences. We
compared the brain structures between the untreated and the
doxycycline-treated rTg4510 groups. The structure volume is
normalized to the total brain volume (TBV) by modeling the
volume as a linear combination of the TBV and the residual
term (Eq. 2), then fitting the linear model to the data from the
untreated group (regarded as the reference group) and taking the
standardized residual (w-score) as the measured feature (Eq. 3).
The residual-based structure normalization method has been
proved to be more effective at removing the confounding effect
of TBV compared to the proportional method which achieves the
normalization through simply dividing the structure volume by
the TBV (Sanfilipo et al., 2004). The w-score is the recommended
method for evaluating the structure changes such as atrophy
(O’brien and Dyck, 1995; La Joie et al., 2012; Collij et al.,
2016; Ma et al., 2018). It is equivalent to the z-score of the
residual showing the difference of each volume measurements
when comparing to the reference group mean. Therefore, the
difference in w-score represent the difference in pathological
severity, effectively reflecting the treatment effect of doxycycline.

We performed unpaired two-tailed t-tests on the normalized
volumes of all the parcellated structures between the untreated
and doxycycline-treated rTg4510 groups, for both the in vivo and
ex vivo data. All tests were corrected for multiple comparisons
with a FDR of 0.05. Multiple comparisons were corrected with a
FDR of 0.05.

Vi = β0 + β1Ti + εi (2)

where V i is the raw structure volume for subject i, Ti is the
corresponding TBV, εi is the residual term. The normalized
volume V̂i (w-score wi) is calculated as:

V̂i = wi =
εi − µεUT

σεUT

(3)

where µεCN and σεUT are the mean and standard deviation of the
residual for the untreated (reference) group.

It has been shown that incorporating longitudinal data can
theoretically improve the classification power of the data (Lerch
et al., 2012; Kim and Kong, 2016). Therefore, we also estimated
the longitudinal structure volume change rate to evaluate whether
the longitudinal information obtained from the in vivo scans
provide complementary information over the single-timepoint
data sets. The longitudinal structure volume change rate is
estimated by fitting a linear model to the longitudinal volume
data from the three time-points (3.5, 4.5, and 7.5 months), as
shown in Eq. (4).

V ti
j = V t0

j + Rj × (ti − t0)+ ε (4)

Where V ti
j is the measured volume of structure j at time ti, the

slope parameter Rj represent the volume change rate of structure
j, and ε is the error term. Unpaired t-tests were performed
to compare the structural change rate between the treated and
untreated group.

Evaluation of the Classification Power
In the last step, we compared the classification power between the
in vivo and ex vivo volume measurements. Again, we included the
untreated and doxycycline-treated groups of mice, all from the
same genetic background (rTg4510). We used a support vector
machine (SVM) with a linear kernel as the classifier to classify
the treated and untreated groups. All parcellated structures were
regarded as features for classification, and all features were scaled
to the mean± 1 SD. Due to the small sample size, threefold cross-
validation was conducted. In each fold, we evaluated the ability of
the model to correctly classify the mice in the test set based on
the pre-classified training set. Feature dimensions were reduced
using principal component analysis (PCA), with the number of
principal components fed to the classifier chosen to represent
95% of the total variance of the training set. We evaluated the
classification performance using the mean area under the curve
(AUC) of the receiver operating characteristic (ROC), with a
larger mean AUC representing better classification power.

For in vivo data, our evaluations include: (a) only the third
timepoint data (7.5 months); (b) the longitudinal data (in the
form of absolute structural change rate); and (c) the combined
feature including both the third time-point normalized structure
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volume as well as the longitudinal absolute structural volume
change rate. For the ex vivo data, we evaluated the classification
power for both the original and the down-sampled data.

In order to study the effect of the sample size toward the
power to classify the treated and untreated group of the SVM
classifier for both in vivo and ex vivo data, we plotted the learning
curve which shows the changes of classification accuracy of both
training set and cross-validation test set with different sample size
(Figueroa et al., 2012; Beleites et al., 2013). We performed the
sample size analysis for all five sets of data: (a) the third timepoint
in vivo data (7.5 months); (b) the longitudinal in vivo data; (c)
the combined feature including both the single timepoint and
longitudinal in vivo data; (d) the raw ex vivo data; and (e) the
down-sampled ex vivo data.

Evaluation Longitudinal Individual
Variation
Furthermore, we also investigated the selection of timepoint
that reflects the longitudinal trend of pathology manifest and
the treatment effect based on the volumetric in vivo data.
We focused our analysis specifically on three structures –
hippocampus, cortex, and ventricle – given that cortical and
hippocampal atrophy, as well as ventricle expansion, are widely
accepted biomarkers for AD-related pathology (Thompson et al.,
2001, 2004; Holmes et al., 2016; Rathore et al., 2017). The
volume differences among three groups at each timepoints
were compared using ANOVA test followed with Bonferroni
post hoc test to test statistical difference between each group pairs.
Multiple comparisons were corrected with FDR = 0.05.

In addition, it is important to address the individual variation
in biomedical experiment, especially for longitudinal analysis
(Klingenberg, 1996; Roche et al., 2016). We used linear mixed-
effect model (LME) (Roche et al., 2016; Lee et al., 2018) to evaluate
the individual variation across the timepoints for all three groups
(Eq. 5). The individual variance is modeled in three different
ways:

(a) The longitudinal measurements for each individual subject
are modeled as fixed-term (Eq. 5.1), without explicitly
modeling of the individual variation;

(b) Individual volume variance was explicitly model by
introducing a random-effect term on the intercept (Eq. 5.2);

(c) Individual variance on the longitudinal volume change was
also modeled by including an additional random-effect
term on the slope of time (Eq. 5.3).

