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A neuromorphic vision sensors is a novel passive sensingmodality and frameless sensors

with several advantages over conventional cameras. Frame-based cameras have an

average frame-rate of 30 fps, causing motion blur when capturing fast motion, e.g., hand

gesture. Rather than wastefully sending entire images at a fixed frame rate, neuromorphic

vision sensors only transmit the local pixel-level changes induced by the movement in

a scene when they occur. This leads to advantageous characteristics, including low

energy consumption, high dynamic range, a sparse event stream and low response

latency. In this study, a novel representation learningmethod was proposed: Fixed Length

Gists Representation (FLGR) learning for event-based gesture recognition. Previous

methods accumulate events into video frames in a time duration (e.g., 30 ms) to make

the accumulated image-level representation. However, the accumulated-frame-based

representation waives the friendly event-driven paradigm of neuromorphic vision sensor.

New representation are urgently needed to fill the gap in non-accumulated-frame-based

representation and exploit the further capabilities of neuromorphic vision. The proposed

FLGR is a sequence learned from mixture density autoencoder and preserves the

nature of event-based data better. FLGR has a data format of fixed length, and it is

easy to feed to sequence classifier. Moreover, an RNN-HMM hybrid was proposed to

address the continuous gesture recognition problem. Recurrent neural network (RNN)

was applied for FLGR sequence classification while hidden Markov model (HMM) is

employed for localizing the candidate gesture and improving the result in a continuous

sequence. A neuromorphic continuous hand gestures dataset (Neuro ConGD Dataset)

was developed with 17 hand gestures classes for the community of the neuromorphic

research. Hopefully, FLGR can inspire the study on the event-based highly efficient,

high-speed, and high-dynamic-range sequence classification tasks.

Keywords: representation learning, neuromorphic vision, continuous gesture recognition, mixture density

autoencoder, recurrent neural network, hidden markov model
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1. INTRODUCTION

Gesture recognition has aroused rising attentions because of
its emerging significance in many robotic applications e.g.,
safe human-robot cooperation in an industrial environment.
However, conventional camera-based gesture recognition
exhibits two major drawbacks. First, the reaction speed of the
conventional camera is limited by its frame rate, typically 30 fps,
causing motion blur when capturing fast hand motions. Second,
the accumulated-frame-based visual acquisition can lead to data
redundancy and memory requirement, thereby hampering the
large scale commercial usage in embedded systems. Compared
with conventional cameras, neuromorphic vision sensors as a
bio-inspired sensor do not capture full images at a fixed frame-
rate. Besides, they characterized by high temporal resolution
(microseconds), high dynamic range (120–140 dB), low power
and low bandwidth. Neuromorphic vision represents a paradigm
shift in computer vision because of its principle of the operation
and the unconventional output.

However, current study on neuromorphic gesture recognition
all belongs to segmented gesture recognition. For segmented
gesture recognition, the scenario of the problem can be simply
described as classifying a well-delineated sequence of video
frames as one of a set of gesture types. This is in contrast to
continuous/online human gesture recognition where there are
no a priori given boundaries of gesture execution (Aggarwal and
Ryoo, 2011; Wang et al., 2018). It is meaningful to develop novel
architecture for neuromorphic continuous gesture recognition,
which is the first step to achieve online recognition.

However, given the events nature of variable length and
asynchronous sequence, it is not suitable for feeding the events to
common classifier directly for sequence classification tasks e.g.,
gesture recognition. Existing works accumulate neuromorphic
sensor’s output events in a duration (e.g., 30 ms), and denote
them as image frame (Moeys et al., 2016). These methods
perform the classification and recognition task on an image level,
thereby waiving the nature of events. Hence, new representations
and technologies are urgently needed to exploit the capabilities
of neuromorphic vision. The aim of this study was twofold:
to explore a novel representation of neuromorphic events and
to investigate the ability to translate successes in field of deep
learning into neuromorphic vision in gesture recognition.

1.1. Neuromorphic Vision Sensor
The dynamic vision sensor (DVS), a type of neuromorphic vision
sensor (Lichtsteiner et al., 2008), was employed to acquire the
hand gesture data. The design of neuromorphic vision sensors
is inspired by the way vision happens on the retina of a biological
eye, e.g., the human eye, which is reflected in its eponymous
attributes, including asynchronous and temporal contrast. The
former indicates that each of the DVS pixels leads to an intensity
change once it is triggered as opposed to the synchronous way
in which a conventional camera queries all pixels at once every
few milliseconds. The latter implied that a pixel is triggered
when the variation in light intensity at its position exceeds a
certain threshold. These attributes make the pixels of the DVS
comparable to retinal ganglion cells.

