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Neuroinflammation plays a central role in the neuropathogenesis of a wide-spectrum of

neurologic and psychiatric disease, but current neuroimaging methods to detect and

characterize neuroinflammation are limited. We explored the sensitivity of quantitative

multi-compartment diffusion MRI, and specifically neurite orientation dispersion and

density imaging (NODDI), to detect changes in microglial density in the brain. Monte

Carlo simulations of water diffusion using a NODDI acquisition scheme were performed

to measure changes in a virtual MRI signal following modeled cellular changes within the

extra-neurite space. 12-week-old C57BL/6J male mice (n = 48; 24 control, 24 treated

with colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622) were sacrificed at

0, 1, 3, and 7 days following withdrawal of CSF1R inhibition and were imaged ex-vivo

to obtain measures of the orientation dispersion index (ODI). Following imaging, all

brains were immunostained with Iba-1, NeuN, and GFAP for quantitative fluorescence

microscopy. Cell populations were calculated with the ImageJ particle analyzer tool;

correlation between microglial density and mean ODI values were calculated with

Kendall’s tau. Monte Carlo simulations demonstrate the sensitivity and positive correlation

of ODI to increased occupancy in the extra-neurite space. Commensurate with

our simulation data, ex-vivo NODDI imaging demonstrates an increase in ODI as

microglia repopulate the brain following the withdrawal of CSF1R inhibition. Quantitative

immunofluorescence of microglial density reveals that microglial density is positively

correlated with ODI and greater hindered diffusion in the extra-neurite space (τ = 0.386,

p < 0.05). Our results demonstrate that clinically feasible multi-compartment diffusion

weighted imaging techniques such as NODDI are sensitive to microglial density and

the cellular changes associated with microglial activation and highlights its potential to

improve clinical diagnostic accuracy, patient risk stratification, and therapeutic monitoring

of neuroinflammation in neurologic and psychiatric disease.
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INTRODUCTION

Neuroinflammation plays a critical role in the neuropathogenesis
of disorders of the central nervous system (CNS) from ischemic
stroke and traumatic brain injury (Iadecola and Anrather,
2011; Woodcock and Morganti-Kossmann, 2013) to Alzheimer’s
disease, schizophrenia, and major depression (Lull and Block,
2010; Mondelli et al., 2017). Neuroimaging techniques have
been developed to characterize neuroinflammatory processes,
which generally fall into two methodological categories: positron
emission tomography (PET) and MRI (Albrecht et al., 2016).
However, despite active research efforts toward PET and MR
imaging of neuroinflammation, there remains no routine,
widespread, and easily accessible neuroimaging tool available for
the study of neuroinflammation.

Advanced MRI diffusion weighted imaging (DWI)
methods represent a conceptually innovative and technically
sensitive approach for measuring cellular changes associated
with neuroinflammation and microglial activation. Multi-
compartment DWI methods such as neurite orientation
dispersion and density imaging (NODDI) are designed
to measure water diffusion arising from distinct tissue
compartments including the extra-neurite compartment
(Zhang H. et al., 2012). In the NODDI model, diffusivity in the
extra-neurite compartment is measured by ODI (orientation
dispersion index). ODI was originally conceptualized to measure
how changes in neurite dispersion influence water diffusivity
in the extra-neurite space without accounting for the potential
contribution that glial cells (such as microglia) can have on
quantitative measures of ODI. However, within the extra-neurite
compartment reside glial cells, which account for a large
percentage of non-neuronal cells in the mouse and human
brain (35 and 50%, respectively) (Herculano-Houzel et al.,
2006; Azevedo et al., 2009; Herculano-Houzel, 2014; Mota and
Herculano-Houzel, 2014; von Bartheld et al., 2016). As microglia
comprise 5–15% of all glial cells (Alliot et al., 1999; Ginhoux
et al., 2010) and in response to inflammatory stimuli, undergo
substantial changes in both morphology and density (Hinwood
et al., 2012; Yang et al., 2013), these changes would be expected
to significantly alter the degree of hindered diffusion in the
extra-neurite compartment. These changes thus offer a potential
opportunity to assess microglial activation and microglial-
mediated neuroinflammation by probing water diffusion using
DWI (Figure 1).