Vi = β0 + β1 (time)+ β2
(
group

)
+ β3

(
time× group

)
+ β4

(
subject

)
+ εi (5)

Vi = β0 + β1 (time)+ β2
(
group

)
+ β3

(
time× group

)
+b1,i + εi (6)

Vi = β0 + β1 (time)+ β2
(
group

)
+ β3

(
time× group

)
+b1,i + b2,i (time)+ εi (7)

where V i is the structure volume for subject i, β0 represent the
intercept term, β1 represent the fixed-effect of time (or animal
age), β2 represent the fixed-effect of the three experimental
groups, β3 represent the interaction of group with time, β4 in Eq.
(5.1) represent the modeled fixed-effect of individual subject as a
grouping term, b1i in Eqs. (5.2) and (5.3) represent the modeled
random-effect of individual variance on the intercept, b2i in Eq.
(5.3) represent the modeled random-effect of individual variance
on the longitudinal scale, and εi is the residual error in the model.

We use restricted maximized likelihood (REML) to fit each
model and use the Akaike information criterion (AIC) to
determine and compare the model performance. To demonstrate
the model improvement after considering the individual
variation as the random effect, we also fit each model to the
original data, and calculated the individual residual as the
difference between the model-predicted volume and the true
volume. We compared the relative residual, calculated as the
ratio between the fitted residual and the actual measured volume
among the three models, for the three selected structures in all
three groups across different timepoints.

FIGURE 1 | Representative axial slices of the Longitudinal in vivo and ex vivo images of the untreated transgenic mice, overlaid with the automatic parcellated
structural labels. (A–C) In vivo images acquired at 4.5, 5.5, and 7.5 months. (D) The ex vivo image down-sampled to the same resolution of in vivo image (150 µm).
(E) The ex vivo image with the original resolution (40 µm). Red Arrow: the longitudinal in vivo expansion and the ex vivo collapse of the ventricle is accurately
delineated by parcellated labels.
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FIGURE 2 | Bland–Altman plot showing the structure volume difference in the in vivo and ex vivo volume measurement (proportional to the mean volume of the two
measurements). Gray area: 95% limit of agreement between in vivo and ex vivo measurements. (A) FVB/NCrl wild-type mice. (B) rTg4510 mice without treatment.
(C) rTg4510 mice with doxycycline treatment. Arrows show examples of three distinctive structures, red arrow: ventricle; blue arrow: cerebellum; green arrow:
neocortex.

RESULTS

Automatic Structural Parcellation
Both the in vivo and ex vivo mouse brain images were
segmented accurately into 35 anatomical structures as defined
in the MRM NeAt mouse brain atlas, using the automated
structural parcellation framework described in the “Materials and
Methods” section. Figure 1 shows the representative images of
the untreated transgenic mouse, overlaid with the corresponding
automatic parcellated structures, including the longitudinal
in vivo images (Figures 1A–C) as well as the ex vivo images
with both the down-sampled (Figure 1D) and the original
resolution (Figure 1E). Visual inspection revealed that the
parcellated structures accurately align with the anatomy, showing
morphological differences between the in vivo and ex vivo images.
The longitudinal expansion of the ventricles (in vivo) and the
collapse of the ventricles (ex vivo; as shown in the red arrows), can
be readily visualized. Table 1 shows the comparison of GM/WM
CNR between the in vivo and ex vivo images. The ex vivo images
exhibit superior tissue CNR compared to the in vivo images for
animals in all groups.

In vivo to ex vivo Volumetric Difference
Firstly, we compared the pair of in vivo and ex vivo structure
volumes both acquired at 7.5 months. The ex vivo data were
down-sampled to the same resolution as the in vivo data
(150 um) to control the effect comes from the resolution

TABLE 1 | Comparison of GM/WM tissue contrast-to-noise-ratio (CNR) between
the in vivo and ex vivo images.

CNR all wildtype treated
transgenic

untreated
transgenic

In vivo 1.07 ± 0.22 1.32 ± 0.12 0.93 ± 0.10 1.00 ± 0.17

Ex vivo 2.46 ± 0.15 2.40 ± 0.13 2.50 ± 0.13 2.46 ± 0.18

p-value <0.001∗ <0.001∗ <0.001∗ <0.001∗

The ex vivo images showed significant higher CNR compared to the in vivo images
for animals in all groups. ∗Statistical significant was observed with p-value smaller
than 0.001.

difference. Figure 2 shows the results of the Bland–Altman
analysis for the (Figure 2A) wild-type controls, (Figure 2B)
the untreated rTg4510 group, and (Figure 2C) the doxycycline-
treated rTg4510 group. The >100% relative volume shrinkage
of the ventricles (Figure 2; red arrow) reflects the collapse of
the ventricles from in vivo to ex vivo. The Bland–Altman plot
shows variations in volume difference, indicating a non-linear
non-uniform distribution of the volume shrinkage from in vivo
to ex vivo.