The DVS applied here has a spatial resolution of 128×128
pixels as well as a temporal resolution of microseconds,
suggesting that events are timestamped by a free-running
counter ticking up at 11 kHz. Each pixel circuit tracks the
temporal contrast defined as light log-intensity. An event is
triggered every time the temporal contrast passes a threshold
θ . The whole process exhibits a latency of 15 µs. The DVS
streams events over USB in address-event representation (AER).
In AER, each event is a 4-tuple (t, x, y, p) where t denotes the
timestamp; x and y are the coordinates of the event’s origin; p is
the event’s polarity.

1.2. Representation for Neuromorphic
Vision
Since the stream of neuromorphic events is asynchronous
and variable in length, researchers tried to represent them as
another type of data easy to process for later detection and
recognition tasks. Existing methods for representation of DVS
events are divided into 4 types, namely the fully accumulated-
frame-based representation, the semi-accumulated-frame-based
representation, the reconstructed-frame-based representation
and the non-accumulated-frame-based representation. First,
the fully accumulated frame-based representation is the most
broadly used representation of neuromorphic events. Park
et al. (2016) and Maqueda et al. (2018) accumulated the events
into the frame with a duration of 30 ms in average. Vidal
et al. (2018) collapsed every spatio-temporal window of events
to a synthetic accumulated frame by drawing each event on
the image frames. They used FAST corner detector to extract
features on the frames. Second, the events were processed
by the semi-accumulated-frame-based representation before
being accumulated into a frame (Lee et al., 2014; Mueggler
et al., 2015). Mueggler et al. (2015) processed the events by
the lifetime estimation and accumulated them to yield the
shape gradient image. Lee et al. (2014) processed the events by
means of leaky integrate-and-fire (LIF) neurons and clustered
a moving hand by accumulating the output events from LIF
with a 3-ms interval. Third, Bardow et al. (2016) and Munda
et al. (2018) exploited intensity change to reconstruct the gray
image. However, noted that all three methods above process
the events on an accumulated image frame level. Since the
transformed images are often blurred and redundant, the
image-level preprocessing negatively affects model performance
and abandons the hardware friendly event-driven paradigm. As a
result, such methods waive the the nature of events data and lead
to unnecessary redundancy of data and memory requirement.
In recent years, the processing of event sequence is no longer on
an level of image, but more focused on the natural processing of
event sequence (Neil et al., 2016;Wu et al., 2018).Wu et al. (2018)
first trained an event-driven LSTM and prove the capability
of recurrent neural network (RNN) to process event-based
classification task. Note that they applied their framework on
N-MNIST dataset, which is a toll dataset of handwritten digits.
A review paper (Cadena et al., 2016) highlighted that the main
bottleneck of event-based computer vision is how to represent
events sequence appropriately. Since the output consists of
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a sequence of asynchronous events, traditional frame-based
computer-vision algorithms are not applicable. This requires a
paradigm shift from the traditional computer vision approaches
developed over the past 5 decades. They explained that the
design goal of such algorithms is to preserve the event-based
nature of the sensor. Thus, it is necessary to further prove the
capability of the non-accumulated-image-based representation
by applying them to event-driven tasks.

1.3. Related Works
Under the recent development of deep learning (Krizhevsky
et al., 2012), many methods used for hand gesture recognition
with conventional cameras have been presented based on
Convolutional Neural Networks (ConvNets) (Ji et al., 2013;
Neverova et al., 2014; Molchanov et al., 2015; Knoller et al.,
2016; Sinha et al., 2016) and RNN (Ohn-Bar and Trivedi, 2014;
Neverova et al., 2016; Wu et al., 2016). Among these frameworks,
RNNs are attractive because they equip neural networks with
memories for temporal tasks, and the introduction of gating units
e.g., LSTM and GRU (Hochreiter and Schmidhuber, 1997; Cho
et al., 2014) has significantly contributed to making the learning
of these networks manageable. In general, deep-learning-based
methods outperform traditional handcrafted-feature-based
methods in gesture recognition task (Wang et al., 2018).

All the efforts above rely on conventional cameras at fixed
frame-rate. Conventional cameras will suffer from various
motion-related artifacts (motion blur, rolling shutter, etc.) which
may affect the performance for the rapid gesture recognition.
In contrast, the event data generated by neuromorphic vision
sensors are natural motion detectors and automatically filter out
any temporally redundant information. The DVS is promising
sensor for low latency and low bandwidth tasks. A robotic
goal keeper was presented in Delbruck and Lang (2013) with
a reaction time of 3 ms. Robot localization was demonstrated
by Mueggler et al. (2014) using a DVS during high-speed
maneuvers, in which rotational speed was measured up to
1, 200◦/s during quadrotor flips. In the meantime, gesture
recognition is vital for in human-robot interaction. Hence, the
neuromorphic gesture recognition system is urgently needed.

