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Perceived control can be broadly defined as the belief in one’s ability to exert control over
situations or events. It has long been known that perceived control is a major contributor
toward mental and physical health as well as a strong predictor of achievements in life.
However, one issue that limits a mechanistic understanding of perceived control is the
heterogeneity of how the term is defined in models in psychology and neuroscience,
and used in experimental settings across a wide spectrum of studies. Here, we propose
a framework for studying perceived control by integrating the ideas from traditionally
separate work on perceived control. Specifically, we discuss key properties of perceived
control from a reward-based framework, including choice opportunity, instrumental
contingency, and success/reward rate. We argue that these separate reward-related
processes are integral to fostering an enhanced perception of control and influencing an
individual’s behavior and well-being. We draw on select studies to elucidate how these
reward-related elements are implicated separately and collectively in the investigation
of perceived control. We highlight the role of dopamine within corticostriatal pathways
shared by reward-related processes and perceived control. Finally, through the lens
of this reward-based framework of perceived control, we consider the implications
of perceived control in clinical deficits and how these insights could help us better
understand psychopathology and treatment options.

Keywords: perceived control, controllability, choice, instrumental behavior, reward rate, corticostriatal circuit,
striatum, dopamine

INTRODUCTION

Decades of research focusing on the perception of control have highlighted its importance
in general well-being, in particular being predictive of life achievements and health (Skinner,
2007). For instance, perceived control is associated with better career prospects and job
performance (Stillman et al., 2010), while disruptions in perceived control constitute a core
characteristic of many psychiatric disorders, such as anxiety and depression (Gallagher et al.,
2014a; Liu et al., 2016). One issue that limits a mechanistic understanding of perceived
control and how it positively benefits behavioral and health outcomes is the heterogeneity
of how the term is used and applied in experimental settings across a wide spectrum of
studies (e.g., see Table 1). Several theories have been posited to explain the construct of
perceived control (for review see Skinner et al., 1996). For instance, the term “locus of
control” was coined to describe differences in individual beliefs that situations are either
within (i.e., internal locus of control) or outside one’s control (i.e., external locus of control;
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Rotter, 1966). Along a similar vein, the concept of self-
efficacy was introduced to capture the belief in one’s ability
to exercise control over the external environment (Bandura,
1977). Collectively, these theories on perceived control can
be interpreted to refer to the same underlying phenomenon:
perceived control is the belief in one’s ability to exert control
over situations or events in order to gain rewards and
avoid punishments.

This interpretation of perceived control is closely related to the
definition of instrumental contingency based on reinforcement
learning principles, where behavioral strategies and actions
are reinforced by contingent desired outcomes (Thorndike,
1911; Shanks and Dickinson, 1991; Dickinson and Balleine,
1994; Liljeholm et al., 2012). In line with this interpretation,
contemporary accounts based on learning theories propose that
the perception of control is formed through learned relationships
between actions and contingent outcomes, as well as the
generalization of inferred controllability from these relationships
to novel situations (Huys and Dayan, 2009; Lieder et al., 2013;
Rigoli et al., 2016; Moscarello and Hartley, 2017). Thus, these
accounts emphasize the role of inference of controllability in the
development of perceived control.

However, there are some challenges to the notion that
instrumental action-outcome contingency is the sole driver of
perceived control. For instance, it has been suggested that aspects
related to the outcome itself, such as the average reward or
its frequency, may also play a role in perceived control (Alloy
and Abramson, 1979; Teodorescu and Erev, 2014), and that
the mere opportunity for control is desirable and linked to
reward-related neural systems (Fujiwara et al., 2013; Leotti and
Delgado, 2011, 2014). This work converges with psychological
theories suggesting that perceived control reflects a fundamental
psychological need and desire for control (White, 1959; Deci
and Ryan, 1985; Elliot and Dweck, 2005) and highlights
the importance of affective and motivational properties in
understanding the perception of control. More specifically, rather
than solely focusing on the role of instrumental action-outcome
contingencies, this reward-based framework emphasizes that the
drive to exercise control through choice is key to fostering
perceived control. It is consistent with observations that the
belief or perception of control is more powerful in predicting
decision making and behavioral consequences than having

TABLE 1 | Selection of perceived control-related terms.