We then plotted the percentage volume change as calculated
from Bland–Altman analysis of all structure for each individual
mouse in all three groups: the wild-type group, the untreated
rTg4510 group, and the doxycycline-treated rTg4510 group
(Figures 3A–C). The structures are listed in descending order
of size: the top 29 structures are gray matter structures (except
for the ventricles); the bottom 6 structures are white matter:
(internal capsule, fimbria, and anterior commissure). We also
performed paired t-test between the volume measured both
in vivo and ex vivo for each group. The number at the right
of each subplot represent the adjusted p-value of the paired
t-test between the in vivo and ex vivo measurement (multiple
comparisons were corrected with FDR = 0.05). Significant level of
in/ex vivo differences are observed in most structures for all three
groups, and the ventricular collapses are apparent for all groups
(shown as the dark blue band), reflecting widespread changes
induced by the preparation of the tissues for ex vivo scanning
(Figures 3A–C). The ex vivo volumes were significantly smaller
for the majority of the gray matter structures (e.g., neocortex,
cerebellum, thalamus, olfactory bulb, hippocampus, caudate
putamen, basal forebrain septum, hypothalamus, amygdala and
superior/inferior colliculi) except for the central gray (the
smallest labeled gray matter structure), which exhibited a
significantly larger ex vivo volume compared to in vivo volume.
On the other hand, most of the white structures demonstrated
significantly larger ex vivo volumes than in vivo volumes (i.e.,
internal capsule, and fimbria) except for the smallest white matter
structure, the anterior commissure, which was significantly
smaller ex vivo. For the structure labeled “rest of midbrain” where
there is a mix of white and gray matter, the volume change is not
significant.
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FIGURE 3 | The percentage volume difference of each structure calculated from the Bland–Altman analysis for all the individual mouse across all three groups.
Structures were listed from large to small top down. (A–C) The value were thresholded to within the range of [–0.5, 0.5]. The number at the right of each subplot
represent the adjusted p-value of the paired t-test between the in vivo and ex vivo measurement (multiple comparisons were corrected with FDR = 0.05).
(A) Wild-type group (WT). (B) Transgenic group without doxycycline treatment (untreated, UT). (C) Transgenic group with doxycycline treatment (treated, TT). (D) The
adjusted p-value of the pairwise comparison among all three groups after ANOVA with Bonferroni post hoc test followed by multiple comparison corrections with
FDR = 0.05. Only the significant p-values were shown with color (ranging from [0, 0.05]).

Figure 3D shows the statistical results of the ANOVA analysis,
comparing the mean in/ex vivo volume difference among three
groups (with Bonferroni post hoc test followed by multiple
comparison corrections with FDR = 0.05). The majority of
volume differences were not significantly different between
groups; however, significant differences were detected for: the
hippocampus (left side only) when comparing the wild-type
controls to the treated rTg4510 group; the basal forebrain septum
when comparing wild-type group to the rTg4510 groups (both
the treated and untreated); the superior colliculi when comparing
both the treated and untreated rTg4510 groups, as well as
the wild-type to untreated rTg4510 group (left side only); and
the fimbria when comparing between wild-type to the treated
transgenic group (all shown in Figure 3D).

Group Difference Analysis
Next, we investigated whether the differences in in vivo
and ex vivo volume measurements affected the statistical
analysis when analyzing the treatment effect, by comparing

the parcellated volumes of rTg4510 mice with and without
doxycycline treatment. The structural volumes were normalized
to TBV using the standardized residual (w-score), as described
in the “Materials and Methods” section. Figure 4 shows the
w-score of the volume for each structure across subjects for both
rTg4510 groups (with untreated titled as UT, and treated group
titled as TT), with the untreated group as the reference group.
The w-score of each structure shows the difference between the
normalized structure volume of the subject to the reference group
mean, normalized by the reference group standard deviation.
The number at the right of each subplot represents the adjusted
p-value when comparing the untreated and treated group with
two-tailed unpaired t-test. We performed the group difference
analysis on both the single time-point data, as well as the
longitudinal data, which are described in detail below.

Single Time-Point Analysis
In order to make a direct comparison between structural changes
identified in vivo versus ex vivo, we first compared the statistical
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FIGURE 4 | The w-score of the TBV normalized volume for each structure across subjects for both untreated (UT) and Doxycycline treated (TT) groups, with the
untreated group as the reference group. The number at the right of each subplot represent the statistical results of unpaired two-tailed t-tests comparing the
normalized structural volume of the treated and untreated group on both in vivo and ex vivo data. (A–C) In vivo data at different time-points (3.5, 5.5, and 7.5
months). (D) The longitudinal volume change calculated from the in vivo data at three time-points. (E) Ex vivo data down-sampled to the same resolution of the in vivo
data (150 µm). (F) Original ex vivo data acquired at a resolution of 40 µm. All tests were corrected for multiple comparisons with a false discovery rate (FDR) of 0.05.

analysis between in vivo and ex vivo data acquired at the
same 7.5 months’ time-point. The in vivo results (Figure 4C)
revealed a significant reduction in ventricle size after doxycycline
treatment; however, this finding was not detected in the ex vivo
data (Figure 4F) due to the ventricular collapse during the
preparation of the post-mortem tissues. For the white matter
(Figure 4; bottom six rows of each subplot), no significant
volume differences were detected in any of the ex vivo white
matter regions (Figure 4F), but a significant volume decrease was
detected in the fimbria in the in vivo data (Figure 4C).

Within the gray matter, the in vivo data (Figure 4C)
showed significant volume increases in the neocortex and
hippocampus, right hypothalamus, left superior colliculi, and
significant volume decreases in the right thalamus, right basal
forebrain septum, left inferior colliculi and right globus pallidus.
The statistical analysis of the ex vivo volumetric data acquired
at the same time (Figure 4F) showed a similar pattern of
group differences. However, the ex vivo volume analysis revealed
additional significant volume decreases in the left thalamus, the
olfactory bulb, the left basal forebrain septum, hypothalamus,
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superior/inferior colliculi, central gray (for both the raw and
down-sampled data), and a significant volume increase in the left
amygdala, which was not shown in the in vivo volumetric data.
Interestingly for the hypothalamus, the in vivo results revealed
an increase in volume within the hypothalamus associated
with doxycycline treatment, while the ex vivo data showed a
volume decrease. These discrepancies highlight the potential
confounding effects of post-mortem tissue processing on ex vivo
structural volumes. In addition, both the in vivo (Figure 4C)
and ex vivo data showed significant cerebellar volume shrinkage
after the doxycycline treatment (the third and fourth row of each
subplot).

