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Neurophysiological data acquisition using multi-electrode arrays and/or (semi-) chronic

recordings frequently has to deal with low signal-to-noise ratio (SNR) of neuronal

responses and potential failure of detecting evoked responses within random

background fluctuations. Conventional methods to extract action potentials (spikes)

from background noise often apply thresholds to the recorded signal, usually allowing

reliable detection of spikes when data exhibit a good SNR, but often failing when SNR

is poor. We here investigate a threshold-independent, fast, and automated procedure

for analysis of low SNR data, based on fullwave-rectification and low-pass filtering the

signal as a measure of the entire spiking activity (ESA). We investigate the sensitivity and

reliability of the ESA-signal for detecting evoked responses by applying an automated

receptive field (RF) mapping procedure to semi-chronically recorded data from primary

visual cortex (V1) of five macaque monkeys. For recording sites with low SNR, the

usage of ESA improved the detection rate of RFs by a factor of 2.5 in comparison to

MUA-based detection. For recording sites with medium and high SNR, ESA delivered

30% more RFs than MUA. This significantly higher yield of ESA-based RF-detection still

hold true when using an iterative procedure for determining the optimal spike threshold

for each MUA individually. Moreover, selectivity measures for ESA-based RFs were quite

compatible with MUA-based RFs. Regarding RF size, ESA delivered larger RFs than

thresholded MUA, but size difference was consistent over all SNR fractions. Regarding

orientation selectivity, ESA delivered more sites with significant orientation-dependent

responses but with somewhat lower orientation indexes than MUA. However, preferred

orientations were similar for both signal types. The results suggest that ESA is a powerful

signal for applications requiring automated, fast, and reliable response detection, as

e.g., brain-computer interfaces and neuroprosthetics, due to its high sensitivity and

its independence from user-dependent intervention. Because the full information of the

spiking activity is preserved, ESA also constitutes a valuable alternative for offline analysis

of data with limited SNR.

Keywords: monkey, primary visual cortex, extracellular recordings, receptive field mapping, signal-to-noise ratio,
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INTRODUCTION

As an early step during analysis of extracellularly recorded
signals, the actual spiking response of a neuron, or a group of
neurons, usually needs to be separated from the background
noise of the recorded signal. A common procedure is to set
up an amplitude threshold to the high-passed neuronal signal.
This threshold can be set manually or be defined automatically
based on statistical likelihood. Frequently used methods for
automatic threshold definitions use multiples of the standard
deviation of the high-passed signal (Pouzat et al., 2002) or
the median of the absolute signal (Quiroga et al., 2004).
Amplitude threshold-based spike detection has been proven
successful in data with good SNR, but its performance declines
significantly with decreasing SNR (Nenadic and Burdick, 2005).
Other methods, such as template matching (Bankman et al.,
1993) and wavelet-based extraction of time- and frequency-
resolved spike features (Yang and Shamma, 1988; Hulata et al.,
2002; Quiroga et al., 2004; Nenadic and Burdick, 2005) either
require a priori knowledge about the spike form, or an extensive
amount of processing (Obeid and Wolf, 2004). Yet, robust
methods for dealing with low SNR data become particularly
important with the increased importance of multi-electrode
arrays used for large-scale neuronal recordings and brain-
computer interfacing (Buzsáki, 2004; Lebedev and Nicolelis,
2006; Lewis et al., 2015), and other semi-chronic recording
techniques (deCharms et al., 1999; Galashan et al., 2011;
Mendoza et al., 2016). In contrast to acute recordings with
separately controlled microelectrodes, however, the position of
array electrodes is fixed, or electrodes are more difficult to
adjust. It is hence either impossible or difficult to carefully guide
individual electrodes for optimizing a neuron’s signal, resulting
in highly variable magnitudes of extracellular action potentials
(Gold et al., 2006). Additionally, signals of (semi-) chronically
implanted electrodes degrade over time, due to local tissue
responses (Schwartz, 2004; Polikov et al., 2005). Both issues
are likely to result in a high number of channels exhibiting
low SNR.

Analysis of such data is usually confined to the local
field potential (LFP), because thresholding spikes in low SNR
responses potentially results in a high number of either
false positives or false negatives, depending on the threshold
level. Hence, thresholding may have a significant impact
on the estimated strength and temporal structure of the
response, and interpretation of such data is problematic.
The LFP, on the other hand, represents the integrated
neuronal activity in close neighborhood of the electrode
and constitutes a sensitive measure of neuronal activity (Liu
and Newsome, 2006; Katzner et al., 2009). Yet, the LFP
reflects the sum of all local transmembrane currents rather
than the output signal of the recorded neurons. Analysis of
the latter, therefore, requires a reliable method to efficiently
segregate stimulus responses from unspecific background noise,
particularly at low and medium SNR recording sites. At the
same time, there should be no trade-off at recording sites
with high SNR when compared to established methods based
on thresholding.