Term Definition Relevant literature

Locus of control Belief that situations are within
(internal) or outside (external)
one’s control

Rotter, 1966

Self-efficacy Belief in one’s ability to exercise
control over the external
environment

Bandura, 1977

Self-determination Experience of choice; be the
determinants of one’s actions

Deci and Ryan, 1985

Effectance motivation Fundamental drive to have an
influence on our environment
through our own actions

White, 1959

objective control (i.e., the actual existence of action-outcome
contingencies; Averill, 1973; Abramson et al., 1978; Skinner et al.,
1996; Eitam et al., 2013). Even with the absence of objective
control, having the perception of control is sufficient to increase
arousal and mobilize action; whereas perceiving the lack or loss
of control leads to helplessness despite the presence of objective
control (Averill, 1973; Abramson et al., 1978; Skinner et al.,
1996). Taken together, the literature suggests that the affective
and motivational properties of choice and outcome may play an
important role in the development of perceived control via their
impact on instrumental decisions and the inference of control.

In the current review, we attempt to present a more inclusive
reward-based framework of perceived control by integrating
the ideas from the traditionally separate work on perceived
control. We argue that distinct reward-related processes,
including choice opportunity, instrumental contingency, and
success/reward rate, are integral to the fostering of a perception
of control that influences behavior and well-being (Figure 1).
We highlight how these reward-related factors are central to
many investigations into perceived control. Then, we deliberate
how the aforementioned reward-related elements are implicated
separately and collectively in our understanding of perceived
control. We particularly emphasize the overlapping role of
dopamine within corticostriatal pathways in both reward
processing and perceived control. Finally, through the lens of this
reward-based framework of perceived control, we consider the
implications of perceived control in clinical deficits.

CHOICE OPPORTUNITY AND ITS
AFFECTIVE AND MOTIVATIONAL
PROPERTIES

The impact of perceived control on adaptive behavior and mental
well-being has been suggested to reflect a basic psychological
need for control (White, 1959). There exists a fundamental drive
to influence on our environment via our own actions, so-called
effectance motivation, that enables us to effectively interact with
our world (White, 1959; Elliot and Dweck, 2005). For example,
animals and humans show a clear preference for choice over no-
choice situations, even when the choice option requires greater
effort expenditure and does not increase outcome value (Catania
and Sagvolden, 1980; Suzuki, 1997, 1999; Bown et al., 2003;
Leotti et al., 2010). These behavioral studies are reinforced by
neural data supporting the idea that choice opportunity carries
an inherent appetitive value. For example, human participants
showed greater activation in corticostriatal regions in response to
the anticipation of choice compared to no-choice cues (Leotti and
Delgado, 2011; Leotti and Delgado, 2014). This striatal activation
has been further shown to track the increasing value of the
opportunity to choose (Fujiwara et al., 2013). Taken together,
these studies showing that choice opportunity recruits reward-
processing regions suggest that perceived control might have
affective and motivational properties that make it valuable in and
of itself.

The affective property of choice opportunity could play an
important role in promoting exertion of autonomy. It has been
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FIGURE 1 | Key elements contributing to context-specific and general perceived control. An inherent appetitive value of choice could support a natural drive to seek
out choices and situations that confers actual control. Learning-related prediction error signals accompanying desired outcomes following our actions can reinforce
our preference for choice. Following from these processes, an increase in reward rate could further contribute to learning by enhancing alertness and motivational
drive. In a loop, these processes that take place in specific contexts could influence more abstract general beliefs about perceived control via neuroplasticity
mechanisms within the corticostriatal pathways and transient changes in baseline levels of dopaminergic transmission.