We aimed to characterize the relationship between microglial

density and water diffusivity specific to the extra-neurite
compartment with multi-compartment diffusion MRI, with
a specific focus on NODDI given its clinical feasibility
(Rae et al., 2016). While previous work has examined

quantitative histological measures of NODDI in the spinal
cord (Grussu et al., 2017), the work presented herein is the
first to corroborate histological measurements with quantitative

measures of diffusion MRI from the extra-neurite space in
the brain. We hypothesize that changes in microglial density
will alter water diffusivity in the extra-neurite space thus
serving as a potential measure of microglial density across
a broad spectrum of acute and chronic neuroinflammatory

states. To evaluate this hypothesis, we performed Monte Carlo
simulations of pulsed gradient measurements of water diffusion,
ex-vivo NODDI imaging of mice following CSF1R (colony
stimulating factor 1 receptor) antagonism, and quantitative
histological measurements of microglial density. Together, these
data represent a reconceptualization and potential application of
multi-compartment diffusion imaging for the sensitive detection
of microglial-mediated neuroinflammation.

MATERIALS AND METHODS

Theory and in silico Simulation
Multi-compartment diffusion models biophysically model the
total DWI signal as a sum of the diffusion weighted signal arising
from a combination of biophysical compartments with different
underlying cellular microstructures:

S = S0

n∑

i=0

wiSi (1)

where S0 is the signal for the non-diffusion weighted (or b0)
acquisitions, wi the volume fraction and Si the signal function
for the ith of n total compartments (Harms et al., 2017). In the
NODDI model, the diffusion MRI signal is described as a sum of
three non-exchanging biophysical compartments:

S = (1− viso) (vicSic + (1− vic) Sec) + visoSiso (2)

where S is the entire normalized signal; Sic, Sec , and Siso are
the normalized signals of the intracellular, extracellular, and CSF
compartments, respectively, and νic and νiso are the normalized
volume fractions of the intracellular and CSF compartments
(Zhang H. et al., 2012).

To test how cellular changes in the extra-neurite space
(microglial density) impacts the measured diffusion signal from
the extra-neurite space (ODI, orientation dispersion index),
an in silico diffusion experiment using multiple Monte Carlo
random walk simulations as implemented in Camino1 (Hall
and Alexander, 2009) was performed by varying the number
of modeled cells in the extra-neurite space. To generate the
components of the multi-compartment diffusion model, basic
geometrical components representing white matter axons and
microglia were constructed in Blender (Blender Foundation,
Amsterdam, Netherlands). We constructed a series of 6
undulating cylinders (with no dispersion) modeling axons in a
similar manner as previously described (Kamiya et al., 2017) with
radius = 1µm, length = 40µm, undulation amplitude A = 2,
to yield a final λ = 1.024 to simulate a voxel in a white matter
tract. Icospheres were next modeled as simplified microglia
in the extra-neurite space and were generated with a radius
= 5µm (Kozlowski and Weimer, 2012). The cylinders were
then hexagonally packed without touching within the simulated
volume (40 × 40 × 40µm) with all components placed within
the model in MatLab (version 2015a, MathWorks, Natick, MA,
USA). 10 simulations of 0, 5, 15, and 25 spheres were performed

1http://camino.cs.ucl.ac.uk/
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FIGURE 1 | Schematic of microglial neuroinflammation and accompanying changes in water diffusion. (A) Pictorial representation of anisotropic water diffusion (red

sphere) in the extra-neurite environment in the presence of astrocytes (blue), neuronal/axonal projections (red), and microglia (green). (B) During acute

neuroinflammation, microglia become hyper-ramified and increase their density in the extra-neurite space, leading to an increase in hindered water diffusion (increased

ODI). (C) Chronic inflammatory insults cause microglial process to thicken and shorten with a commensurate decrease in microglial density, which leads to decreased

occupancy of the extra-neurite space with a decrease in hindered water diffusion (decreased ODI).

with spheres randomly distributed throughout the extra-neurite
space of themodeled volume. The volume fraction of the bundled
axons is 2.7%; the volume fraction of the spheres is 6.3%, 18.9%,
and 31.5% for 5, 15, and 25 spheres, respectively. Each simulation
comprised of 100,000 spins and 5,000 time steps. The free
diffusivity was set at 0.6 × 10−9 m2/s per recommendations in
Camino (Cook et al., 2006). From the simulated random walks
of particles, a virtual MRI signal was obtained using the NODDI
acquisition scheme used in our ex-vivo samples with the addition
of Gaussian noise to the simulated signal with SNR = 50 of the
b= 0 signal for each run. The mean ODI was calculated for each
simulation. Diffusion tensor indices of fractional anisotropy (FA)
and mean diffusivity (MD) were also calculated.