We hypothesized that a method introduced in the early 1990s
by Eckhorn and colleagues (Eckhorn, 1991, 1992; Eckhorn and
Obermüller, 1993; Brosch et al., 1997) possesses the critical
properties to serve as such a reliable signal for detecting evoked
responses in low SNR data. This method was invented for
analyzing correlated activity at multi-unit recording sites, and
is based on a fullwave-rectification of the high-passed neuronal
signal (containing the spike information), followed by low-
pass filtering. The method delivers a continuous instead of a
binary signal, and represents the aggregated spiking activity
of neurons located about 50µm around the electrode’s tip
(Legatt et al., 1980; Brosch et al., 1997). Its most important
advantage is that it does not rely on setting up a threshold
but takes all the available spiking information. Because of the
final low-pass filtering it should be rather insensitive to random
high-frequency noise, making it a highly promising candidate
approach for detecting evoked responses when SNR is weak. For
the remainder of the paper, we denote this signal as ESA (Entire
Spiking Activity).

Since its introduction, ESA has been used as an alternative
measure for multi-unit activity by several groups (Self et al.,
2016; Dougherty et al., 2017; Drebitz et al., 2018), but many
of its important properties are still awaiting quantitative
description. The purpose of the present study is to analyze
the potential of ESA for increasing the yield of multi-
unit recordings at different SNRs, and to quantitatively
compare evoked responses based on ESA and thresholded
MUA. For the example of receptive field (RF) mapping, we
analyze semi-chronic recordings from primary visual cortex
(V1) of five macaque monkeys (Macacca mulatta), and
compare ESA-based RF detection rates with both conventionally
thresholded MUA and the LFP, and further analyze RF size
and orientation selectivity between ESA- and MUA-based
RFs obtained from the same high-frequency signal. We use
two approaches to set the threshold for analyzing MUA: a
standard procedure with a fixed threshold for all units, and
a second, computationally time-consuming iterative procedure
to determine the optimal threshold for each unit individually.
The results show that ESA outperformed MUA in both cases,
particularly when SNR was low. ESA-based RF detection was
almost as sensitive as LFP-based detection, and RF parameters
corresponded to those found with thresholded MUA. RF-
sizes were slightly larger than MUA-RFs, due to considering
all available spiking information, but size differences were
consistent over all SNR fractions. Relative orientation sensitivity
(i.e., number of sites with significantly biased responses for
different orientations) was higher for ESA, while absolute
orientation selectivity (i.e., orientation indexes) was slightly
attenuated as compared to thresholded MUA. Independent of
these differences, the majority of recording sites delivering
a RF with both signal types was found to have similar
preferred orientations. Thus, ESA constitutes a powerful
source of information to be considered when depending on
reliable and fast neuronal response detections, such as for
(semi-) chronic recordings or BCI-approaches, as well as
for increasing the information content of low SNR data for
offline analysis.
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MATERIALS AND METHODS

Subjects and Surgical Procedures
Five male macaque monkeys (Macaca mulatta) were implanted
with custom-made head holders and recording chambers under
aseptic conditions and propofol/remifentanyl anesthesia. Four
animals (monkeys B, P, V, and F) were implanted with a
V1 microdrive array, allowing for bidirectional movement
of six semi-chronically inserted electrodes (Galashan et al.,
2011). The fifth animal (monkey T) was implanted with a
recording chamber located above areas V4 and V1, allowing
for bidirectional movement of up to four electrodes. Details
on anesthesia, analgesia, and surgical procedures are reported
elsewhere (Wegener et al., 2004; Galashan et al., 2011; Schledde
et al., 2017; Drebitz et al., 2018). All procedures were in
accordance with the Regulations for the Welfare of Experimental
Animals issued by the Federal Government of Germany and with
the guidelines of the European Union (2010/63/EU) for care
and use of laboratory animals, and were approved by the local
authorities (Senator für Gesundheit, Bremen, Germany).

Visual Stimuli and Behavioral Task
Data was acquired with an automatic bar-mapping procedure
to stimulate the visual field region of interest, similar to the
method described by Fiorani et al. (2014). The mapping was
performed for different scientific projects not reported here. For
the stimulation details that follow, task parameters of monkey
T are stated in the text, and deviating parameters of one or
more other animals are given in brackets. Visual stimulation was
performed on a 20-inch (22-inch) CRT-screen, with a resolution
of 1,024 × 768 (1,280 × 1,024) pixels at 100Hz vertical refresh
rate. Monkeys were placed in a custom-made primate chair
90 (80) cm in front of the screen. Appearance of the central
fixation point (FP) indicated trial start and animals were given
2 s to initiate the trial by gazing at the FP and pressing a lever.
Following a blank period of 820 (300) ms, a high-contrast bar
appeared on screen and moved with constant speed in one of 12
motion directions (separated by 30◦), and disappeared at the end
of the trajectory. Length of bars (3.2–8.2◦), motion trajectories
(2.5–10.75◦), and stimulus speed (1.9–4.7◦/s) varied between
animals, recording sites, and occasionally between recording
sessions, depending on the spatial area to be covered (16–64
deg2). Monkeys were required to keep fixation throughout the
trial and to indicate a decrease in FP luminance occurring during
a pseudo-random interval between 250 and 1,250ms after bar
disappearance, by releasing the lever within a time period from
150 to 750ms after FP dimming. To ensure that animals stayed
alert throughout the trial, FP dimming occurred already during
bar presentation in about 10% of trials. These trials did not
enter data analysis. Successive trials were separated by a 2 s inter-
trial interval. Eye position was monitored by video-oculography
(monkey T: ISCAN Inc., MA, USA; monkeys B, P, V, and F:
custom-made eye tracking system). Correctly performed trials
were rewarded with a small amount of water or diluted grape
juice. Responding too soon or too late, and eye movements of
more than 0.5◦ (1◦) away from the FP caused immediate trial
termination without reward.