suggested that a preference for exercising choice could support a
natural drive to seek out choices and situations that allow actual
control, and therewith foster the perception of control (Leotti
et al., 2010). This notion is in line with theories on action-valence
coupling (Panksepp, 1998; Boureau and Dayan, 2011; Cools et al.,
2011). According to these theories, appetitive value supports
the attainment of rewards by eliciting appetitively motivated
behaviors (e.g., approach, engagement, active exploration), partly
mediated by dopamine projections to striatal regions, particularly
the nucleus accumbens (NAcc). Given this strong action-valence
coupling, choice opportunity could elicit appetitively motivated
behaviors via its inherent appetitive value. One implication of
this idea is that, given the reflexive nature of the action-valence
coupling, incidental cues associated with choice opportunity
could bias our behavior more generally, akin to forms of
Pavlovian-instrumental transfer involving corticostriatal regions
(Corbit and Balleine, 2011; Griffiths et al., 2014). This is an
intriguing hypothesis given the increasing work on motivational
biases in decision making (Huys et al., 2011; Ly et al., 2013; Swart
et al., 2017; Piray et al., 2018). Future work should focus on
how choice opportunity can by itself bias behavior and cognition.
Indeed, it has been shown previously that choice opportunity
can influence more cognitive processes such as the recall of
declarative information (Murty et al., 2015).

Although we propose that choice opportunity is intuitively
associated with appetitive behaviors, the motivational properties
of choice should not only be limited to the appetitive context
but could be extended into aversive contexts as well. Striatal

dopamine has been shown to be involved in aversively-motivated
behavior (Faure et al., 2009). When rodents were subjected
to controllable shocks, they show control-seeking behaviors
such as exerting effort to escape, which were accompanied
by elevated dopamine levels in the NAcc (Cabib and Puglisi-
Allegra, 2012). One potential suggestion raised by these
findings is that even when the overall context is aversive,
the affective and motivational properties of choice opportunity
could be beneficial under certain circumstances (e.g., when
the aversive outcome is controllable, such as in an avoidance
task). Consistent with these animal studies, using a choice
preference task in the context of potential monetary loss only,
individuals demonstrate a preference for choice over no choice
accompanied by a relative increase in striatal activation during
choice anticipation (Leotti and Delgado, 2014). Thus, similar
to choice preference in an appetitive context, individuals prefer
choice over no choice in order to have control over aversive
outcomes.

Moreover, there is evidence that choice opportunity could
support the regulation of affect and behavior in an aversive
context. For instance, individuals have been shown to be more
effective at reducing picture-induced negative affect when they
make a free choice, compared to when they are instructed to
regulate their affect (Kühn et al., 2014). Additionally, it has
been shown that free choice versus forced choice enhances
performance, even if the choice element is task-irrelevant
(Murayama et al., 2013). This performance enhancement in
the choice condition was related to increased ventromedial
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prefrontal activation associated with resilience to failure feedback
during the choice condition. Taken together, these findings
demonstrate that choice opportunity could play an important
role in promoting perceived control in both appetitive and
aversive contexts.

INSTRUMENTAL CONTINGENCY
SHAPES CONTROLLABILITY

Although perceived control can have more impact on behavioral
outcome than objective control, the existence and experience
of actual control could constitute another element shaping
our perception of control. In this section, we highlight how
(past) experience of actual control could shape both context-
specific and general perceived control using literature based
on reinforcement learning principles as well as the learned
helplessness model.

Reinforcement Learning and
Context-Specific Controllability
Objective or actual control is closely related to the definition
of instrumental contingency based on reinforcement learning
principles, where behavioral strategies and actions are reinforced
by contingent desired outcomes (Thorndike, 1911; Shanks and
Dickinson, 1991; Dickinson and Balleine, 1994; Liljeholm et al.,
2012). These types of behaviors may allow us to flexibly regulate
our environment and is critical to adaptive decision making.
Following from this, perceived control in a specific context
may arise when specific actions lead more deterministically and
reliably to desirable and specific outcomes (Huys and Dayan,
2009; Lieder et al., 2013; Rigoli et al., 2016). Learning about these
instrumental action-outcome contingencies have been linked to
corticostriatal circuits and dopaminergic prediction error signals
(Balleine and Dickinson, 1998; Hollerman and Schultz, 1998;
Corbit and Balleine, 2003; Yin et al., 2005; Berridge, 2007;
Valentin et al., 2007; Tanaka et al., 2008; Liljeholm et al., 2011;
Griffiths et al., 2014). Thus, reinforcement learning involving
corticostriatal circuits could provide the neurobiological basis of
context-specific perceived control.