Animals and Reagents
All experiments were performed in accordance with animal
protocols approved by the Institutional Animal Care and
Use Committee at our institution (Protocol #: M005899). 12-
week-old C57BL/6J male mice (Charles River Laboratories,
MA, USA) were used for all experiments and were randomly
assigned to control or experimental CSF1R inhibition cohorts.
Control animals were maintained on AIN-76A standard chow
(Research Diets, NJ, USA); animals receiving CSF1R inhibition
received AIN-76A admixed with the CSF1R inhibitor PLX5622
(Plexxikon, CA, USA; 1,200 mg/kg) as previously described
(Elmore et al., 2014). Animals receiving CSF1R inhibition were
maintained on their admixed diet for 8-days; on day 8, CSF1R
inhibition was withdrawn by replacing their chow with standard
chow (AIN-76A). For each time point, mice from the control and
the experimental groups were sacrificed on days 0, 9, 11, and 15
(n= 48; n= 6, each time point; control and experimental).

MRI Acquisition
Data Acquisition
On days 0, 9, 11, and 15, mice were brought to a surgical
plane of anesthesia with isoflurane then transcardially perfused
with phosphate-buffered solution (PBS) followed by 4%
paraformaldehyde (PFA) in 0.1M PBS. Brains were extracted

from the cranial vault and post-fixed in PFA. Imaged brains were
placed in a custom-built holder immersed in Fluorinert (FC-
3283, 3M, St. Paul, MN, USA) and imaged with a 4.7-T Agilent
MRI system with a 3.5-cm diameter quadrature volume RF coil.
Multi-slice, diffusion-weighted, spin echo images were used to
acquire 10 non-diffusion weighted images (b = 0 s•mm−2)
and 75 diffusion-weighted images (25: b = 800 s•mm−2, 50:
b = 2,000 s•mm−2), using non-colinear diffusion-weighting
directions. Other imaging parameters: TE/TR = 24.17/2000-ms,
FOV = 30 × 30 mm2, matrix = 192 × 192 reconstructed to 256
× 256 for an isotropic voxel size of 0.25-mm over two signal
averages. All animals were used in subsequent analyses.

Data Preprocessing and Region of Interest (ROI)

Analysis
Raw data files were converted to NIfTI format and FSL was
used to correct for eddy current artifacts with Eddy-correct.
FSL output volumes were converted to NIfTI tensor format for
use with the DTI-TK software package. DTI-TK (Zhang et al.,
2006) was used to estimate a study-specific tensor template, to
which subject tensor volumes were spatially normalized. The
NODDI model was then voxel-wise fitted to the diffusion data
in Matlab (The MathWorks, Inc., Natick, MA) with the NODDI
toolbox2. An additional compartment of isotropic restriction was
employed for ex-vivo studies as recommended (Alexander et al.,
2010). A manual ROI was drawn over the left dentate gyrus from
anatomically defined areas on a normalized mean diffusion map.
The ROI was overlaid over subjects from each of the two groups
(± CSF1R treatment) and ODI, FA, and MD were calculated.

Immunofluorescent Staining and
Quantification
Following imaging, brains were removed from their custom
holders and were returned to ice-cold 4% PFA for 24 h, then
in a 30% sucrose solution (Alfa Aesar, Ward Hill, MA; Cat#
36508) in 0.1M PBS (Growcells, Irvine, CA; Cat# MRGF-6235).