Ahn et al. (2011) were one of the first groups to use the
DVS for gesture recognition when detecting and distinguishing
between the 3 throws of the classical rock-paper-scissors game.
It is noteworthy that their work was published in 2011, which
predating the deep learning era. The DVS’ inventors performed
gesture recognition with spiking neural networks and leaky
integrate-and-fire (LIF) neurons (Gerstner and Kistler, 2002;
Lee et al., 2012a,b, 2014). Spiking neural networks (SNNs)
are trainable models of the brain, thereby being suitable for
neuromorphic sensors. In 2016 deep learning was first applied
for gesture recognition with DVS (Park et al., 2016). With
super-resolution technology by spatiotemporal demosaicing
on the event stream, they trained a GoogLeNet CNN with the
reconstructed information to classify these temporal-fusion
frames and decode the network output with an LSTM. Amir et al.
(2017) processed a live DVS event stream with IBM TrueNorth,
a natively event-based processor containing 1 million spiking
neurons. Configured as a convolutional neural network (CNN),

the TrueNorth chip identifies the onset of a gesture with a latency
of 105 ms while consuming <200 mW.

In fact, continuous gesture recognition is a task totally
different from the segmented gesture recognition. For the
segmented gesture recognition (Lee et al., 2012a; Amir et al.,
2017), the scenario of the problem can be summarized as
classifying a well-delineated sequence of video frames as one of a
set of gesture types. This is in contrast with the continuous/online
human gesture recognition where there are no a priori given
boundaries of gesture execution. In a simple case where a video
is segmented to contain only one execution of a human gesture,
the system aims to correctly classify the video into its gesture
category. In more general and complex cases, the continuous
recognition of human gestures must be performed to detect
the starting and ending times of all occurring gestures from an
input video (Aggarwal and Ryoo, 2011). However, there has
been no measurement till now for the detection performance in
neuromorphic gesture recognition task. In brief, the continuous
gesture recognition is the first step to reach online recognition
though it is harder than the segmented gesture recognition
(Wang et al., 2018).

However, the non-accumulated-image-based representation
for event-driven recognition has not aroused enough
attention. Both methods, Park et al. (2016) and Amir
et al. (2017), belong to the semi-accumulated-frame-based
representation and train CNN on the frames. Moreover, the
CNN in Amir et al. (2017) was based on a neuromorphic
hardware, which is not fully accessible to scientific and
academic fields.There has been no pure deep network
that can process the sequence of non-accumulated-frame-
based representation for the gesture recognition task. A
deep network should be urgently designed to process
events or non-accumulated-frame-based representation
sequence to explore a paradigm shift in neuromorphic vision
community (Cadena et al., 2016). Because of the data nature
of asynchronous, the direct raw event-based recognition might
be unsatisfactory. How to learn a novel non-accumulated-
frame-based representation for event-driven recognition
therefore becomes a promising direction to reduce the noted
negative effect and maximize the capability of the event-based
sequence data.

The rest of this study is organized as follows: section 2
describes the preprocessing, the representation learning and
RNN-HMM hybrid temporal classification for neuromorphic
continuous gesture recognition. Section 3 verified the Neuro
ConGD dataset collection, evaluation metrics and experimental
results. Section 4 draws the conclusion of this study.

2. METHODS

In this section, the framework for neuromorphic continuous
gesture recognition is to be described. The main idea of this study
is shown in Figure 1.

The framework consists of two major parts, namely
representation learning and temporal classification. In section
2.1, how the events triggered from DVS were preprocessed
is first introduced. In section 2.2, a specific type of network
Mixture Density Autoencoder is proposed to learn an efficient
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representation directly. In section 2.3, an RNN-HMM hybrid
system is proposed to compute a label sequence from an input.
The RNN provides localized classifications of each sequence
element while the HMM segments the input based on the basis
of the RNN output and deduces the most likely label sequence.

2.1. Event Preprocessing
The aim of preprocessing stage is to make the raw events data
time-invariant, location-invariant and standardized. Each event
was finally mapped from a 4-dimensional raw feature to a 6-
dimensional preprepocessed feature in the end (see Equation 2).

To make the events sequence time invariant, a new variable
δt was introduced, which is defined as the time passed since the
previous event, i.e., δt(i) = t(i)−t(i−1) with a value of 0 as the base
case. In such a way, arbitrary timestamp of the previous event
was replaced.

To make the data location-invariant, we keep track of a mean
µx with exponentially decaying weights, which gives more weight
to recent events and can be cheaply computed in a streaming
context such as online recognition. µx that tracks a quantity x
through continuous time is defined as

µ(i)
x =

(

1− αt(i)−t(i−1)
)

· x(i) + αt(i)−t(i−1)
· µ(i−1)

x (1)

where x(i) was observed at time t(i). The parameter α controls
how much weight is placed in past data.

We keep two means for each of x and y, one with λ = 1 s
and another with λ = 50ms. The first was supposed to track the
main movement of the hand, while the second was to track fast
movement like individual fingers.