Interestingly, reinforcement learning and choice opportunity
could also interact. By leveraging knowledge from a biophysical
model of the striatum and reinforcement learning modeling,
it has been shown that choice opportunity (versus no choice)
is associated with increased dopamine-mediated positive
prediction errors (Cockburn et al., 2014). These findings
suggest that dopamine signals targeting areas in the striatum
may be important for reinforcing the preference for control.
Additionally, a recent study demonstrated that a preference for
free choice was more pronounced in case of high instrumental
divergence (i.e., when choices differ more with respect to their
outcome probability distributions) (Mistry and Liljeholm, 2016).
Thus, the preference for free choice was higher when choices have
a more meaningful impact on outcome. These findings highlight

that choice opportunity and instrumental reinforcement
processes collectively contribute to perceived control.

Generalization Processes of
Controllability
Repeated experience of context-specific controllability could
shape an abstract general (context-independent) belief about
controllability, which in turn can guide our decisions and affect
contingency learning in new situations, thus further contributing
to our perception of control (Huys and Dayan, 2009; Lieder
et al., 2013; Huys et al., 2015; Rigoli et al., 2016). In other words,
prior experience with controllability could shape our current
perception of control. Indeed, young developing nonhuman
primates with control over receiving appetitive stimuli show
enhanced active coping in later stressful situations, whereas
those who received these appetitive stimuli noncontingently
show increased anxiety and reduced exploratory behavior in
novel situations (Goodkin, 1976; Mineka et al., 1986). These
findings suggest that controllability over appetitive outcomes is
associated with more future perceived control and protective
effects, whereas uncontrollability over appetitive outcomes is
associated with reduced perceived control in new contexts.
Moreover, these findings support the idea that diminished
perceived control may become relatively crystallized over time
leading to psychopathology (Mineka and Hendersen, 1985;
Chorpita and Barlow, 1998).

The process of generalization could play an important role
in perceived control concepts such as a generalized loss of
control in learned helplessness (Huys and Dayan, 2009). In
the learned helplessness model, animals fail to escape from
aversive stimuli in a novel context after being exposed to
uncontrollable stressors, thus demonstrating a generalized loss of
control (Miller and Seligman, 1975; Maier and Seligman, 2016).
Importantly, the animals that experienced controllable stressors
typically demonstrate a reduced stress response to immediate
and subsequent external stressors. These protective effects of
controllable outcomes have been shown to be mediated by
projections from regions in the vmPFC (Vertes, 2004) to the
dorsal raphe nucleus (DRN; Amat et al., 2005, 2006). Specifically,
serotonergic activation in the DRN and its projections are
involved in the expression of the behavioral response to stressors
irrespective of its controllability (Maier and Watkins, 2005;
Christianson and Greenwood, 2014). The controllability of the
stressor is detected by the vmPFC, which plays a critical role
in behavioral control over stressors by active inhibition of
the DRN (Amat et al., 2005, 2006). It has been shown that
experience of controllable stressors could increase excitability
and plasticity proteins in the vmPFC that support the long-
term increases in connectivity in behavioral control pathways
(Varela et al., 2012; Christianson and Greenwood, 2014). These
findings are supported by work in humans using a comparable
paradigm: humans who experience escapable shocks, compared
to inescapable shocks at the same rate, are quicker to extinguish
conditioned responses to a stimulus that no longer predicts
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painful shock, and more likely to maintain extinction without
spontaneous recovery on a later day (Hartley et al., 2014). Thus,
experience of control over negative outcomes can have lasting
effects on the way individuals learn from new experiences.

It has been suggested that the role of the vmPFC in mediating
behavioral control over (future) stressors, that is to subserve
the detection and perception of controllability, might be similar
to its role in instrumental learning (Maier and Seligman,
2016). One study attempted to connect the separate lines of
research on behavioral control and instrumental learning by
demonstrating that the dorsomedial striatum, which is critically
involved in instrumental learning, is required for behavioral
control over stressors as well (Amat et al., 2014). Animal-to-
human translational experimental studies focusing on the neural
mechanisms underlying perceived control demonstrated that in
humans too, the corticostriatal circuit, including the vmPFC
and the striatum, were recruited during behavioral control over
aversive stimuli (Salomons et al., 2004; Delgado et al., 2009;
Kerr et al., 2012; Boeke et al., 2017). These findings support the
idea that interactions between the vmPFC and the dorsomedial
striatum play an important role in the detection of control, and
subsequent vmPFC top-down regulation of the DRN allow for
behavioral control over stressors (Maier and Seligman, 2016).