The down-sampled ex vivo data showed a similar level of
statistical significance compared to the high resolution data,
with a marginal reduction of statistical differences for most of
the structures (Figures 4E,F); however, the significance levels
of volume changes for a few structures (e.g., the olfactory bulb
and the anterior commissure) were altered in the down-sampled
data. For the olfactory bulb, the significant difference between
treated and untreated rTg4510 groups did not persist after
down-sampling, while for the anterior commissure, although
no significant difference was detected for both cases, the adjust
p-value became larger in the down-sampled data, indicating
a reduction of statistical power after down-sampling. The fact
that even the down-sampled data showed an improved level
of significance relative to the in vivo analysis indicates that,
the improved statistical power in the ex vivo data is not solely
dominated by the improved resolution (40 um ex vivo versus
150 um in vivo), but other factors, such as improved CNR.

Longitudinal Analysis
When comparing the data from different time points from the
in vivo data (Figures 4A–C), a pattern of increasing volumetric
changes can be observed. Figure 4D shows the w-score and the
statistical results of a two-tailed unpaired t-test (the adjusted
p-value shown at the right of the plot) for the longitudinal
unnormalized structural volume change rate, calculated from
the in vivo data, which showed complementary information
compared to the single timepoint volume difference (Figures 4A–
C). Again, the untreated group is used as the reference group
similar to the single-time-point analysis, so the higher values
in the treatment subgroup represent better volume preserving
effects comparing to the untreated subgroup, therefore reflecting
the treatment effect. Significant differences in volume change rate
were found in the neocortex, hippocampus, right olfactory bulb,
and hypothalamus between the treated and untreated groups.
In addition, the longitudinal data showed a higher level of
significance of group difference for caudate putamen than the
ex vivo data (and higher than the in vivo data for the right
caudate putamen). These differences indicate complementary
information over single timepoint in vivo and ex vivo volumetric
analysis.

Comparison of Multivariate
Classification Power
The results comparing the classification power of the in vivo
and ex vivo data to correctly classify the untreated and treated

group of mice using SVM with a linear kernel as the classifier are
presented in Figure 5. Threefold cross-validation was performed,
and the mean AUC of the ROC are presented as the classification
performance, with a larger mean AUC representing better
classification power. The in vivo data (Figure 5A) showed less
classification power when compared with the ex vivo data, at
either the original resolution (Figure 5B) or down-sampled to the
same resolution as in vivo data (Figure 5E). In both scenarios, the
ex vivo classification power showed all-correct prediction with
AUC = 1; this can be attributed to the distinctive morphological
differences between the two groups that was readily captured
ex vivo. We noted that the classification power of both the in vivo
single time-point volumetric analysis (Figure 5A) as well as the
in vivo longitudinal rate of volumetric change across the three
time-points (Figure 5C) demonstrated less classification power
relative to the ex vivo data; however, the in vivo classification
power showed marked improvements when these data (both
the single time-point and the longitudinal) were combined
(Figure 5D). This finding indicates that the two approaches for
analysing the in vivo data capture complementary information,
and the inclusion of both features can improve the classification
performance. It is worth mentioning that, although we observed
100% accuracy (mean AUC = 1) for both the combined in vivo
data (Figure 5D) as well as the two ex vivo analyses at original
and down-sampled resolution (Figures 5B,E, respectively), this
cannot be interpreted as the three set of data showing the same
level of classification power.

The learning curve (Figure 6) shows the change of
classification power to differentiate the doxycycline-treated and
untreated rTg4510 groups using the SVM classifier, with respect
to different sample size. The testing accuracies of both the in vivo
and ex vivo data remained at 0.60 when the sample sizes were
less than 10, and gradually improved with increasing sample sizes.
The testing accuracy of ex vivo reached 1.00 when the sample size
increased to 13 (Figure 6B), while the in vivo data with the same
sample size only reached a testing accuracy of 0.86 (Figure 6A).
For the down-sampled ex vivo data, the testing accuracy dropped
slightly to 0.95 with a sample size of 13 (Figure 6E). Conversely,
the testing accuracy of the longitudinal in vivo data increases
from 0.60 to 0.90 when the sample size increases from 10 to
13 (Figure 6C). Finally, when the in vivo single time-point
and longitudinal rate information were combined, the testing
accuracy improved to 0.95 when sample size increases to 13; this
is comparable to the down-sampled ex vivo data.

Evaluation of Individual Variation in the
Longitudinal Scale
The longitudinal volume change of three structures most affected
by AD: hippocampus, neocortex, and ventricle, were plotted in
Figure 7, for all three experimental groups: wildtype, rTg4510
mice without treatment, and rTg4510 mice with doxycycline
treatment. The longitudinal trend in the result clearly shows the
continuous progression of pathologies (wildtype vs. untreated
transgenic group), as well as the effect of doxycycline treatment
(untreated vs. treated transgenic group) in all three structures.
Statistical analysis indicated that the hippocampal/cortical
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FIGURE 5 | The receiver operating characteristics (ROC) of classification power for: (A) in vivo volume at timepoint 3 (7.5 months); (B) the corresponding ex vivo
data with original resolution at timepoint 3 (7.5 months); (C) longitudinal in vivo volume change rate, calculated from the parcellation result of the data acquired at
three timepoints (3.5, 5.5, and 7.5 months); (D) the in vivo feature combining both the single time point volume (at 7.5 months) and longitudinal volume change rate;
(E) the ex vivo volume with volume down-sampled to the same resolution of the in vivo data. SVM with linear kernel is used as classifier, and the classification power
is represented as the area under the curve (AUC) of the receiver operating characteristic (ROC) for threefold cross-validation.