Data Acquisition
Neuronal data was recorded using up to six epoxy- or glass-
insulated tungsten electrodes (125µm diameter, 1–3 M�, FHC
Inc., Bowdoin, ME, USA). Two different recording setups were
used for data acquisition. In the first setup (monkeys B and P),
the electrode signal was sampled at 25 kHz frequency, amplified
3,000-fold (10×, custom-made head stage, 300×, custom-made
main-amplifier), and band-passed between 0.7 and 5 kHz for
receiving the spike information. For the LFP, the amplified
electrode signal was low-passed at 300Hz and down-sampled to
1 kHz. Hardware-filtered data was then digitized at 16 bit ADC
resolution. In the second setup, the electrode signal was amplified
using either a custom-made head stage (monkeys V and F), or
a wideband preamplifier (monkey T; MPA32I, Multi Channel
Systems, Reutlingen, Germany), both with a gain of 10, and a
main-amplifier (PGA 64, 1–5,000Hz, Multi Channel Systems,
Reutlingen, Germany) with a gain of 1,000. The amplified raw-
signal was digitized with a sampling-rate of 25 kHz and a
resolution of 12 (monkey T) or 16 bits (monkeys V and F).
Electrode signals were referenced either against a low impedance
electrode (<0.1 M�) implanted into the frontal skull bone and
touching the dura (monkeys B, P, V, F), or against the titanium
recording chamber (monkey T), which was screwed into the bone
and touching the dura.

Data Analysis
All offline analyses were performed with customized MATLAB-
scripts (Mathworks, Natick, MA, USA). As described above,
data of monkeys B and P was already band-pass filtered before
digitizing. Data of monkeys T, V, and F was filtered offline either
between 0.7 and 5 kHz (monkeys V and F) or 0.3–12.5 kHz
(monkey T) for isolating the high-frequency components
(spikes), and low-passed either below 300Hz (monkeys V and F)
or 170Hz (monkey T) for the low-frequency components (LFP).
All offline filters were equiripple FIR-filters, applied in forward
and backward direction to avoid phase shifts.

Spike detection for analyzing thresholded MUA was done
using the method introduced by Quiroga et al. (2004), defining
the threshold Thr as:

Thr = a ∗median

( |x|
0.6745

)

, (1)

where x represents the high-passed data of which the median
is taken and a represents a factor for different threshold levels.
This factor was set to a = 3 for the standard procedure, and
was varied between a = 2 and a = 4 (in steps of 0.5) for
the iterative procedure. To take advantage of the full spike
information, no further spike sorting was performed, and all
events surpassing the threshold were used (Figure 1A). Spike
times were binned with a resolution of 1ms and convolved
with a Gaussian kernel (σ = 25ms) to obtain the spike-density
function (SDF).

ESA was calculated on the same high-passed data, but instead
of setting a threshold the data was full-wave rectified and low-
pass filtered in forward and backward direction (Figure 1B), and
down-sampled to 1 kHz (Legatt et al., 1980; Eckhorn, 1991, 1992).
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FIGURE 1 | Exemplary trace of a single-trial illustrating analysis of MUA

and ESA. (A) For MUA, a threshold (dashed line, cf. equation 1) based on the

method introduced by Quiroga et al. (2004) was applied to the high-passed

signal (gray trace). All events surpassing the threshold were then used for

calculating the SDF (blue line). (B) For ESA, analysis is based on the full-wave

rectified signal, i.e., the absolute values of the high-passed signal (gray trace),

and then low-pass filtered (red line), using the same filter settings as for the

SDF. This computation is independent of setting a threshold. Ordinate scaling

is identical in both plots, SDF and ESA traces are both upscaled by a factor of

5 for visual purposes. Note that due to line thickness and time span, gaps

between adjacent spike events are hardly visible. The inset in (B) shows a time

period of 100ms to illustrate the time course of the rectified signal in

more detail.

To achieve best comparability, low-pass filtering was performed
by a Gaussian filter with the same characteristics as used for
calculating the SDF.

LFP power was calculated by convolving the low-passed signal
with complex Morlet’s wavelets (Torrence and Compo, 1998), as
described in more detail elsewhere (Tallon-Baudry et al., 1997;
Taylor et al., 2005). The resulting complex coefficients x̃ at time t
and frequency f can also be expressed by their amplitude A and
phase 8 such that:

x̃
(

t, f
)

= A
(

t, f
)

eiΦ(t,f ). (2)

Power was calculated by taking the square of the absolute value
of x̃ (t, f ), divided by the Nyquist-frequency (500Hz). For each
recording site, the power values for each time-frequency bin were
normalized by first subtraction of and then division by the mean
power spectrum of the spontaneous activity (obtained during
the blank period prior to bar onset, excluding the first 100ms).
From this time–frequency representation of the LFP power we
extracted the time course of the average power between 40 and
120Hz.