REWARD RATE, TONIC DOPAMINE, AND
(GENERAL) PERCEIVED CONTROL

The notion that instrumental action-outcome contingency is
a key element of perceived control has been challenged by
previous work (Alloy and Abramson, 1979; Teodorescu and Erev,
2014). Rather than learning about instrumental contingency per
se, aspects related to the outcome itself, such as its size and
frequency, may also play a role in perceived control. According
to outcome-based accounts of perceived control, individuals
regulate affect or behavior irrespective of knowledge about
action-outcome contingencies when there is enough reward
in our environment (Teodorescu and Erev, 2014). Conversely,
individuals avoid the regulation of affect or behavior when reward
is on average low. In other words, we tend to employ effortful
regulation if reward rate is high, but we avoid such orientation
altogether if reward rate is low (although see Niv et al., 2007,
for interpreting the average reward rate more as an estimate of
opportunity cost of time). Here, we discuss this alternative role of
outcome-related aspects in perceived control.

The average reward rate and the associated changes in tonic
dopamine levels could potentially contribute to the generalization
process of controllability. Tonic dopamine has been suggested
to reflect an average reward signal computed by slow averaging
phasic prediction error signals (Niv et al., 2007): cues that
have been associated with higher reward expectancies induce
larger phasic positive prediction errors resulting in transient
increases in tonic dopamine (Phillips and Wightman, 2004;
Tobler et al., 2005). Although it has often been suggested that
tonic and phasic dopamine are mediated by distinct mechanisms
(Floresco et al., 2003; Bromberg-Martin et al., 2010), recent
data demonstrated that phasic dopamine could trigger secondary

events that increase tonic activation of dopamine levels (Lohani
et al., 2018). It is therefore tempting to think that phasic
dopamine signaling associated with higher reward expectancies
or action values in context-specific perceived control, could
influence general perceived control reflected by changes in
tonic dopamine levels. In turn, transient changes in tonic
dopamine levels could contribute to learning given its association
with alertness and motivational drive (Schultz et al., 1997;
Niv et al., 2007). These mechanisms may help to explain
the interactions between general and context-specific perceived
control. In line with these hypotheses, it has been suggested
that tonic dopamine relates to trait-perceived internal locus
of control (De Brabander and Declerck, 2004; Declerck et al.,
2006; Kayser et al., 2014). Pharmacologically augmenting tonic
dopamine restores exploratory behavior in individuals with
an external locus of control characterized by reduced tonic
dopamine (Kayser et al., 2014). Moreover, elevated levels of
tonic dopamine have been observed in rodents in the context of
controllable aversive outcomes, whereas prolonged exposure to
uncontrollable aversive outcomes reduce tonic dopamine (Cabib
and Puglisi-Allegra, 2012).

The suggestion that average reward rate relates to general
perceived control resembles notions of effort-based decision
making. Dopamine within the striatum is needed to sustain effort
in order obtain desired outcomes (Niv et al., 2007; Beierholm
et al., 2013). For instance, the administration of dopamine
antagonist in the striatum of rodents decreases high effort
responses for large rewards, but increases low effort responses for
small rewards (Salamone, 2018). Computational accounts have
explained these effects by relating the role of tonic dopamine
levels to vigor versus sloth behavior and cost-benefit analyses
(Niv et al., 2007; Phillips et al., 2007). Although we will not go
further into the literature of effort-based decision making (for
review, see Kurniawan et al., 2011; Salamone, 2018), this area of
research is closely linked to aspects of general perceived control as
presented here; both general perception of control and high effort
could share similar underpinnings in tonic dopamine levels and
motivational drive.