TABLE 2 | Comparison of different linear mixed effect (LME) models in terms of AIC and significant difference in REML estimation.

Akaike information criterion (AIC) Significance

Structures 1. Fixed effect 2. Random intercept 3. Random intercept + slope Model 1 vs. 2 Model 2 vs. 3

Hippocampus 324.78 307.83 301.4 ∗∗ ∗∗

Neocortex 512.71 501.54 490.66 ∗∗ ∗∗

Ventricle 283.26 272.89 254.27 ∗∗ ∗∗

In each model, the individual variation in the longitudinal scale are modeled as: (1) fixed effect; (2) random intercept of time; (3) random intercept and slope of time. A
smaller value of AIC represent better model performance. ∗∗p-value < 0.001 when comparing two models.

atrophies start to manifest as early as 4.5 months, and the
ventricle expansion starts from 5.5 months (as indicated by the
significant volume difference between wildtype and untreated
transgenic group). In addition, the treatment effect appeared
as early as 4.5 months in the hippocampus, and is observable
in neocortex and ventricles at 7.5 months (as indicated by
the significant volume difference between the treated and
untreated transgenic group). These results align with the reported
longitudinal disease progression time windows in previously
published studies and validate the timepoints selected in this
study.

It can be observed from Figure 7 that, compared to
the hippocampus and neocortex, the ventricles showed larger

individual variation of disease pathology progression, especially
in the later timepoints (5.5 and 7.5 months), and exhibit less
significant group differences. Therefore, we further analyzed
the longitudinal individual variation in the in vivo data using
LME model. Table 2 shows the result comparing different LEM
model performance when evaluating the individual variations
in the in vivo data. Models performances were evaluated with
AIC, and the statistical difference between the corresponding
REML estimations. Comparing to the fixed-effect model, the
random intercept model performance improves for all three
AD-related structures, indicating significant individual variation
in the structural volume measurements. The random intercept
and slope model showed further performance improvement,
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FIGURE 6 | The learning curve of the SVM classifier with respect to different sample size, when classifying the treated and untreated group. Red lines represent the
training accuracy, and the green lines represent the test accuracy. The shade region represents the standard deviation. Each subplot shows the classification
accuracy for the: (A) in vivo data; (B) ex vivo data; (C) longitudinal in vivo data (in terms of volume change rate); (D) combination of the single timepoint
cross-sectional and longitudinal in vivo data; and (E) ex vivo data down-sampled to the same resolution of in vivo data.

FIGURE 7 | The longitudinal absolute structural volume change of (A) hippocampus, (B) neocortex, and (C) ventricle for all three experimental groups. Green:
wild-type mice, red: transgenic mice without treatment, blue: transgenic mice with doxycycline treatment. ∗(red): significant volume difference was detected between
untreated transgenic and wild-type mice; ∗(blue): significant volume difference was detected between treated and untreated transgenic mice. ANOVA with Bonferroni
post hoc test followed by multiple comparison corrections with FDR = 0.05. Unit of the y-axis: mm3.

demonstrating additional individual variation in the longitudinal
volume change rate.

Figure 8 shows the comparison of the individual percentage
residual of the volumes for all three structures across all three
group at different timepoints. The random intercept model
(Figure 8B) showed smaller relative residual compared to the
fixed-effect model (Figure 8A), while the random intercept and
slope model (Figure 8C) reduced the relative residual further,

which agree with the model comparison results shown in Table 2.
In the fixed-effect model (Figure 8A), the individual variation
in the neocortex (middle row) is the smallest among the three
structures across all three timepoints, indicating small individual
variation in the cortical region. In addition, with the fixed effect
model and the random intercept model (Figures 8A,B), the
ventricle (bottom row) exhibits larger relative residual compared
to hippocampus and neocortex for both the untreated and treated
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FIGURE 8 | The comparison of the model fitting between the three linear mixed-effect (LME) models. (A) Fixed-effect model, in which individual variation was not
modeled explicitly, and the longitudinal measurements for each individual subject are modeled as fixed-term; (B) random intercept model, in which individual variance
on the absolute volume was explicitly modeled by introducing a random-effect term on the intercept; (C) random intercept and slope model, in which the individual
variance on the longitudinal scale was also modeled by adding an additional random-effect term over the slope of time. The y-axis represent the relative residual
which is the ratio between the model residual and the actual measured volume (unit: percentage).

transgenic group (as shown in red and blue box), especially in
the later timepoints (5.5 and 7.5 months). This result confirms
the larger individual variation in the ventricles in the longitudinal
scale. The relative residual is greatly reduced after the individual
variance is controlled by including the random effects to the slope
of time in the model (Figure 8C, bottom row).

DISCUSSION

When designing experiments to study diseases using mouse
models, one must choose whether to scan animals in vivo or
ex vivo. It is sometimes a controversial choice as each of these
imaging paradigms has its own strengths and weaknesses. In
this study, we investigated both the progression of longitudinal
structural volume changes, as well as the in vivo to ex vivo
volumetric changes due to the preparation of post-mortem
tissues. We demonstrated how this choice of paradigm will
affect volumetric analysis using automated brain structural
parcellation, both in terms of group difference analysis, as well
as classification power.