In general, the preprocessing mapped each event from a
4-dimensional raw feature to a 6-dimensional feature as follows

(

t(i), x(i), y(i), p(i)
)

7→

(

δt(i), δx
(i)
λ=1 s, δx

(i)
λ=50ms, δy

(i)
λ=1 s, δy

(i)
λ=50ms, p

(i)
)

(2)

where δx
(i)
λ=1 s = x(i) − µ

(i)
x,λ=1 s, δx

(i)
λ=50ms = x(i) −

µ
(i)
x,λ=50ms,δy

(i)
λ=1 s = y(i) −µ

(i)
y,λ=1 s, δy

(i)
λ=50ms = y(i) −µ

(i)
y,λ=50ms.

2.2. Representation Learning for FLGR
The aim of the representation learning stage focused on
learning feature from the variable length events sequence. A
mixture density network following the autoencoder architecture
proposed in Cho et al. (2014) was utilized, which was originally
employed for machine translation. Both the encoder and decoder
of mixture density autoencoder consist of Gated Recurrent Units
(GRU). The representations learned by the autoencoder is termed
as Fixed Length Gist Representation (FLGR). First, FLGR encode
the gist of the input. Second, the variable length event sequences
of fixed duration are transformed into fixed-length vector
with the representation learning. We hope to inspire greater
efforts along the lines of the non-accumulated-image-based
representation research on neuromorphic vision.

2.2.1. Mixture Density Autoencoder
The aim of the mixture density autoencoder is to learn a
low-dimensional representation of the input data from which it

can later reconstruct the input. Graves (2013) proposed mixture
density network to generate handwriting sequence from a
trained network by learning input sequence’s distribution. The
property of mixture density network was exploited to make the
autoencoder transform variable length event sequences of fixed
duration into fixed-length vectors.

The autoencoder network was split into an encoder and a
decoder, sharing information only along a single edge in the
computational graph (see Figure 2). This edge initializes the
decoders hidden state with the final hidden state of the encoder.
It is the figurative funnel in the network as it has to encode the
complete input sequence. The mixture density autoencoder was
trained to produce a probability distribution over sequences
rather than sequences directly. Our network processed an
input sequence of length n, where n is variable, by encoding
the complete sequence first. Subsequently, it used the decoder
to produce a distribution over a sequence of length n and
computing a loss between the two sequences for training. The
mixture density networks output parameterizes a distribution,
which is a mixture of Gaussians over the real attribute and
a Bernoulli distribution over the categorical attribute. It is
noteworthy that the outputs of our mixture density autoencoder
are parameters of mixture distribution which are corresponding
to the input events sequence. These parameters were used
to reconstruct the sequence. During training we use encoder
together as an autoencoder for the sequence and derive the
training signal from the reconstruction error of the sequence.
Then, we throw away the decoder and rely solely on the encoder
to generate enriched, learned FLGR representation.

2.2.2. Gated Recurrent Unit
A crucial property for our recurrent model refers to the ability
to operate over input events sequence. In the proposed mixture
density autoencoder, both encoder and decoder consist of
3 layers GRUs. Though works for sequence encoding and
classification often leverage Long Short-Term Memory (LSTM)
cells, it was reported that a GRU-based architecture exhibiting
slightly better performance is more robust over a wider range
of hyperparameters and has fewer parameters, suggesting the
slightly faster training and better test-time performance. This
is consistent with empirical findings from prior work on deep
recurrent models in other domains (Jozefowicz et al., 2015). GRU
merged the cell state into the hidden state h(t), combined the
input and forget gates into a single update gate z(t) and replaced
the output gate with a reset gate r(t) with no equivalent in LSTM.

Thus, at each time step t, we took the hidden state h(t) of the
final GRU layer in the recurrent stage as our sequence encoding,
where h(t) is defined as:

r(t) = σ

(

Wrx
(t) + Urh

(t−1)
)

(3)

z(t) = σ

(

Wzx
(t) + Uzh

(t−1)
)

(4)

h̃(t) = tanh
(

Wx(t) + U
(

r(t) ◦ h(t−1)
))

. (5)

h(t) = z(t) ◦ h(t−1) +

(

1− z(t)
)

◦ h̃(t) (6)
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FIGURE 1 | Overview of the framework for neuromorphic continuous gesture recognition. The autoencoder network was split into an encoder and a decoder, sharing

information only along a single edge in the computational graph. The autoencoder was trained in an unsupervised way. The encoder part transform variable length

events sequences of fixed duration into fixed-length vectors. The representation learning module learns a novel representation FLGR (Fixed Length Gists

Representation). The FLGR sequences are then fed to the hybrid system with RNN and HMM to make a temporal classification.

FIGURE 2 | Sketch of our autoencoder architecture that encodes an input sequence x of length n into hidden states e. The decoder is trained to decode the last

hidden state e(n) into a sequence y(1), . . . , y(n) resembling the input. Each y(i) is a non-negative vector whose entries sum up to 1 and its j-th entry encodes the

networks belief that the j-th word should be placed at this point in the output sequence. Note that this is a sketch for intuitive understandability. Both encoder and

decoder have 3 layers GRUs separately. Implementation details can be seen in section 2.4.