2http://nitrc.org/projects/noddi_toolbox

Frontiers in Neuroscience | www.frontiersin.org 3 February 2019 | Volume 13 | Article 81

http://nitrc.org/projects/noddi_toolbox
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Yi et al. Detecting Microglial Density With NODDI

Frozen coronal sections were taken at 40µm using a cryostat
(Leica CM 1850, Wetzlar, Germany) and stored short-term in
PBS at 4◦C until staining. Floating sections were incubated in
blocking solution formulated with 0.1M PBS, 2% bovine serum
albumin (Fisher Scientific, Hampton, NH; Cat# BP9706-100)
and 0.1% sodium azide (Sigma, St. Louis, MO; Cat# S2002)
for 1 h at room temperature (RT), then incubated overnight
at 4C with primary antibodies for Iba-1 (rabbit Anti-Iba-1,
dilution 1:2000, Abcam, Cambridge, MA, Cat # AB178847),
NeuN (chicken Anti-NeuN, dilution 1:1500; EMD Millipore,
Billerica, MA Cat# ABN91MI), and GFAP (mouse Anti-GFAP,
dilution 1:1000; Thermo Fisher Scientific, Waltham, MA Cat#
PIMA512023). Sections were incubated for 1 h at RT with the
corresponding Alexa 488-, 555-, 647-labeled species specific
secondary antibodies (goat anti-rabbit, Abcam, Cambridge, MA,
Cat# AB150077; goat anti-chicken, Thermo Fisher Scientific,
Waltham,MA former Invitrogen Cat# A-21437; goat anti-mouse,
Abcam, Cambridge, MA, Cat# AB150115; all diluted at 1:2000).
Sections were counterstained with 0.1 µm/mL 4’,6-diamidino-
2-phenylindole (DAPI) (Novus Biologicals, Littleton, CO; Cat#
NBP2-31156) for 5min at RT, then mounted with Fluoromount-
G (Southern Biotech, Birmingham, AL, Cat# 0100-01). Images
of the left hippocampus were acquired with a Leica DMi8
Inverted Fluorescent microscope (Wetzlar, Germany) with a
10x dry objective lens. All microscopy images were analyzed
using ImageJ. The Region of Interest (ROI) manager tool was
used to isolate the hippocampus. Images were made binary via
manual thresholding, then the Particle Analyzer tool was used to
automatically count cells.

Statistical Analysis
Imaging sample sizes and power analyses are based on standard
deviations from previous studies with a significance level of
5% and power of 90% (Ong et al., 2018). Statistical tests were
performed in GraphPad Prism or R. Analysis of cell counts
between control and CSF1R-inhibitor diet were performed using
a two-tailed unpaired Student’s t-test; p < 0.05 was established
as the significance level. Kendall’s tau coefficient was calculated
to measure the non-parametric, ordinal association between
microglial cell counts and mean ODI from three time-points in
CSF1R administered animals.

RESULTS

Computational Modeling of the
Extra-Neurite Space in Multi-Compartment
MRI
As the NODDI model includes parameters to measure
water diffusion in the extra-neurite space, we hypothesized
that changes in microglial density would change the
water diffusivity measured within the extra-neurite
compartment. To test this hypothesis and to first ascertain
the sensitivity of the extra-neurite compartment to the cellular
changes of neuroinflammation, we performed an in silico
diffusion experiment utilizing a Monte Carlo random walk
simulation with NODDI acquisition parameters (Figure 2,
Supplementary Figures 1, 2). Within a simulated voxel with

a modeled undulating axon bundle (to replicate a white
matter tract) (Kamiya et al., 2017), we varied the number of
modeled microglia within the simulated voxel over multiple
iterative simulations to assess the sensitivity of NODDI to
these microglial changes in the extra-neurite space expected
during neuroinflammation. FA and MD were also calculated
(Supplementary Figure 3). As shown in Figure 2, an increase
in the number of microglia accompanies a concomitant increase
in ODI, demonstrating that increased occupancy within the
extra-neurite space is coupled with increased hindered water
diffusion. Our simulation of a voxel in a white matter tract also
importantly finds that measures of ODI are independent of
neurite dispersion, for which ODI was originally modeled to
measure. In Monte Carlo simulations with only the axon bundle
present (no microglia), our simulations return a non-zero value
of ODI, supporting the hypothesis that any structure localizing
to the extra-neurite space (such as the modeled axon bundle)
is able to contribute to alterations in water diffusivity within
the extra-neurite compartment and thus to calculated values
of ODI.