Interestingly, an alternative outcome-based account of
perceived control that has been recently proposed suggests
that reward prevalence (or frequency of outcome), rather than
average reward rate, could explain exploratory behavior and
perceived control (Teodorescu and Erev, 2014). Regardless of
whether average reward rate or reward prevalence might be a
better account for perceived control, outcome-based aspects
could constitute an important element contributing to perceived
control. One potential caveat of outcome-related processes in
perceived control is revealed via contingency judgment tasks
where the probabilities of an outcome and the probability of
responding may create an ‘illusion of control’ (Orgaz et al., 2013;
Tobias-webb et al., 2017). Consistent with the idea that a belief
or perception of control is more potent than objective control, an
illusion of control basically reflects the subjective judgment that
an action-outcome causal relation exists when in fact there is no
contingency. When probabilities of reward and action are high,
the probability that both coincide is also high, hence affecting
estimations of action-outcome causal relationships, which could
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contribute to the false belief that one has control (Alloy and
Abramson, 1979; Matute, 1996; Orgaz et al., 2013).

CLINICAL IMPLICATIONS

Perceived control deficit is a core feature in a number of
psychiatric disorders. It has been suggested that disturbed
perception of control contributes to a psychopathological state in
a downward spiral, involving a dangerous cycle of poor decision
making and stress exacerbation (Joiner et al., 2005). A reward-
based framework of perceived control might shed light on the
prevalence of perceived control deficits observed across clinical
populations. In line with the aims of the Research Domain
Criteria (Cuthbert and Insel, 2013), this framework may allow
for the comparison of disorders marked by dysfunctions in basic
reward-related processes using a transdiagnostic approach to
better appreciate the underlying mechanisms of the behavioral
problems associated with the lack or loss of perceived control.
Based on the reward-based framework proposed in this paper,
we suggest that perceived control deficits across disorders can be
explained by dysfunctions in reward-related processing, which
commonly implicate corticostriatal circuits and dopaminergic
transmission. Below, we illustrate how disruptions in the key
elements of the reward-based framework might explain the
aberrant manifestations of perceived control in psychopathology.

Disorders Characterized by Reduced
Perceived Control
Arguably one of the most prevalent disorder to be associated with
perceived control is major depressive disorder where patients
often recount a global lack of control in their lives (Liu et al.,
2016). Deficits related to affect and motivation could play an
important role for this loss of control. Indeed, a core feature of
major depressive disorder is anhedonia, which can be described
as reduced motivation and ability to experience pleasure (Rizvi
et al., 2016). This symptom has been linked to reduced reward
sensitivity, reduced dopamine transmission, and structural and
functional abnormalities including reduced gray matter volume
and diminished reward signals in the striatum (Kumar et al.,
2008; Wacker et al., 2009; Pizzagalli et al., 2010; Treadway and
Zald, 2011). It has been proposed that the perceived control
deficits in individuals with depression might reflect a more
realistic view of events, so-called depressive realism (Alloy and
Abramson, 1979; Alloy et al., 1984). Whereas individuals without
depression demonstrate an illusion of control, individuals
with depression are more accurate in their judgment about
controllability. However, this view has not been supported
by more recent work in clinically depressed (Dobson and
Pusch, 1995; Moore and Fresco, 2012; Venkatesh et al., 2018).
Importantly, it has been found that depression is associated
with poorer learning of contingencies (Chase et al., 2010),
and structural abnormalities in corticostriatal regions relevant
to instrumental contingency learning (Baumann et al., 1999;
Coryell et al., 2005; Drevets et al., 2008). Thus, impairments in
instrumental contingency learning could provide an explanation
for reduced perceived control in depression. However, a recent

study also goes beyond instrumental contingency learning and
suggests that that an impairment in the intrinsic value of choice
may play a role in depression (Romaniuk et al., 2018). Specifically,
the study demonstrates an association between subclinical
depressive symptoms and reduced striatal anticipatory response
to choice opportunity.