2.3. RNN-HMM Hybrid for Temporal
Classification
The aim of temporal classification was to transform an event
sequence to a sequence of 17 gesture labels. Wu et al. (2018)
trained an event-driven RNN on DVS-MNIST dataset, verifying
the capability of RNN to process the event-based classification
task. RNNs consisting of LSTM units or GRU units are
efficient methods for continuous gesture recognition (Chai

et al., 2016; Cui et al., 2017). Moreover, the hybrid system

combined with neural network and hidden Markov model
(HMM) will significantly enhance the performance of temporal

classification (Abdel-Hamid et al., 2012; Gaikwad, 2012). Based

on the above information, an RNN-HMM hybrid for temporal

neuromorphic continuous gesture classification was developed.
Our RNN-HMM hybrid consists two modules: sequence

classification with RNN to produce a distribution of labels and
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HMM to decode the distribution of labels into correct gesture
label. Though this study focus on the case of gesture recognition,
we hope to inspire more efforts on neuromorphic temporal
classification tasks based on the proposed RNN-HMM hybrid.

2.3.1. Sequence Classification With Recurrent Neural

Network
The aim of sequence classification was to take an input sequence
and produce a distribution of labels. A RNN was employed for
event sequence classification. To classify a continuous gesture
sequence, localized classifications were required to be decoded
into global classifications. In other words, the network should
assign each unit of input FLGR sequence to one of 17 classes. The
17 classes contain 16 gestures plus the blank label (see section 3.1
for the definition of gesture classes).

Figure 3 shows the structure of our RNN network. The RNN
consists of three GRU layers, two fully-connected layers with tahn
activation and finally a fully-connected layer that projects the
output down into R

17. The definition of GRU and the reason
to choose GRU instead of other recurrent units like LSTM are
explained in section 2.2.2. In our RNN sequence classifier, the
learning rate, decay rate, and neuron number of each GRU were
set to 10−3, 0.95, and 256, respectively. The loss function is
cross entropy measuring the difference between the labels and
predicted outputs. The output is transformed with SoftMax to
parameterize a multinoulli distribution over the output classes.

The output of a sequence classifier is shown in Figure 4. Since
the blank class taked up nearly 50% of the training data, the
classifier recognized non-gesture data with high accuracy. When
an activity was detected, the classifier assigned high probabilities
to multiple classes at first until it discerned a single label as the
correct one.

2.3.2. HMM Decoding and Segmentation
The major goal of our HMM is to process the noisy classification
produced by sequence classifier. Sequence classifier with RNN
points out which gesture most likely happens at each point in

FIGURE 3 | The RNN network consists of three layers of GRUs, each of which

has N units, i.e., 256 units in our setting. The output of RNN is transformed

with Softmax to parameterize a distribution over the classes. Finally the

network can be trained to produce prediction y.

time. However, there exist a huge amount of noisy classifications
produced by the RNN sequence classifier (See Figure 5). For
instance, a swipe-down gesture might be classified as rotate-
outward for the first few milliseconds, then swipe-up for another
few and finally as swipe-down for the rest of the activity.
Furthermore, this sequence of probability distributions should
be deciphered into a single swipe-down label. The solution was
reached using HMMs decoding (HMM decoder).

A HMM consists of a Markov chain of hidden states
z(t) ∈ {1, . . . ,K}, an observation model x(t) and a transition
model expressed as transition matrix A. An HMM models a
situation where a state of interest is only indirectly observable
through emissions at each timestep. We have a sequence of local
classifications of each frame into of 17 classes and would like to
derive the true underlying sequence of gestures. An HMM helps
us incorporate the knowledge that a state i might be observed as
any other state for a short while through the observation matrix
B. An efficient algorithm Viterbi decoding was employed to
decode an observation sequence into the most likely underlying
state sequence is. Viterbi decoding produces the most likely
sequence of hidden states

z(1), . . . , z(n) = argmax
z(1) ,...,z(n)

p(z(1), . . . , z(n)|x(1), . . . , x(n)) (7)

= argmax
z(1) ,...,z(n)

p(z(1)) ·

n
∏

t=2

p(z(t)|z(t−1)) ·

n
∏

t=1

p(x(t)|z(t))

(8)

= argmax
z(1) ,...,z(n)

logπz(1) +

n
∑

t=2

logAz(t−1) ,z(t)

+

n
∑

t=1

log p(x(t)|z(t)) (9)

given a sequence of observations. Since the RNN classifier
with softmax layer produces p(z(t)|x(t)) instead of p(x(t)|z(t)),
the decoding objective can be rewritten in accordance with
Bayes’ theorem.