Quantitative Diffusion MRI of the
Extra-Neurite Space Is Sensitive to
Microglial Density
The extra-neurite compartment includes microglia and other cell
populations including astrocytes, oligodendrocytes, ependymal
cells, and vascular structures, all of which could be expected
to impact the degree of hindered diffusion in the extra-
neurite space. To examine the contribution of microglia to
the measured diffusion tensor arising from the extra-neurite
compartment in the NODDI model, we selectively eliminated
microglia from the brain via CSF1R inhibition to specifically
characterize the relationship between quantitative measures of
ODI and microglial density (Elmore et al., 2014). Following
the complete elimination of microglia from the brain following
CSF1R inhibition, CSF1R inhibition was withdrawn and NODDI
imaging of the dentate gyrus of the hippocampus was performed
1, 3, and 7 days after inhibitor withdrawal (Elmore et al.,
2014). At day 1 post-withdrawal during which few microglia
are present, we find a statistically significant decrease in ODI
when compared to control animals (no CSF1R inhibition)
consistent with results derived from our in silicomodel (Figure 3,
Supplementary Figure 4). As microglia begin to repopulate the
brain following the cessation of CSF1R inhibition, there is
an increase in ODI on days 3 and 7, consistent with our in
silico model’s prediction, and further supports both the role of
microglia and their contribution to water diffusivity in the extra-
neurite space as well as the overall sensitivity of NODDI to
capture the cellular changes in microglial density throughout the
extra-neurite space (Figure 3). No statistically significant changes
in FA or MD were found.

Microglial Density Is Strongly Correlated
With ODI
To further establish whether the measured increase in mean
ODI correlates with changes in microglial density, sections of
the imaged brains at 1, 3, and 7 days following CSF1R inhibition
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FIGURE 2 | Monte-Carlo NODDI diffusion MRI simulation. (A) Box plot of pulsed gradient water diffusion simulations within a representative voxel were performed

with 0, 5, 15, and 25 spheres present (representing extra-neurite cellular elements) demonstrating increased ODI as a function of increased occupancy of the

extra-neurite space. (B) Pictorial representation of the geometry within a single voxel in the Monte-Carlo simulation with blue tubes representing an axon bundle and

yellow spheres representing microglia.

FIGURE 3 | Following the elimination of microglia, CSF1R inhibition was withdrawn allowing microglia to repopulate the brain. ROI analysis of the dentate gyrus 1, 3,

and 7 days following inhibitor withdrawal demonstrate an increase in ODI as microglia repopulate the brain with statistically significant differences in ODI between

control and day 1 animals, day 1-day 3, and day 3-day 7 animals . No significant difference in ODI is observed between control and D7 animals, consistent with fully

repopulated microglial populations in the brain. No significant differences in FA or MD were found.

were stained with Iba1, NeuN, and GFAP to identify microglia,
neurons, and astrocytes, respectively. Stained and quantified
sections were taken at the level of the hippocampal head that
were to co-registered to mean FA maps. Immunofluorescent (IF)
staining showed successful microglial depletion following 8 days
of CSF1R inhibition with further IF quantification demonstrating
no significant difference in neurons or astrocytes (data not
shown), recapitulating data previously shown by Elmore et al.
(2014). At 1, 3, and 7 days following withdrawal of CSF1R
inhibition, there is a steady repopulation of microglia throughout
the dentate gyrus (Figure 4), again with no significant change in

other major cells populations present in the extra-neurite space
(Figure 5, Supplementary Figure 5).

With ODI values and quantitative IF data for the number
of microglia present, a Kendall’s tau coefficient was calculated
to measure the non-parametric, ordinal association between
microglial cell counts and mean ODI from these three time-
points in CS1R administered animals. With a Kendall’s tau of
0.386 (p = 0.028), we demonstrate that there is a significant
association between measured values of ODI and microglial
density (Figure 6). These results also align with our in silico
analysis and show that microglial density is positively correlated
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FIGURE 4 | Hippocampal photomicrographs (10X) representative of C57BL/6J mice during microglial repopulation. (a) Representative control animal immunostained

with antibodies for neurons (anti-NeuN, red), microglia (anti-Iba1, green), and astrocytes (anti-GFAP, cyan), counterstained for nuclei with DAPI (blue). (b) Day 1 post

CSF1R inhibition display scant microglia present as microglia begin to start repopulating the brain. (c) 3 days post-withdrawal and (d) 7 days post-withdrawal show

microglial recovery over the span of a week. Only microglial counts show a significant increase during the time course. Scale bar = 200µm.

with quantitative measures of greater hindered diffusion arising
from the extra-neurite space.