In vivo to ex vivo Volumetric Change
Previous studies exploring volumetric changes from in vivo to
ex vivo have shown controversial conclusions. Early histology

studies have shown that both perfusion and fixation processes
cause tissue shrinkage (Palay et al., 1962; Cragg, 1980). With MRI
data, Schulz et al. (2011) investigated the effect of fixation on
the volume of the human brain for up to 70 days using image
registration, and found unevenly distributed brain shrinkage
after initial expansion. Conversely, a study by Kotrotsou et al.
(2014) found a linear correlation between ex vivo and in vivo
gray matter volumes, with no significant change during the
6 months’ fixation period. Studies on preclinical imaging data
also show inconsistent results. Zhang et al. (2010) used manual
segmentation and showed a decrease in ex vivo brain volume
(4.47% for wild-type mice, and 8% for Huntington’s disease
mice). Meanwhile, Ma et al. (2005, 2008) used semi-automatic
segmentation propagation and found a 10.6% shrinkage in ex vivo
brain volumes relative to in vivo brain volumes, and reported
that some parts of the gray matter shrunk from in vivo to
ex vivo whilst others expanded. However, the in vivo and ex vivo
imaging datasets in these studies were acquired from different
mice populations (of the same strain), and the ex vivo specimens
were scanned after physical skull removal, with brain tissue loss
notable from the images. On the other hand, Oguz et al. (2013)
performed single-atlas segmentation-propagation on rat brains
(male Wistar) but found no significant change between the in vivo
and ex vivo datasets for TBV, and structural volumes. Recent work
by Holmes et al. (2017) reported a reduction in the TBV of 10.3%

Frontiers in Neuroscience | www.frontiersin.org 12 January 2019 | Volume 13 | Article 11

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00011 January 22, 2019 Time: 16:47 # 13

Ma et al. In vivo/ex vivo Mouse Brain Volumetric Analysis

between in vivo and ex vivo mouse brain MRI and non-uniform
morphological change using tensor based morphometry (TBM).
Such variance in these different volumetric studies could be
attributed to factors such as animal strain difference, pathological
model diversity and protocol variation of post-mortem tissue
processing. Consequently, these various factors might impact the
accuracy and reliability of quantitative measurements extracted
from ex vivo data.

Our result confirmed the uneven distribution of volumetric
changes across different brain structures, as published studies
have reported (Ma et al., 2005, 2008; Zhang et al., 2010; Schulz
et al., 2011; Holmes et al., 2017). Our study expanded upon
these previous findings by quantifying the volume change for
each individual structure, in both the gray and white matter.
We demonstrated that the post-mortem fixation and perfusion
processes introduce different morphological alterations that
affects different tissue types: after the ex vivo tissue processing,
the majority of gray matter structures shrink, while most white
matter structures expand. Furthermore, the collapse of almost
the entire ventricular space results in a dramatic reduction in
CSF volume ex vivo. These observed changes in gray and white
matter volumes were non-uniformly distributed within each
tissue types. Furthermore, our results showed differences in the
level of volumetric changes across the three groups of mice:
the doxycycline-treated rTg4510s, untreated rTg4510s and wild-
type controls. Such variation in volume changes among ex vivo
tissue types, tissue structures, and between groups, will obviously
complicate the interpretation of morphological analysis using
techniques such as voxel-based morphometry, which relies on the
estimation of proportional volume change between gray matter
and white matter. Therefore, although the ex vivo volumetric
analysis in this study demonstrated superior statistical and
classification power for group difference analysis compared to
the in vivo data acquired at the same time-point, it is, however,
difficult to differentiate the proportion of such improvements
which represent the true biological effect, and the changes that
manifest as a result of the post-mortem tissue processing. For
example, the level of in/ex vivo volume difference of the superior
colliculi is significantly higher in the doxycycline treated group
than the untreated group, as shown in Figure 3D. Therefore, the
increased ex vivo statistical power of the group difference detected
within the superior colliculi (as shown in Figures 4C,E) is, in fact,
a combination of actual biological morphological differences, and
effects originating from the ex vivo tissue processing.

Specifically, ventricular expansion is an important
neuroimaging biomarker for neurodegenerative diseases
such as AD (Nestor et al., 2008; Weiner, 2008). For the ex vivo
ventricular measurements, the ventricle collapse and the loss of
ventricular CSF in the post-mortem brain tissue preservation
process. Our study reported a large ventricles volumetric loss
from in vivo to ex vivo which aligns with previous studies: (Ma
et al., 2008; Zhang et al., 2010).

The white matter expansion is also interesting, which indicates
potential microstructural-level volume expansion of the white
matter tract. Compared to the GM, the WM contains significantly
less water (∼70% vs. ∼85%) and more lipid (16–22/100 g
vs. 5–6/100 g) (Davison and Wajda, 1962). The post-mortem

brain tissue fixation changes various MR indexes significantly,
such as T1, the magnetization transfer ratio (MTR), and the
macromolecular protons fraction, which also differs between GM
and WM (Schmierer et al., 2008, 2010). Such compositional
and signal difference will obviously affect the volume change
to different tissues types. Von Halbach und Bohlen et al.
(2014) proposed an alternative method to conduct post-mortem
ex vivo imaging directly after the animal has been sacrificed,
to prevent the potential volume changes associated with the
preparation of fixed tissues. However, such ex vivo imaging
procedure is inevitably contaminated by the fast post-mortem
tissue degradation (Sun et al., 2015). This becomes even more
significant given the long scanning time of the ex vivo imaging
which easily adds up to several hours. In addition, tissue samples
frequently undergo histological evaluation after ex vivo imaging
to corroborate structural changes with alterations occurring at
the cellular level. The advanced brain tissue decomposition after
long scans will also affect the quality of the histology evaluation
(Von Halbach und Bohlen et al., 2014).