= argmax
z(1) ,...,z(n)

logπz(1) +

n
∑

t=2

logAz(t−1) ,z(t)

+

n
∑

t=1

(

log p(z(t|x(t))+ log p(x(t))− log p(z(t))
)

(10)

The p(x(t)) term is irrelevant to the Argmax asit does not
depend on z.

= argmax
z(1) ,...,z(n)

logπz(1) +

n
∑

t=2

logAz(t−1) ,z(t)

+

n
∑

t=1

(

log p(z(t|x(t))− log p(z(t))
)

(11)
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FIGURE 4 | Class probabilities attained from an RNN sequence classifier. The shaded regions in the background designate the ground truth (best viewed in color).

= argmax
z(1) ,...,z(n)

logπz(1) +

n
∑

t=2

logAz(t−1) ,z(t)

+

n
∑

t=1

log p(z(t|x(t)) (12)

The Viterbi algorithm finds the maximizer by computing the
probability of being in state j at time t since the most probable
path is taken.

δt(j) = max
z(1) ,...,z(t−1)

p(z(1), . . . , z(t−1), z(t) = j|x(1), . . . , x(t)) (13)

The key insight here is that the most probable path to state j at
time t must be the one that maximizes the joint probability of
being in state k at time t − 1 and transitioning from k to j, i.e.,

δt(j) = max
i

δt−1(i) · Aij · Bj,x(t) (14)

If computing δ for t from 1 to n and store the maximizer i in
another table αtj, you can find the most probable final state as

z(n) = argmaxi δn(i) and work your way back to t = 1 by
following the αn,z(n) to the predecessor state and so forth. This
explanation is summarized fromMurphy (2012).

Since the the observation matrix B can be derived from the
output of RNN classifier with SoftMax layer, the constructing
process of an HMM decoder was reduced to find A and π .

Figure 6A shows that an HMM decoder is capable of
recognizing the points of activity in a sequence of local
classifications, and it is also reasonably accurate in decoding
them into the true label.

However, there were numerous spurious labels mixed in with
the true labels (see Figure 6A). To solve the mixing problem, an
HMM segmenter was developed, and the decoding process was
devided into two parts, first, an HMMwith just two states, gesture
and blank, segments the sequence; subsequently, a second HMM
produces a single label for each segment.

The HMM segmenter was constructed in the same way as the
decoder with the twist that all gestures are combined into a single
hidden state gesture. When the HMM segments a recording,
the probability of the gesture state is the sum of all gesture
probabilities. To suppress the remaining spurious activations,

all segments shorter than 500ms were also filtered out since
we know from the dataset statistics that the shortest gesture
is over a second long on average according to dataset statistic.
Figure 6B shows the contamination of mixing labels was almost
gone compared with the result in Figure 6A. Thus, the results
were improved after implementing HMM segmenter.

2.4. Network Training and Implementation
The aim of the training process is to estimate the model
parameters in our architecture. During training we used encoder
and decoder together as a mixture density autoencoder. We
reconstructed the sequence by means of mixture distribution
produced by autoencoder. We derive the training signal from
the reconstruction error of the sequence. The encoder part of
trained encoder-decoder was employed to generate FLGR data
from variable events sequence. Given the sequence of FLGR,
the hybrid system with RNN classifier and HMM was trained to
predict the corresponding label.

The training events segment and batch were generated
as follows: the time window Tw with a fixed duration was
constructed as a segment. Events fell into different Tw with
variable length Li. The max value of Li among different Tw was
then computed as Lmax. Each batch contains several Tw with
the amount of batch size Sbatch. The final data of a batch has the
shape of ( Sbatch, Lmax, Sevent) where Sevent denotes the feature
size in each processed events. In our training, the Tw, Sbatch, and
Sevent were set to 2.5 ms, 32 and 6, respectively.

In our implementation, the training procedure of our
mixture density autoencoder is as follows. Both the encoder
and decoder are 3 layers of GRUs with 256 neurons of each.
The encoder receives preprocessed events in R

6. The decoder
produces parameters for a 10-component mixture distribution
of Gaussians with diagonal covariance matrices over R

5 and
a single parameter for a Bernoulli distribution over {−1, 1}.
This adds up to 10 component weights, 10 · 5 = 50 mean
parameters, 10 · 5 = 50 diagonal convariance matrix entries
and a single Bernoulli parameter, in total of 111 parameters. To
project its 256-dimensional output into the R

111, the decoder
has a single fully-connected layer with weight matrix and bias
term but without non-linearity on top. According to the output
distribution, the loss is the negative log-likelihood of the input
sequence. The network weights are learned using the mini-batch
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FIGURE 5 | Noisy classifications produced by an RNN classifier (best viewed in color).

FIGURE 6 | Comparison of the two decoding methods on the same recording. The shaded regions in the background denote the ground truth (best viewed in color).