Receptive Field Detection
RF analysis was limited to data having at least five repetitions
of each bar direction. To allow for direct comparison between
MUA, ESA, and LFP, all data was z-transformed according to
Fiorani et al. (2014). To this end, we first subtracted the mean
spontaneous activity (averaged over all trials and orientations)
from the response to a given motion trajectory, and then divided
by the standard deviation of the responses to this direction. For
the LFP, this was based on the average power in the broad γ-
frequency range (40–120Hz). RF-locations were calculated using
the back-projection method, which is described in more detail in
Fiorani et al. (2014). In brief, for each specific time point mean
z-transformed responses to each of the 12 motion directions
were back-projected to the location and orientation of the bar
on screen, to obtain activity maps spanned by the bars’ size and
path length [see Figure 2, (Fiorani et al., 2014)]. The geometrical
mean of the averaged, aligned responses to each of the 12 bar
motion directions then provides the merged activity map. To
avoid multiplying by values below one, each activity map with
a minimum z-value < 1 was shifted by an offset parameter
Roff , given by the difference between the actual minimum value
and one. The final merged map was corrected for these offsets
by subtracting the geometrical Roff mean. We then searched
for areas with mean activity higher than half the maximum of
all values within the map. Such areas were considered a RF if
first, the diameter (recalculated from estimated RF area) was
between 0.6 and 2.6◦, and second, the average z-value was larger
than 0.8. Recording sites with low SNR sometimes contained
several connected areas in their activity maps with values larger
than half of the maximum amplitude. In these cases, we only
considered the largest of these areas as RF, if all other areas were
smaller than 0.5◦ in diameter. These rather conservative criteria
are more likely to deliver false negatives than false positives.
RF size was calculated based on the spatiotemporal resolution
of the activity map and the number of entries defining the
RF. With the exception of estimating significance of orientation
tuning (described below), all other analyses were based on the
mean z-transformed response within these RF borders, calculated
separately for each of the 12 motion trajectories.

Orientation Tuning
For analysis of orientation tuning, we first verified whether
a site’s tuning was significant (P < 0.05), using a method
introduced by Grabska-Barwinska et al. (2012) to test the
reliability of response differences to different orientations for
repeated stimulus presentations. The response in any given trial
is represented by the mean, non-transformed activation over
the time the bar is passing the RF. In detail, for identifying
significantly tuned sites, the full set of n8 bar orientations was
shown for nk repetitions, and the average in the complex plane
zPO(k) was calculated for each of the repetitions k:

zPO(k) =
1

nΦ

∑

Φ
f (Φ , k)e2iΦ , (3)

with f(8, k) representing the neuronal response to each
orientation 8. The angle of zPO(k) delivers the preferred
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orientation PO from each repetition. The vector average 〈zPO〉
of the normalized vectors zPO(k) for all repetitions can then be
calculated by:

〈zPO〉 =
1

nk

∑

k

zPO(k)

|zPO(k)|
=

1

nk

∑

k
e2iPO(k). (4)

The reproducibility of the preferred orientation rPO is defined as
the length of 〈zPO〉:

rPO =
1

nK

∣

∣

∣

∑

k
e2iPO(k)

∣

∣

∣
. (5)

The reproducibility is 1 if the PO is equal for all repetitions, and
0 if PO values are uniformly distributed on the 0–180◦ range.
Significance of orientation tuning was determined by comparing
the reproducibility rPO to a probability distribution P(rPO(nk))
obtained from Monte-Carlo simulations under the assumption
of a uniform distribution of POs.

Sites with significant orientation tuning were used for
comparing the tuning between signal types based on an
orientation selectivity index calculated by vector averaging
(Grinvald et al., 1986). If an average z-transformed response to
any of the twelve bar directions was below zero, this value was
multiplied with −1 and added to each of the twelve response
vectors. Neuronal responses f(8) to each of the n8 bar directions
were represented in the complex plane and averaged:

〈z〉 =
1

nΦ

∑

Φ
f (Φ) ei2Φ . (6)

The preferred orientation is then given by the halved angle of the
average vector 〈z〉, and the tuning strength by its length |〈z〉|.

Statistical Analysis
For each monkey and signal type, the detection ratio DR of
significant RFs was given by:

DR =
NSignal

Nall
, (7)

whereNSignal corresponds to the number of significant RFs found
for the signal type under investigation, and Nall corresponds
to the total number of recording sites with a significant
RF independent of signal type. Note that for each signal
type, each recording site delivered maximally one RF by
definition. Statistical analysis of detection rates was done by
performing paired ANOVAs on the mean detection rates
of each animal and post-hoc testing with Tukey’s honestly
significant difference (HSD) procedure, correcting for multiple
comparisons. Statistical analysis of RF size and orientation
selectivity was performed on sites delivering a significant RF for
both ESA and thresholded MUA, pooled over all animals, using
Wilcoxon signed rank tests. Effect size R was calculated by:

R =
|Z|
√
N
, (8)

where Z is taken from the Wilcoxon test statistics, and N
represents the total number of samples.

RESULTS

The aim of the study was to assess the sensitivity of the fullwave-
rectified, low-passed spiking activity (ESA) for unsupervised
detection of visual responses. For directly comparing ESA
performance under different SNR conditions with conventionally
thresholded MUA and with the LFP, we used a data-set of semi-
chronic intra-cortical recordings from area V1 of five macaque
monkeys. Data was acquired during an automatic bar mapping
procedure. We used two approaches to set the threshold for
analyzing MUA-based detection. The first approach (standard
procedure) used a multiplication factor of a = 3 for all data (see
Materials and Methods). The resultant threshold level was found
to be quite robust against false positives and false negatives. The
second approach used an iterative procedure with multiplication
factors of a = 2 to a = 4 (in steps of 0.5) to find the optimal
threshold for each individual unit. Although this procedure is
time-consuming and requires computing of RF maps for each
threshold, it maximizes the yield of MUA-based RF detection.
Note, however, that it requires a priori knowledge to distinguish
evoked responses from false positives. The final dataset included
all recording sites delivering an RF for at least one of the three
signals types (standard procedure: N = 653, iterative procedure:
N = 656).