DISCUSSION

The development of DWI and subsequent introduction of
diffusion tensor imaging (DTI) have demonstrated water
molecules diffuse differently in tissues depending on their type,
integrity, and architecture (Soares et al., 2013) making diffusion
imaging a promising tool for studying the microstructure
of the brain. As an extension of DTI, more sophisticated
diffusion imaging techniques as CHARMED (Assaf and Basser,
2005), AxCaliber (Assaf et al., 2008), and NODDI (Zhang H.
et al., 2012) model water diffusion in distinct compartments
in the brain (intra-neurite, extra-neurite) and provide greater
tissue specificity than DWI/DTI. Of these, NODDI represents
the first clinically feasible multi-compartment DWI method
owing to the prohibitive scan times and the complexity of
analyzing data in other multi-compartment methods (Van
Hecke et al., 2016). As with the other multi-compartment
DWI models, the NODDI model includes terms to measure
water diffusion arising from the extra-neurite compartment.
With microglia in the extra-neurite compartment undergoing
dynamic changes in density and morphology throughout all
stages of neuroinflammation (Yang et al., 2013), we hypothesized
that these changes were likely to disrupt and alter water
diffusivity in the extra-neurite compartment thus raising the

possibility of employing multi-compartment DWI for the
sensitive detection of the density changes associated with
microglial-mediated neuroinflammation.

In this work, we first demonstrate the sensitivity of the
NODDI model to capture changes in microglial density,
whereby increased occupancy of the extra-neurite space is
correlated with greater hindered diffusion. We also show
that NODDI is sensitive to microglial density following
microglial depletion with CSF1R inhibition and subsequent
repopulation after drug removal, revealing thatmicroglial density
is a key contributor to quantitative measures of hindered
diffusion in the extra-neurite space. Finally, we demonstrate the
significant statistical correlation between microglial density with
quantitative measures of ODI, showing that microglial density is
positively correlated with hindered diffusion in the extra-neurite
space. Together these data provide the first example of MRI to
track the cellular changes associated with microglial activation
during neuroinflammation.

The ability to track microglial activation via changes in
microglial density throughout stages of neuroinflammation
(Dheen et al., 2007) suggests an exciting potential for NODDI
to be a major advance in clinical care and research across a
large spectrum of neurologic and psychiatric disease, particularly
in clinical diagnostic accuracy, patient risk stratification, and
therapeutic monitoring of neuroinflammation. Previous work
has examined the impact of peripheral inflammation on NODDI
metrics of NDI and ODI (Dowell et al., 2018) and interestingly
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FIGURE 5 | Analysis of cellular density show temporally-dependent increase in microglial density following CSF1R inhibitor withdrawal. (A) Representative image of

microglial counts from the hippocampus of a control animal produced by ImageJ. Cells were counted following thresholding with the particle analyzer tool.

(B) Microglia are depleted with CSF1R inhibition and begin to repopulate the brain following CSF1R inhibitor withdrawal. On days 1 and 3 post-withdrawal,

microglial counts are still significantly reduced compared to control (*p < 0.05). Neurons (C) and astrocytes (D) demonstrate no significant change in density

throughout CSF1R inhibitor treatment or withdrawal.