It is worth noting that, the measurements for the ex vivo
images depend highly on the post-mortem tissue processing
protocol in MR microscopy, In the case of this study, the in-skull
brain tissue was soaked in contrast-enhanced agent for 9 weeks
before ex vivo imaging, which would theoretically aggravate the
tissue dehydration. The protocol diversity among various ex vivo
studies should account for a large portion of the difference in
the corresponding results. Therefore, the ex vivo brain structure
volume change reported in the current paper should be regarded
as specific to the active staining tissue processing protocol used
in this study. On the other hand, such variation in the results of
different ex vivo studies emphasize the importance and advantage
of protocol consistency for in vivo measurements.

Comparison Between in vivo and ex vivo
Morphological Analysis
Lerch et al. (2012) have compared the theoretical statistical power
between in vivo and ex vivo imaging, using a pre-determined
variance value with simulated deformation on the hippocampus.
Their result showed that ex vivo imaging provides better
precision and should be preferred if the volume is normalized
to TBV, as the normalization process regress out the effect of
gross brain volume difference between individual animals; while
in vivo measurements give better results on absolute volume
measurements and can provide more accuracy in longitudinal
studies than cross-sectional ex vivo measurements. In a recent
study, Holmes et al. (2017) have conducted power analysis
to determine the required sample size in order to detect a
specific amount of local morphological variation either in vivo
or ex vivo. Careful power analysis is important to determine
the appropriate sample size given effect size. Comparing with
voxel-wise statistical analysis such as TBM (Holmes et al., 2017),
the required sample size to detect volume difference is smaller
for structural-based analysis, as the effect toward all the voxels
in each structure are grouped together if the intra-structural
volume change is homogenous enough. Our findings extended
these theoretical analyses with application to longitudinal in vivo
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analysis on each individual structural volume. Although the
longitudinal analysis based on structure volume change rate
by itself is less powerful to statistically compare and classify
different groups, it indeed showed complementary information
over the single-time-point volume information. We showed that
by combining the both the longitudinal and cross-sectional
in vivo volumetric information, there is an improvement of the
classification power.

In this study, we modeled the longitudinal volume change as a
liner effect for each all structures. However, the change of ratio
might be in fact not linear, and the time that volume change
occurs can be different for different structures (either due to the
nature of the pathological process, or the treatment start to show
effect). Therefore, a model alternative to the linear regression
would potentially represent the actual volume change better and
further improved the in vivo analysis results. Furthermore, by
integrating the volume information with other in vivo assessment
to form multimodality analysis (such as CEST and CBF (Wells
et al., 2015; Holmes et al., 2017) could potentially further improve
the statistical and classification power for the in vivo data.

Specifically, it is interesting that both the in vivo and
ex vivo data of the transgenic mouse at 7.5 months showed
cerebellar shrinkage after doxycycline treatment. The cerebellum
is traditionally considered unaffected in AD, although recent
studies have shown increase evidence that it is also affected during
the AD disease progression (Larner, 1997; Jacobs et al., 2018),
which is also the case for rTg4510 (Xie et al., 2010). However,
further investigations are required to draw connection between
potential neuroprotective or neurotoxicity effect of doxycycline
to the cerebellum, such as the cerebellar plasticity (Ito, 2012), to
help us understand the observation reported in this study.

In this study, we used the w-score (Eq. 3, Figure 4) to visualize
the group difference rather than the raw volume. The advantage
of using w-score is that the volume measurements of each
individual structure are transformed to the reference group mean
and normalized by the reference group standard deviation. This
process standardizes the group difference for all the features to
the same scale, effectively improve the feature-based classification
(Fortin et al., 2017; Rozycki et al., 2017).

In experiments with biological tissues or subjects, the
variations of the individual measurements are often observed.
The presence of outliers may affect the power of statistical
analysis, especially in cases where the sample number is relatively
small This is a common issue that animal studies usually suffer
from, especially when the effect size of the group difference is
small. In this study, we presented a data visualization method
that is capable of pooling the entire dataset within a panorama
figure showing multiple measurements for each individual (as
shown in Figures 3, 4). Moreover, presenting the w-score
of the raw measurement ensures meaningful visualization of
the individual variation while preserving the statistical analysis
results, since all the data are shifted and scaled by the same
number (i.e., the mean and standard deviation of the reference
group). Such data visualization technique is an intuitive way to
demonstrate internal data inhomogeneity on very large databases
(Ma et al., 2018), and in this study, showed individual variations
in small dataset as well. In addition, comparison of different

LME models demonstrated region-specific, group-dependent,
and time-variate individual variations in the longitudinal in vivo
measurement of structure volume.

When classifying the treated and untreated group, the SVM
showed satisfactory results even with the relatively small sample
size (Figures 5, 6), thanks to the relatively large effect size between
the two groups. Never the less, the classification power analysis
result clearly demonstrated the improvement in testing accuracy
after combining cross-sectional and longitudinal in vivo data
when comparing with ex vivo data, although larger sample size is
required to reduce the testing error when the effect size between
the groups is small (Figueroa et al., 2012; Beleites et al., 2013).
Techniques such as bootstrap aggregating (a.k.a bagging) can be
used, along with increasing the number of data, to reduce the
variance in the training, improve the classification accuracy, and
avoid overfitting (Dietterich, 2000).