Quantitative Comparison of RF Detection
Between Signal Types
We first analyzed RF detection rates for ESA and conventional
MUA, based on signal strength and area of activation (see
Materials andMethods), and compared it to LFP-based detection
rates. Figure 2 provides boxplot histograms of the pooled data
across signal types for each of the two MUA procedures. ESA
delivered an RF at 500 recording sites, which was close to the
detection rate of the LFP (N = 570). In contrast, MUA delivered
an RF at 337 recording sites using the standard procedure, and
at 399 recording sites using the iterative procedure. The latter
provides the maximum of RFs to be obtained by thresholding.
Table 1 summarizes the number of RFs for each individual
animal and signal type. Comparing across animals, ESA-based
detection delivered most RFs in three of the five animals,
while in the remaining two animals most RFs were obtained
using the LFP. Importantly, ESA delivered more RFs than
thresholded MUA in each individual animal, regardless of the
procedure to set the threshold. Note that this was true albeit
individual animals were recorded for different experimental
purposes, using different recording setups and filter settings, and
predominant recording layers varied between animals. Thus, the
higher detection rates obtained with the ESA signal were not
due to specific experimental conditions but a general outcome
independent of the specific recording details.

We performed the statistical analysis on RF detection
rates per thresholding procedure and across animals. For the
standard procedure, a 1-way RM-ANOVA confirmed significant
differences between signal-types [F(2, 14) = 9.28, P = 0.008, N
= 5]. Post-hoc Tukey HSD tests showed that the percentage
of detected RFs based on ESA was significantly higher than
detection rates for thresholdedMUA (P= 0.026), while detection
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rates between ESA and LFP were statistically indistinguishable
(P = 0.739). For the iterative procedure, the difference between
ESA- and MUA-based detection now failed to reach significance
(P = 0.113). Note, however, that also in the iterative procedure
ESA delivered considerably more RFs than MUA in each
individual animal (mean increase: 25%, range: 9–125%).

Dependence of RF Detection on SNR
We next investigated detection rates under different SNR
conditions. When recording with (semi-) chronically implanted
electrodes or electrode arrays, the electrodes’ tips are usually
not optimally positioned to the neurons in their vicinity, such
that spike amplitudes may surpass background fluctuations only
marginally. Figure 3A provides an example of a single trial under
such poor SNR conditions. Although there was a significant
visual response in the LFP, spike events at this site had very small
amplitudes and only a few passed the threshold, calculated based
on equation 1 with a = 2 (Figure 3A, top panel). The resultant
visual response map, computed over all trials, did not reveal any
responsive region in the stimulated visual space based on the

FIGURE 2 | Comparison of RF detection rate between LFP, ESA, and MUA.

(A) Standard approach for thresholding MUA. (B) Optimized, iterative

approach for thresholding MUA to maximize MUA-based detection rate. For

each signal type, boxplots are based on detection rates of individual animals.

Detection rates refer to the absolute number of RFs detected relative to the

number of recording sites with a significant visual activation for at least one of

the signals, merged over all animals. Boxes indicates the 25th and 75th

percentile, dashed lines indicate the medians, and whiskers indicate the full

range of data. Asterisks indicate statistical difference for α < 0.5% (*) and α <

0.05% (**), respectively.

thresholded MUA (Figure 3E, left panel). Full-wave rectification
and low-pass filtering the signal, however, revealed a small
amplitude modulation during the course of the trial (Figure 3A,
lower panel). Because in the ESA-signal such small modulations
can be reliably detected in trials with low SNR, the ESA-based
analysis of the same data provided a visual response map with
a significant area of activation (Figure 3F, left panel). A second
example from a different monkey is presented in the second-most
left panels in Figures 3E,F. Under conditions of high SNR, on
the other hand, both thresholded MUA and ESA reliably isolate
the evoked spiking activity from background noise (Figure 3D),
resulting in visual response maps with clearly defined and similar
RFs (Figures 3E,F, middle to right panels). However, when based
on MUA, the detected RF regions sometimes appear a little bit
noisier and smaller (Figures 3E,F, middle and second rightmost
panels).

To investigate the relation between RF detection rate and
SNR in more detail, we calculated the SNR of all recording sites
and determined detection rates as a function of SNR. SNR was
calculated by dividing the median amplitude of all spike events
surpassing the threshold by the threshold value itself. For reasons
of comparability, the threshold was calculated by a multiplication
factor of a = 3, as applied in the standard procedure. We used
the same dataset as before, i.e., we also included those recordings
for which we only detected an RF in the LFP to keep the total
N constant. Figure 3B depicts the cumulative distribution of
the number of RFs detected using either ESA or MUA, sorted
from low to high SNR. Note that at low SNR, the two traces
representing ESA and MUA strongly deviate, and even with
medium and high SNR, the ESA slope is still steeper than the
MUA slope.