(A) Direct HMM decorder. (B) HMM segmenter plus segment decoding.

gradient decent with batch size 32. The optimizer is Adam
(Kingma and Ba, 2015) with a learning rate of 10−4 and an
exponential decay rate of 0.95 to the power of the current epoch.
The gradients were clipped at a norm of 5. This also helps to
solve numerical instabilities if the covariances of the mixture
distribution become really small.

For the RNN sequence classifier, the learning rate, decay rate,
and neuron number of each GRU were set to 10−3, 0.95, and 256,
respectively. The loss function was cross entropy measuring the
difference between the labels and predicted outputs.

The construction of an HMM decoder from the training data
aimed to find A and π . We define the Ai,17 entries, the transition
probability from gesture i to blank, as the proportion of frames
belonging to class i that transition to blank and Ai,i, the self-
transition probability, as 1 − Ai, 17. The transition probability

from blank to any of the gestures was the proportion of gesture
gists following blank gists, and the self-transition probability
acted as the complementary part.

For the programming platform, a Titan X graphics card and
an Intel Core i7-5930K processor were utilized for training,
processing, and implementation.

3. EXPERIMENTS

In this section, the Neuromorphic Continuous Gesture
Dataset (Neuro ConGD) and the evaluation protocol are to be
described. The dataset contains the raw recorded events and
the preprocessed data. The experimental results of the proposed
method on this dataset were reported and compared with
the baselines.
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FIGURE 7 | Event density for various distances between the hand and the DVS.

TABLE 1 | Information of the Neuro ConGD dataset.

Set No. of labels No. of gestures No. of sequences No. of subjects Preprocessing provided Labels provided

Training 17 1,360 80 4 Yes Yes

Validation 17 340 20 2 Yes Yes

Testing 17 340 20 2 Yes No

3.1. Neuro ConGD Dataset
Numerous gesture datasets have been created in recent years, as
thoroughly review in Ruffieux et al. (2014). Most of the datasets
were recorded with frame-based camera, e.g., the conventional
color camera, the stereo camera and the Kinect. Hu et al.
(2016) reported the urgent need for neuromorphic dataset for
further research in the event-based computer vision. One of
the contributions of this study is that a new neuromorphic
continuous gesture (Neuro ConGD) dataset was collected with
an event-based camera.

The Neuro ConGD dataset was recorded with a DVS
sensor which has a spatial resolution of 128x128 pixels. An
appropriate distance between hand and DVS should be first
selected to make gesture distinguishable from noise. Figure 7
shows the event rates of three recordings taken at three
different distances between hand and DVS. A noise event rate
of nearly 8 keps was measured when the DVS was directed
toward a static scene which is the baseline rate between
gestures regardless of the distance. The peaks in the event
rate show that the event rate above baseline is proportional
to the distance between hand and DVS. However, small
distance makes the hand gesture leave the DVS’ field of view
while recordings with a distance of over 80 cm are almost
indistinguishable from noise. Accordingly, the distance was kept
from 40 to 50 cm.

Sixteen gesture classes were defined with an additional class
blank, as listed in Table 1. Neuro ConGD dataset comprises
2,040 instances of a set of 17 gestures recorded in random order.
The Neuro ConGD dataset was split into 3 mutually exclusive
subsets, namely the training, the validation and the testing set.
The training set was performed by 4 subjects. The validation
set was performed by 2 subjects. The testing set was also

performed by 2 subjects. The gestures include beckoning, finger-
snap, ok, push-hand (down, left, right, up), rotate-outward,
swipe (left, right, up), tap-index, thumbs-up, zoom (in, out)
(See Figure 8).

A purpose-built labeling software was developed, and
each recording was manually annotated by labeling a list of
start and end timestamps for each gesture with the name of
gesture class.

3.2. Evaluation Metrics
3.2.1. Mean Jaccard Index for Overall Recognition

Performance
The Jaccard index is to measure the average relative overlap
between the actual and the predicted sequences of timestamps
for a given gesture (Pigou et al., 2018; Wang et al., 2018). For a
sequence s, letGs,iand Ps,i be binary indicator vectors for which 1-
values correspond to timestamps in which the ith gesture/action
label is being performed. For the sequence s, The Jaccard Index
for the ith class is defined as:

Js,i =
Gs,i ∩ Ps,i

Gs,i ∪ Ps,i
(15)

where Gs,i denoted the ground truth of the ith gesture label in
sequence s, and Ps,i is the prediction for the ith label in sequence
s. Subsequently, for the sequence s with ls true labels, the Jaccard
Index Js is calculated by:

Js =
1

ls

L
∑

i=1

Js,i (16)
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FIGURE 8 | A dataset overview demonstrating the 16 gestures, each of which contains 4 sub-figures of different timestamps (best viewed in color).
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TABLE 2 | Performance measured on the testing dataset with mean Jaccard

Index JS and Fscore.