Reduced perceived control is considered a transdiagnostic
feature across anxiety disorders (Gallagher et al., 2014a).
In line with these findings, structural abnormalities in the
ventromedial PFC have often been demonstrated in anxiety
disorders (Kühn et al., 2011). Furthermore, reduced reward
processing, as indicated by reduced signaling in the NAcc and
vmPFC during a reward-based decision-making task, has been
shown in patients with posttraumatic stress disorder (Sailer
et al., 2008). Interestingly, some studies suggest increased striatal
activation in relation to anxiety-related psychopathology, as
well as increased striatal volume (Kühn et al., 2011; Ly et al.,
2013). One explanation for this discrepancy is that reductions
in reward processing could be a result of prolonged stress
and behavioral dysfunctions leading to reductions in perceived
control similar to that observed in depression; whereas increased
striatal activation and volume could reflect an increased desire
for control in aversive or ambiguous contexts. For instance,
increased striatal activation and volume in relation to anxiety
could be associated with increased vigilance for threat, or an
intolerance for uncertainty (Ly et al., 2013; Kim et al., 2017). One
clinical feature that is more uniquely related to anxiety is the fear
of losing control. An intolerance for uncertainty and disrupted
contingency learning in a dynamic environment in relation to
anxiety (Browning et al., 2015; Kim et al., 2017; Piray et al., 2018),
might together explain this fear of losing control as well as the
subsequent maladaptive forms of control-seeking behavior, such
as avoidance and compulsive behavior.

Disorders Characterized by Increased
Perceived Control
While reduced perceived control can have detrimental effects
on behavior and wellbeing, the other extreme—an abnormal
increase in perception of control—can be just as problematic.
An illusion of control involving abnormalities in corticostriatal
circuits and dopamine have been suggested to play a role in
pathological gambling (Clark et al., 2013; Orgaz et al., 2013).
Features, such as choice opportunity, instrumental action (e.g.,
opportunity to throw a roulette ball by yourself), and near-
miss outcomes (e.g., close to winning the jackpot without actual
success) are often used in the game to promote an illusion of
control in gamblers. In the long run, this illusion could contribute
to ‘loss chasing’ in pathological gambling, where individuals
continue gambling to recover previous losses (Clark et al., 2013).
Cognitive distortions typical in gambling have been associated
with recruitment of the reward circuitry (Campbell-Meiklejohn
et al., 2008; Clark et al., 2009; Xue et al., 2011). It has been
found that individuals with pathological gambling tend to show
increased illusion of control in associative learning task where the
probability of a desired outcome is pseudorandomly determined
independent from the actions taken (Orgaz et al., 2013). Evidence
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for altered reward processing in pathological gamblers have been
inconsistent: both blunted as well as increased neural responses
to monetary and nonmonetary rewards have been found to be
associated with this pathological gambling (Reuter et al., 2005;
Balodis et al., 2012; van Holst et al., 2012). However, when
neural responses to monetary versus nonmonetary stimuli (e.g.,
appetitive images) were compared, an increase in striatal signals
was found to be associated with pathological gambling (Sescousse
et al., 2013). This finding might suggest that a relative, increase in
reward processing for monetary versus nonmonetary appetitive
stimuli is more characteristic for pathological gambling rather
than an increase in reward processing for monetary stimuli in
absolute terms, although further work is necessary to build upon
this idea.

Another clinical aspect related to illusion of control, is mania.
Manic, as opposed to depressive phases of bipolar disorder
are characterized by increased perceived control, as well as
elevated mood, hyperactivity, and increased interest in goal-
oriented behavior. These symptoms all fit well with the dopamine
hypothesis, which has long been proposed as the theory to
understand bipolar disorder (Ashok et al., 2017). According
to this hypothesis, the opposing poles of this disorder could
potentially be explained by opposite alterations in dopaminergic
function: while hypodopaminergia could underlie depression,
hyperdopaminergia might underlie mania. A failure of dopamine
receptor and transporter homeostasis have been suggested to
underlie bipolar disorder (Ashok et al., 2017). Additionally,
hyperactivation in corticostriatal circuits during cue-induced
reward anticipation has been demonstrated in manic patients
(Bermpohl et al., 2009; Singh et al., 2013).

Perceived Control as a Target for
Treatment
Given that the loss or lack of perceived control is a core
feature in many psychiatric disorders, focusing on boosting
perceived control may be helpful for some disorders. Although
there are preliminary indications that changes in perceived
control is a working mechanism underlying cognitive behavioral
therapies targeting anxiety disorders, what aspects of these
therapies are critical to change the perception of control remain
unclear (Gallagher et al., 2014b). The proposed reward-based
framework may provide some leads to specifically target key
reward-processing elements so as to restore perception of
control. Stemming from this framework, it could be argued that
providing choice, boosting instrumental goal-directed behavior,
or promoting reinforcement could serve as promising ways
to enhance the perception of control. For example, previous
work targeting choice opportunity has shown some success in
patient-controlled analgesia postoperative patients using choice
provision (Ballantyne et al., 2018).