For statistical analysis, we divided the dataset into three
equally large groups of sites with low, medium, and high SNR
(indicated by dashed lines in Figure 3B), and calculated the
RF detection rate of each animal and group. Based on ESA,
a significant visual response was detected at 59.3, 84.7, and
90.2% of recording sites with low, medium, and high SNR,
respectively. For thresholded MUA, the corresponding detection
rates obtained by the standard procedure were 28, 62.8, and
66.5%. A 2-way RM-ANOVA with the factors signal type
and SNR revealed a main effect of both factors [signal type:
F(1, 2) = 14.87, P = 0.0182 ; SNR: F(2, 2) = 4.85, P = 0.0417,

TABLE 1 | Number of detected RFs for individual subjects and signal types.

LFP ESA MUA

Monkey Total N N % N % N %

B 130 99 76.2 109 83.9 83 (87) 63.9 (66.9)

F 81 (82) 55 67.9 (67.1) 65 80.3 (79.3) 39 (57) 48.2 (69.5)

P 219 212 96.8 176 80.4 150 (161) 68.5 (73.5)

T 172 166 96.5 118 71.1 65 (80) 37.8 (48.2)

V 51 (53) 38 74.5 (71.7) 32 62.8 (60.4) 0 (14) 0 (26.4)

Total 653 (656) 570 87.3 (86.9) 500 76.6 (76.2) 337 (399) 51.6 (60.8)

If different between standard procedure and iterative procedure, numbers in brackets refer to the iterative procedure.
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FIGURE 3 | RF detection rates in dependence of signal-to-noise ratio (SNR). (A) High-pass filtered neuronal activity with very poor SNR (rank 4 out of 653). The upper

panel depicts a single trial in response to a motion direction that reliably modulated the LFP. The dashed line indicates the threshold as calculated over all trials, using

the method of Quiroga et al. (2004) with a median multiplication factor of a = 2. Events surpassing the threshold are used to calculate the spike density function. The

lower panel shows the same high-passed signal after full-wave rectification. Subsequent low-pass filtering provides the ESA-signal (thick line), revealing a small

amplitude modulation during the course of the trial. (B) Cumulative distribution of the number of RFs detected using either MUA or ESA, sorted by SNR. Dashed lines

distinguish equally large fractions of recording sites with low, medium, and high SNR, as used for statistical analysis. Arrows indicate the SNR ranks of the five

example sites shown in (E,F). (C) Detection rates for low, medium, and high SNR sites, based on the respective detection rates of data from the individual animals,

separately for ESA and MUA. Disks and lines indicate mean ± S.D, respectively. (D) Same as in (A), for a recording site with high SNR (rank 632). (E,F) Visual

response maps based on thresholded MUA (E) and ESA (F) for the five recording sites indicated in (B). SNR rank increases from left to right. Vertical and horizontal

white bars in the lower left corners indicate 1◦ of visual space. Black outlined areas depict significant visual responses (receptive fields). For the two left-most maps in

(E) no significant visual response was found with any of the thresholds tested during the iterative procedure. Actual maps were calculated based on a median

multiplication factor of a = 2 for setting the threshold. Remaining maps (middle to right) were calculated after thresholding with a = 3.

N = 5], and no interaction [F(2, 8) = 0.018, P = 0.548]. Post-
hoc Tukey HSD multiple comparison tests showed that at low
SNR, ESA-based detection rates were higher than MUA-based
detection rates at the 95% confidence level, while the difference
in detection rates at medium and high SNR was statistically
not significant (Figure 3C). The iterative procedure delivered
equivalent statistical conclusions.

Additionally, because ESA delivered RFs at recording sites
where MUA did not (iterative procedure:N = 115), we estimated
the likelihood to get a false positive RF detection. This was done
by re-shuffling the time bins and labels of the raw PSTH.We then
computed visual activity maps as before (cf. section Receptive
Field Detection). The actual number of RFs found with this

procedure was zero, indicating a very low likelihood that the
additionally detected ESA-RFs consist of a significant number of
false positives.

RF Size and Orientation Tuning
Higher detection rates in data with poor SNR do not necessarily
imply that they will provide reliable estimates about the response
characteristics of the underlying group of neurons. We therefore
investigated the selectivity of ESA and thresholded MUA with
respect to the estimated RF size and orientation tuning of the
detected units. To get the maximal RF yield, we based this
analysis on the iterative procedure for thresholding. Likewise,
to obtain the maximal spike information from each unit, we
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used the smallest threshold that allowed detection of a significant
visual response for that unit. Assuming idealized circular RFs,
the mean calculated diameter ± S.D. of ESA- and MUA-RFs
was 1.6 ± 0.45 and 1.49 ± 0.46◦, respectively. For comparison,
the size of LFP-RFs was 1.7 ± 0.38◦ and thus was slightly
larger than for ESA and MUA. For statistical analysis, we
limited the dataset to those units delivering a significant RF for
both ESA and MUA and based the calculation on actual RF
areas. ESA-RFs were found to be significantly larger than MUA-
RFs (Wilcoxon signed rank test, Z = 9.84, P < 10−22, N =
385, R = 0.355) (Figure 4A). A Tukey HSD multi-comparison
analysis for units with low, medium, and high SNR revealed
that the estimated size of both signals increased from low to
high SNR (both P < 10−5, N = [30 60 295]), but the size
difference between ESA-and MUA-RFs did not differ between
SNR groups (1-way ANOVA, F(2,382) = 2.394, P = 0.09, N = [30
60 295]) (Figure 4B).