In the field of preclinical imaging research, we anticipate
that the widely regarded ‘gold standard’ for investigating mouse
models at the macroscopic level to shift from histology to ex vivo
imaging, and later to in vivo imaging. Such a shift in the imaging
paradigm will not only enable the longitudinal assessment of
neuroanatomical changes but will also help reduce the number of
animals dedicated to preclinical studies (Gunn et al., 2012; Home
Office, 2014).

Limitations of the Current Study
In the current study, we used TBV as a normalization term.
However, the TBV itself is a dependent variable toward the
treatment effect (Holmes et al., 2017). A better alternative to
normalized the data should be estimating the total intracranial
volume (TIV) employing tissue classification techniques, which
use expectation maximization to estimate the tissue probability
for each voxel, including gray matter, white matter, CSF, and non-
brain tissues, and estimate the TIV as the summation of all types
of brain tissues (Lemieux et al., 2003; Acer et al., 2007; Ridgway
et al., 2011). However, a tissue probability map is necessary
as prior information to initialize the expectation-maximization
procedure. One of the current limitations in mouse brain MRI
studies is the lack of such accurate tissue probability map. A tissue
classification framework with accurate tissue probability maps
(Sawiak et al., 2013; Powell et al., 2016; Hikishima et al., 2017)
would be beneficial for future preclinical studies.

In the section of classification power comparison, no feature
selection and hyperparameter tuning were performed, and the
selected models and hyperparameters do not necessarily reflect
the optimal choice or value for the group classification for the
current dataset. However, model optimization is not the focus
of this study, and the main purpose of this section of analysis is
to compare the classification performance using the same model
and parameter when applied from the dataset collected from
the same sample but with different measurement (in vivo versus
ex vivo).

Furthermore, in the current study, the in vivo and ex vivo
images were acquired using different imaging protocols with
different scanning sequences and coils, for comparing the best
quality of each. Consequently, the measured in/ex vivo volume
difference is a combination of the biological/pathological change
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and the measurement difference due to different image quality
(e.g., CNR) between the in vivo and ex vivo images. In an ideal
experiment setup, the same scanning protocol (i.e., the same coil
and scanning sequence) would be used to acquire both in vivo and
ex vivo images in order to have a bias-free comparison to assess
the volume change accurately. This will on one hand effectively
eliminate some confounding factors from the images, but on the
other hand, losing its representation of the best image quality
acquired in real practice. One effort to alleviate such bias in this
study is to down-sample the ex vivo data to the same resolution
of the in vivo data, which reduces the bias that comes directly
from the resolution difference. On the other hand, even with the
similar resolution, the higher GM/WM CNR in the ex vivo data,
as shown in Table 1, helps to improve the automatic structural
parcellation accuracy, and demonstrated higher statistical and
classification power.

In this study, only female mice are used to control the
effect of sex toward the variation of the data. However, sex-
specific differences have been reported in AD (Mielke et al., 2014;
Mazure and Swendsen, 2016; Laws et al., 2018), such as faster
cognitive decline and pathological progression in female than
male (Ferretti et al., 2018). Specifically, the rTg4510 mice model
also showed significantly higher levels of Tau-induced pathology
in female mice at 5.5 months (Yue et al., 2011). Therefore,
the result and conclusion presented in this study can only be
referred to females, and data from both sexes are required to draw
more generous conclusions about the disease specification and
potential treatment effect for precision medicine.

Finally, the variation comes from scanning gradient coil
difference can be alleviated through careful gradient calibration.
Gradient calibration is crucial for MRI to eliminate any
time-dependent gradient shift to ensure the acquired image
represented the tissue volumes accurately. This is especially
important for longitudinal studies across a long period of time,
as well as the comparison between images acquired with different
gradient coil, as in the case of our study. However, unlike clinical
systems, the frequency of gradient calibration for the preclinical
system is sometimes insufficient. By employing the gradient
calibration protocol we developed previously and employed in
this study (O’Callaghan et al., 2014), we detected that the 72 mm
birdcage radiofrequency (RF) coil we used for in vivo scan
comes with around 0.1% gradient shift per month, which will
cause significant system bias for both longitudinal analysis using
in vivo data, as well as analysis comparing in vivo and ex vivo
data acquired from different gradient coil. The effect of such
longitudinal imaging gradients shift has been alleviated through
proper gradient calibration, and the associated biases have been
removed prior to any longitudinal and cross-sectional analysis.

CONCLUSION

In conclusion, in this paper, we presented our study to
compare the volumetric analysis for longitudinal in vivo
imaging and cross-sectional ex vivo imaging using automated
mouse brain MRI structural parcellation. We showed non-
uniformly distributed structural volume changes from in vivo

to ex vivo measurements across different tissue types. We
also demonstrated the effect of mouse strains and drug
treatment toward the in vivo to ex vivo volume change.
Our result demonstrated higher statistical and classification
power using the ex vivo structure volume compared to
the in vivo counterpart, although the volume differences
in the ex vivo data represent a combination of both the
biological/physiological effect as well as the effect due to post-
mortem tissue processing. On the other hand, the in vivo
measurements identified ventricular shrinkage, while ex vivo
measurements were not sensitive to these changes due to the
ventricular collapse during the preparation of the post-mortem
tissues. In addition, we showed that the longitudinal in vivo
imaging provided complementary information other than single-
timepoint measurement. Incorporating the information obtained
from the longitudinal data as additional features significantly
improves the classification power.
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