FIGURE 6 | ODI is positively correlated to microglial density. Kendall’s tau

demonstrates a significant association between measured microglial cell

counts and mean orientation dispersion index 1, 3, and 7 days post CSF1R

inhibition demonstrating that microglial density is positively correlated with

quantitative measures of anisotropic diffusion arising from the extra-neurite

space.

demonstrate that while no changes in NDI or ODI were
found following the administration of interferon-α (IFN-α)
the changes in NDI observed, however, could predict the

development of long-term fatigue in a subset of patients. These
findings highlight the potential of sensitive quantitative multi-
compartment diffusion methods in diagnosis and monitoring
of neuropsychiatric disease. As a parallel to tracking disease
progression, NODDI may also provide a useful neuroimaging
biomarker for evaluating the efficacy of new therapeutics. In
diseases like Alzheimer’s disease (AD), where neuroinflammation
is recognized as a key driving force of disease progression
(Readhead et al., 2018), therapeutic research is shifting toward
targets that may help control the inflammatory response (Ferretti
et al., 2012). Clinical evaluation of AD is difficult and relies
heavily on observation of symptoms. Although PET has been
proposed as a potential method of monitoring AD progression
as well as responsivity to anti-inflammatory therapies (Jack

et al., 2013), PET methods such as TSPO (translocator protein)
imaging harbor a number of limitations including genotypic
variation, complex tracer kinetics, and variability of plasma
free fractions across human clinical cohorts (Turkheimer et al.,
2015). Further studies evaluating use of NODDI vis-à-vis to
TSPO imaging in models of neuroinflammation will clarify
which imaging modality may have greater sensitivity and

clinical viability.
Importantly, we acknowledge that the original formulation of

NODDI does not fully account for the biological observations
seen in the data presented herein and cautiously temper the
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translation of this approach in in vivo applications (both
preclinical and clinical). ODI, as derived from a Watson
distribution of stick functions with terms for extracellular
diffusion (Zhang H. et al., 2012), was not designed to capture
changes in microglial density. Despite this limitation, it is readily
apparent that the model is responsive to biophysical changes
associated with microglial density to yield new insights into the
organization of brain tissue in both health and disease. Results
from our simulation experiment should also be interpreted
with caution as the simulated voxel size is small and large
voxels are known to generate somewhat more realistic dMRI
signals (Romascano et al., 2018). Further to this point and
potentially also limiting the simulation data are that our in-silica
model of white matter is not a realistic model of white matter
with a low volume of intra-axonal space (2.7%). Additionally,
we acknowledge that PFA fixation can subtly alter tissue
microstructure and diffusion MR measurements (Zhang J. et al.,
2012). Nevertheless, ex-vivo imaging is pursued herein as higher
SNR and spatial resolution are made possible by longer scan
times thereby leading to increased imaging sensitivity and to
additionally allow for direct radiologic-pathologic comparisons
between our histological and imaging measurements, obviating
potential discrepancies that could potentially arise if we were
to compare quantitative in vivo diffusion measurements and
ex vivo histopathology. Another potential limitation of our
work is that while we have demonstrated the robust sensitivity
of measures of ODI to changes in microglial density, other
cellular changes taking place in the extra-neurite compartment
could have a similar effect on ODI and limit the broad
application of our approach. In particular, changes such as
the regional breakdown of the blood-brain barrier permitting
the infiltration of peripherally circulating lymphocytes and
monocytes into the brain parenchyma (as could be seen
in the setting of tumors or ischemia), could lead to non-
specific findings and would limit the clinical translation of
our approach. Although NODDI may not specifically track
changes in microglia, this work demonstrates the ability of
diffusion weighted imaging to track cellular changes in the
brain. Furthermore, these potential shortcomings can be averted
with appropriate patient selection (e.g., exclusion of patients
with brain tumors or large territory stroke) coupled with future
technical development to address issues of specificity. Comparing
the performance of other multi-compartment models (e.g.,
CHARMED, AxCaliber) to NODDI would also contribute
to validating the application of multi-compartment diffusion
models for the sensitive detection of microglial activation in
neuroinflammation, but might be of limited clinical benefit

due to acquisition scan times that are outside of potential

clinical translation.
In summary, our results demonstrate that NODDI parameters

corresponding to the extra-neurite compartment can sensitively
detect a broad range of microglial densities in the extra-
neurite compartment. With microglial density serving as an
important biomarker of disease activity and chronicity across
a broad-spectrum of neurologic and psychiatric disease, our
results highlight the potential for NODDI and other multi-
compartment diffusion MRI techniques to detect the cellular
changes of microglial-mediated neuroinflammation toward
improving clinical diagnostic accuracy, patient risk stratification,
and therapeutic monitoring.
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