Orientation selectivity was estimated based on vector
averaging the responses to the six bar orientations, according to
Grabska-Barwinska et al. (2012). The method labels orientation
tuning as significant depending on the reliability of orientation-
related responses over trials, but independent of the absolute
orientation index (OI). Orientation tuning was considered
significant at 97.8% (N = 489) of all recording sites with a
significant ESA-RF, and at 72.2% (N = 288) of all sites with
a significant MUA-RF. Figures 4C,D show the distribution of
OI values for the two signal types. Polar plot insets depict two
exemplary recording sites with an OI close to the population
medians for ESA (0.053) and MUA (0.048).

Statistical analysis was performed on units with a significant
orientation tuning for both ESA- and MUA-RFs (Figure 4E). For
this subset of sites, MUA turned out to be significantly more
orientation selective than ESA (Wilcoxon signed rank test, Z =
3.8, P < 10−3,N = 275), but the effect size was small (R= 0.162).
Despite this reduction in absolute selectivity, 43% (N =117) of
the recording sites had about the same preferred orientation
(deviation< 15◦) independent of signal type, and 70% (N = 164)
of recording sites did not differ by more than 30◦, i.e., preferred
orientation was within the range of two neighboring stimulus
orientations (Figure 4F).

DISCUSSION

Full-wave rectification and subsequent low-pass filtering of
multi-unit spiking activity was introduced by Eckhorn and
colleagues (Eckhorn, 1991, 1992; Eckhorn and Obermüller, 1993;
Brosch et al., 1997) to improve spectral frequency analysis of
correlated activity, and has been used by several groups as an
alternative measure for multi-unit activity (Self et al., 2016;
Dougherty et al., 2017; Drebitz et al., 2018). Because this method
does not involve setting a threshold for cutting spike amplitudes,
full information about the neuronal response is preserved. We
hypothesized that this way of pre-processing is particularly
effective for data with poor SNR. Even if spike amplitudes do
not surpass the background, aggregated spike events in the
rectified signal will be reflected in the low-passed derivate due

to their different temporal structure, while random background
fluctuations get attenuated. Thresholding of such small spikes,
on the other hand, is likely to result in both false positive and
false negative spike events, thus blurring the available stimulus
information.

We tested this hypothesis by using data from semi-chronic
recordings of primary visual cortex that was acquired during
mapping procedures for testing visually evoked activity. The
mapping procedures were performed for different research
projects having different target layers within V1. In addition,
electrodes were located within the tissue for variable time periods
(days to weeks to months), and recording details (hardware,
filter) varied across animals. This explains the variance in
detection rates across animals (Table 1), but more importantly,
it shows that the findings of the current study do not result
from specific experimental conditions. Instead, the basically same
result across animals suggests a general advantage of ESA over
thresholded MUA for detecting evoked activity in the high-
frequent signal of neuronal responses. Over all SNR fractions,
ESA delivered about 50% more RF estimates than conventional
MUA, and was only slightly less sensitive than the broadband-
gamma LFP (40–120Hz). This increased detection rate was
mainly due to a much higher sensitivity for detecting RFs in
low SNR recordings.With the standard procedure, ESA delivered
2.5 times the number of RFs as compared to MUA. Optimizing
the yield of MUA-based detection by iteratively applying a series
of thresholds to each unit allowed to increase the number of
detected RFs in low SNR data by about 60%, but this was still
significantly less than ESA-based detection rates. For medium
and high SNR, ESA delivered more RFs than MUA in each
individual animal, independent of the procedure, but detection
rates for ESA and MUA approximated and were statistically not
different over the sample size of five animals.

Average RF size slightly increased from low to high SNR for
both ESA and MUA, and ESA-RF size was about 17% larger than
MUA-RF size in units delivering an RF with both signals. Yet,
this difference was consistent over all SNR fractions, indicating
about the same reliability of both signal types. Similarly, ESA-
RFs were found to have a slightly smaller absolute orientation
selectivity than MUA-RFs, but for 70% of recordings ESA and
MUA delivered the same or a very similar preferred orientation.
These results support the notion that ESA is a highly sensitive,
selective, and reliable signal type significantly increasing the yield
of recordings, particularly under conditions that do not allow
optimal positioning of electrodes to isolate single units.

Increased Sensitivity for Detection of
Evoked Responses
As a rule of thumb, the amplitude of a spike decays as the inverse
of the square of the distance to the recording electrode’s tip. For
example, the voltage amplitude of a spike generated at a soma
with 10–30µm diameter will decay by about 90% in 60–65µm
distance from the recording electrode tip (Rall, 1962; Lemon,
1984; Gray et al., 1995). Thus, spikes generated at larger distances
from the electrode tip get lost in general background noise when
not surpassing the threshold, or will be intermixed with noise
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FIGURE 4 | Comparison of stimulus selectivity between ESA and MUA. (A) RF area of recording sites with significant visually evoked response modulation for both

ESA and MUA (N = 385). (B) RF area as a function of SNR for same units as in (A). Error bars indicate S.D. (C,D) Distribution of orientation indexes for ESA (C) and

MUA (D). Dotted lines indicate median OI. Polar plot insets show exemplary orientation selective responses at median OI value for either signal type. (E) Direct

comparison of orientation selectivity of units with significant orientation-selective responses for both MUA and ESA (N = 275). (F) Signal-dependent difference in

preferred orientation (1PO) for same units as in (E). Boxplot conventions as in Figure 2. Asterisks indicate statistical difference for α < 0.005% (***).

when threshold is too low. Because of this negative effect on
SNR, this introduces a significant limitation for detecting evoked
responses. ESA, on the other hand, is sensitive for aggregated
spikes even when having small amplitudes, and rather insensitive
to random background noise. The resultant signal has a clearly
improved SNR, as indicated by the strong increase in the yield
of significantly modulated ESA-RFs with low SNR, and even the
moderate though insignificant increase in yield for medium and
high SNR data.