Methods JS Fscore

Events+RNN (baseline) 0.633 0.873

FLGR+RNN 0.788 0.944

FLGR+RNN+Hmm 0.817 0.963

FLGR+RNN+HmmSeg 0.869 0.966

JS was measured for overall performance of recognizing 17 gestures. Fscore was

measured for detection performance. The higher the value is, the better the method

will perform. Events, Preprocessed events; RNN, Recurrent neural network for sequence

classification; Hmm, HMM decoder; HmmSeg, HMM segmenter. The bold values mean

the best results achieved among the listed methods.

For all test sequences S = s1, ..., sn with 17 gestures, the mean
Jaccard Index JS serves as the evaluation criteria, and it is
calculated by:

JS =
1

n

n
∑

j=1

Jsj (17)

3.2.2. F-Score for Detection Performance
One difficulty of continuous gesture recognition is to detect
the start time point and end time point of a gesture. For the
segmented gesture recognition, the scenario of the problem can
be summarized as classifying a well-delineated sequence of video
frames as one of a set of gesture types. This contrasts with
continuous human gesture recognition where there is no priori
given boundary of gesture execution. This requires the system to
distinguish the blank and non-blank (gestures) class in each time
point. To assess the detection performance, we keep the blank
class and merge the rest 16 gestures be one class as Ges. Then,
the task now is to detect non-blank gestures without recognizing
the specific kind of class. In the prediction and ground truth, the
value of blank andGes are 0 and 1, respectively. Subsequently, the
F-scoremeasure (Sokolova and Lapalme, 2009) is defined as:

F score = 2 ∗
Precision ∗ Recall

Precision + Recall
(18)

3.3. Experimental Results
To illustrate the effectiveness of FLGR representation, a
baseline where the RNN sequence classifier are trained
with variable length events sequences was designed. The
proposed frameworks with protocol of mean Jaccard Index
JS and Fscore were assessed, and they were compared
with baseline.

Table 2 shows the final results across combinations of
input representation and decoding method. An RNN baseline
with inputs of event sequences was designed. The case of
baseline achieved 63.3 % JS accuracy, which is reasonable and
acceptable but still challenging. The case of baseline verified
the fundamental capability of our RNN network in event-
driven recognition. Our architecture was improved based on
FLGR representation and late HMM decoding. After FLGR
representation learning, the JS accuracy was improved by more

than 15%. The Fscore for detection result was improved to
94.4%. The best result was achieved on FLGR representaton
learning with an RNN classifier and decoding method with
an extra segmentation step. The averages of the best JS and
Fscore were up to 86.9 and 96.6%, respectively. For the cases
among FLGR, the JS accuracy is also improved by more than
8% after applying HMM segmenter. Table 2 shows the large
improvement after applying FLGR representation, which verifies
the enhanced efficiency of FLGR representation for training a
sequence classifier.

4. CONCLUSION AND DISCUSSION

In this study, a neuromorphic continuous gesture recognition
system was proposed, and how it can benefit from FLGR
representation learning and RNN-HMM hybrid was analyzed.
A novel representation learning method was presented to
learn non-accumulated-frame-based FLGR representation
from DVS events streams. An RNN-HMM hybrid was
proposed for the event-based sequence classification. A
new labeled neuromorphic continuous gesture dataset Neuro
ConGD was created with more than 2,040 instances of
17 gesture classes from 120 events sequences. An RNN
classifier was developed as baseline, and the architecture
with another 3 different paths on our dataset was improved.
According to the experimental results, we could achieve
an JS of 86.9% for recognition performance and an
average Fscore of 96.6% for detection performance, with
a mixture density autoencoder for FLGR representation
learning, a RNN for sequence classification and an HMM
segmentation process.

Compared with the conventional accumulated-frame-based
representation of DVS events streams, FLGR marks two major
contributions: First, FLGR is a sequence learned from mixture
density autoencoder and preserve the nature of event-based data
better. Second, FLGR has a data format of fixed length, and it
is easy to feed to sequence classifier. With a preliminary result
in this work, we believe that our FLGR representation learning
and RNN-HMM hybrid is believed to have large potential to be
transferred to neuromorphic vision in other pattern recognition
and sequence classification tasks. We hope to inspire the research
on the event-based sequence classification tasks with the non-
accumulated-frame-based representation.

There are still several ways the recognition performance of
this system can be improved. One idea would be to increase the
information content of the learned representations at times of
low event density. Then, the autoencoders state was reset to zero
between each time window. This can be improved by using the
autoencoder in a rolling fashion by not resetting the hidden states
between time windows. This could help to classify stretches of
time in gestures of low activity, e.g., the turning point of a swiping
gesture. Another idea would be to use a bidirectional neural
network so that the subsequent fully-connected layers can take
past as well as future context into account and avoid the phase
of confusion at the beginning of a gesture. that can incorporate

Frontiers in Neuroscience | www.frontiersin.org 11 February 2019 | Volume 13 | Article 73

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chen et al. FLGR

requirements like a minimum length of a hidden state directly
into the model instead of having to post-process the decoding
and segmentations.
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