Furthermore, the reward-based framework could help us
understand the mechanisms of actions underlying existing
interventions. One of the most effective treatments for
depression, behavioral activation therapy, (Jacobson et al.,
1996; Dimidjian et al., 2006; Hopko et al., 2011), is based on
structured attempts to increase overt behaviors that potentially

bring patients into contact with reinforcing environmental
contingencies (Hopko et al., 2003). The framework highlights
the potential of this therapeutic procedure to influence perceived
control via manipulations of instrumental contingency as
well as simply increasing reinforcement. More research is
needed to test the working mechanisms of behavioral activation
therapy directly. These insights will not only help to improve
the efficacy of the existing treatment protocols, but it could
also inform us on the potential utility of behavioral activation
therapy for other disorders characterized by perceived control
deficits, such as anxiety disorders. Such knowledge could
be relevant to the development of novel transdiagnostic
treatments, which has shown to be a promising type of treatment
innovation (Barlow et al., 2017).

Similarly, growth mindset interventions are focused on
promoting the belief that an ability is improvable rather than
fixed (Grant and Dweck, 2003). A central aspect behind a
growth mindset is perceiving control via a belief in instrumental
contingency. Rather than setting ability-linked goals, active
learning goals can be formulated that put an explicit emphasis
on learning, development, and seeking to master challenges.
These goals enable the individual to see aversive outcomes
as information to improve learning, rather than as indicators
of stable low ability (Moser et al., 2011). Such interventions
promote intrinsic motivation and perceived control (Grant
and Dweck, 2003). Furthermore, growth mindsets have been
demonstrated to have beneficial effects for coping with negative
affect and reducing physiological stress responses to negative
events (Yeager et al., 2016). These growth mindset interventions
have been mainly used in education, but could potentially
have beneficial effects in psychiatric disorders characterized by
perceived controldeficits.

CONCLUSION

Through the reward-based framework of perceived control,
we have highlighted how choice opportunity, instrumental
contingency, and reward rate could individually and collectively
contribute to specific and general perceived control. In particular,
we discussed how both animal and human research has shown the
contribution of corticostriatal circuits and dopamine to these key
elements of perceiving control. Apart from focusing on factors
contributing to perceived control, we have also highlighted some
work demonstrating that the alterations of these key elements
could influence affect regulation and behavior. Insights into
the consequences of perceived control are relevant, particularly
given that its affective and behavioral consequences could,
along with future decision making, enter into a vicious and
pathological cycle.

Further research is needed to elucidate how interactions
within the corticostriatal circuits play a role in perceived
control. We hypothesize that choice opportunity may bias
instrumental action-selection via input from the striatum, which
is the main candidate to integrate motivational and affective
value with instrumental actions. It remains to be tested how
prefrontal and striatal regions involved in perceived control
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exactly interact. For these investigations, we would need to
employ a multimodal approach by combining well-validated
behavioral study procedures with neural interventions (e.g., brain
stimulation) and sophisticated data-processing tools such as
dynamic causal modeling to allow for inferences on the causal
neural mechanisms (Wang et al., 2016). Furthermore, direct
manipulations of the dopaminergic and serotonergic systems
in pharmacological studies could provide more information on
the role of these neuromodulatory systems in regulating the
relationship between perceived control and adaptive behavior.
Another interesting open question is how general perceived
control and its subjective value in individuals is coded in the brain
and how it may change in context-dependent perceived control.

Finally, understanding perceived control has clinical
implications. Given that abnormalities in these reward-related
processes have often been observed in many psychopathological
states, such research could help us better understand the
role of perceived control in their etiology and maintenance.

Investigating how perceived control is impaired across a range of
psychiatric disorders, could lead to more insights into phenotypes
and how individual differences in key reward-related elements
might serve as a predictor for susceptibility to these disorders.
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