It is worth to note yet that the division into the three SNR
groups is to some extent arbitrary. We divided our dataset
into equally large SNR fractions and categorized these as low,
medium, and high. Our recordings were obtained from different
cortical layers, in many sessions we were primarily interested
in the LFP. Thus, only a few data may has been recorded
under truly high SNR conditions, while some of the data
representing the high SNR pool might has had a weak absolute
SNR in fact. Thus, the slightly higher ESA-detection rates for
medium and high SNR may disappear under conditions with
overall higher SNR. However, our analyses show that ESA is
particularly powerful to detect evoked responses when SNR
conditions do not allow to set a legitimate threshold. This is
particularly evident when comparing ESA detection rates with
the optimized yet much weaker detection rates obtained after
iteratively searching for the most appropriate threshold of each
unit. Such low SNR conditions may result from larger distances
between electrode tips and somata when using permanently
implanted probes, or from cell loss, gliosis, or local tissue
responses potentially associated with (semi-) chronic recording
approaches (Turner et al., 1999; Biran et al., 2005; Polikov
et al., 2005; Griffith and Humphrey, 2006; Lacour et al., 2016;
Salatino et al., 2017), which in turn makes it necessary to
exclude single electrodes from further analysis. Here, ESA
represents a powerful alternative to conventional thresholding
of MUA activity and allows for a strongly increased yield of
data, with the additional advantage that its application can be
fully automatized.

Stimulus Selectivity
Because ESA is a neuronal mass signal and reflects the activity
of a local population of neurons, the slight differences in RF
size and absolute orientation selectivity may primarily be due
to a larger group of neurons underlying the ESA-signal as
compared to thresholded MUA. Supèr and Roelfsema (2005)
compared direction selectivity, response latency, figure ground
segregation, and attentional modulation of ESA (denoted as
MUAE in their article) to single units. In line with our results,
the authors found a somewhat reduced direction selectivity
but otherwise largely identical response characteristics. Because
axonal and dendritic spikes are very small and the time course
of postsynaptic potentials is slow, they concluded that ESA is
representing the summed action potentials of neurons with a
soma in the vicinity of the recording site rather than electrical
fluctuations from other sources. This interpretation also explains
the increase in RF size and the reduction of absolute orientation
selectivity (Figure 4). Because ESA is not discarding spikes below
threshold, it integrates over more sources than conventional
MUA, which necessarily results in a somewhat reduced stimulus
selectivity. Brosch et al. (1997) specified the effective range of ESA
as ∼50µm around the electrode tip. Referring to the classical
finding that orientation preference of neurons only 25–50µm
apart from each other may shifts by about 10◦ (Hubel and
Wiesel, 1974), integration of smaller spikes from more distant
somata is likely to explain the reduction in absolute orientation
selectivity. In addition to this, the higher sensitivity for small
spikes prevents, or at least attenuates the typical sampling bias
toward large pyramidal neurons when thresholding spikes. Thus,
the ESA database may include a larger diversity of cell types
than the MUA database, including cells with larger RFs, smaller
orientation selectivity, or different center-surround interactions,
as found in different layers of V1 (Sceniak et al., 2001; Ringach
et al., 2002; Shapley et al., 2003).

Apart from the slightly attenuated total stimulus selectivity,
both the analysis of RF size as a function of SNR and
cross-comparison of orientation selectivity across signal types

Frontiers in Neuroscience | www.frontiersin.org 9 February 2019 | Volume 13 | Article 83

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Drebitz et al. Analysis of Low SNR Data

primarily revealed that ESA delivers a reliable estimate of
the response properties of the recorded group of neurons.
First, although RFs were getting slightly larger with better
responsiveness of the recording site (due to the reasons outlined
above), this increase was found for both signal types and
to equal extent. This indicates that even with poor SNR
evoked responses were sufficiently well detected to allow for a
reasonable estimation of the response properties of the local set
of neurons. Second, the estimated preferred orientations were
similar between ESA andMUA for themajority of recording sites.
Importantly, the method we used for denoting a cell’s response
as either significantly or insignificantly being influenced by the
orientation of the stimulus relies on reproducibility of responses
rather than on absolute orientation selectivity. This diminishes
the influence of random singular events for estimating response
properties of the recorded group of neurons. The finding that
almost 98% of the ESA responses were classified as orientation-
dependent (as compared to 72% of the MUA responses) proves
the high reliability of the ESA-signal to reveal even a small
response bias toward one orientation. Detectability of such
biases might be important for different purposes, as e.g., for
selecting proper stimulus conditions or improving performance
of decoding techniques.

Taken together, full-wave rectification and subsequent low-
pass filtering of spiking activity effectively increases the signal’s
SNR and allows for more reliably detecting evoked responses
in data with low SNR. Because no thresholding is applied,

ESA considers the full spiking information and allows for
reliable characterization of the response properties of the
underlying group of neurons when conventional techniques
may fail.
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