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Neurologic Music Therapy (NMT) is a novel impairment-focused behavioral intervention

system whose techniques are based on the clinical neuroscience of music perception,

cognition, and production. Auditory Stimulation (RAS) is one of the NMT techniques,

which aims to develop and maintain a physiological rhythmic motor activity through

rhythmic auditory cues. In a series of breakthrough studies beginning in the mid-nineties,

we discovered that RAS durably improves gait velocity, stride length, and cadence in

Parkinson’s disease (PD). No study to date reports the neurophysiological evidence

of auditory-motor frequency entrainment after a NMT intervention in the Parkinson’s

community. We hypothesized that NMT-related motor improvements in PD are due

to entrainment-related coupling between auditory and motor activity resulting from

an increased functional communication between the auditory and the motor cortices.

Spectral analysis in the primary motor and auditory cortices during a cued finger

tapping task showed a simultaneous increase in evoked power in the beta-range along

with an increased functional connectivity after a course of NMT in a small sample

of three older adults with PD. This case study provides preliminary evidence that

NMT-based motor rehabilitation may enhance cortical activation in the auditory and

motor areas in a synergic manner. With a lack of both control subjects and control

conditions, this neuroimaging case-proof of concept series of visible changes suggests

potential mechanisms and offers further education on the clinical applications of musical

interventions for motor impairments.
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BACKGROUND

Neurologic Music Therapy (NMT) is a novel impairment-focused behavioral intervention system
whose techniques are based on the clinical neuroscience of music perception, cognition, and
production (Thaut, 2014). One of the perceptual and neural mechanisms underlying NMT
applications is “rhythmic entrainment” where one system’s motion or signal frequency entrains the
frequency of another system. In the brain, firing rates of auditory neurons, triggered by auditory
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rhythms and music, entrain the firing patterns of motor neurons,
thus driving the motor system into different frequency levels
(Thaut, 2015). Rhythmic Auditory Stimulation (RAS) is one of
the NMT techniques, which aims to develop and maintain a
physiological rhythmicmotor activity through rhythmic auditory
cues. Psychophysics studies show auditory cues function as a
timekeeper entraining the motor response into a very rapid and
temporally precise state of synchronization to the rhythmic cue
frequency (Thaut et al., 1999). In cortical sensory areas, auditory-
evoked oscillatory rhythms in the beta (15–30Hz) and gamma
(40–80Hz) frequency range are direct measures of rhythm
perception and possibly reflect auditory-motor interactions
(Snyder and Large, 2005; Fujioka et al., 2009). Therefore, they are
useful to investigating the entrainment-related coupling between
auditory and motor activity. Beta oscillations have been holding
a crucial role in directional auditory-to-motor coupling during
piano playing of non-PD professional pianists (Jäncke, 2012).

Parkinson’s disease (PD) is a neurodegenerative illness defined
by characteristic motor symptoms including slow and small
movements as well as difficulty with movement initiation and
disruptions in timing. Several explanations for the underlying
pathophysiology include beta and gamma impairments in
subcortical structures such as the basal ganglia (BG) (Doyle
et al., 2005) as well as in the cortical motor areas (Heinrichs-
Graham et al., 2014; Stegemöller et al., 2016). Deep brain
stimulation or dopamine replacement therapy restore normal BG
beta oscillations (Jenkinson and Brown, 2011) as well as cortical
motor networks dynamic (Michely et al., 2015). This suggests
that interventions targeting motor symptoms have the ability to
influence oscillatory rhythms in the brain or vice-versa.

In a series of breakthrough studies beginning in the mid-
nineties we have discovered that auditory rhythmic cues durably
improve gait velocity, stride length, and cadence in PD (Thaut
et al., 1996; McIntosh et al., 1997). RAS is now recognized as state
of the art for mobility treatment for PD (Hove and Keller, 2015),
and may occur via a shift from basal ganglia-thalamocortical to
other pathways involving possibly the cerebellum (Cunnington
et al., 2001; Debaere et al., 2003) or through an effective cognitive
strategy (Manly et al., 2004; Rochester et al., 2007) although
recent studies suggest that auditory-motor entrainment may be
compromised in PD (Praamstra and Pope, 2007; Grahn and
Brett, 2009; te Woerd et al., 2014, 2015). In healthy controls,
auditory-motor entrainment (Thaut et al., 2014) relies on diverse
brain areas such as the auditory cortex, the inferior parietal
lobule, and frontal areas such as the supplementary motor area
(SMA) and premotor cortex (PMC) (Todd and Lee, 2015).
Interestingly, those regions appear to be unaffected by PD
pathophysiology. Therefore, it may be possible to use NMT
methodology to strengthen the aforementioned networks as a
compensatory mechanism to improve motor function in PD.

We know that (1) auditory rhythm very rapidly creates
stable internal reference intervals to guide the timing of motor
responses and that (2) the dominant synchronization strategy
is based on frequency entrainment. Entrainment of distant
brain regions most likely relies on synchronization at specific
frequencies that can be recorded via whole brain neuroimaging
modalities such as magnetoencephalography (MEG).

No study to date reports the neurophysiological evidence
of auditory-motor frequency entrainment after a NMT
intervention in the Parkinson’s community. We wanted to
share a neuroimaging case-proof of concept series of visible
changes that suggest potential mechanisms and provide further
education on the clinical applications of musical interventions
for motor impairments. We hypothesized that NMT-related
motor improvements in PD are due to entrainment-related
coupling between auditory and motor activity resulting from an
increased functional connectivity between the auditory cortex
and the motor cortex.

METHODS

Three right-handed PD participants were recruited from the
University of Colorado Hospital Movement Disorders clinic and
signed informed consents to participate in the study approved
by the Colorado Multiple Institution Review Board. Inclusion
criteria included a diagnosis of probable PD according to
the UK Brain Bank Criteria (Hughes et al., 1992). All study
visits were performed in the PD subjects’ best dopaminergic
“On” state. Participants’ characteristics can be found in the
Supplementary Table 1.

Neurologic Music Therapy Intervention
Fifteen sessions of somatosensory-related NMT techniques were
administered 3 times per week for 5 consecutive weeks by one of
the NMT-certifiedmusic therapists fromRehabilitative Rhythms,
Aurora, CO. Each session consisted on bimanual exercises using
a keyboard, castanets and miscellaneous objects to strengthen
fine motor muscles. Each finger movement was cued by either
a metronome or beats produced by the therapist playing a
musical instrument.

Motor Assessments
Fine motor-related changes were assessed and quantified before
and after NMTwithin 2 days from the first and last NMT session.
We chose three different assessments to cover overall motor
function, fine motor coordination and bradykinesia as well as
PD-specific dexterity in order to capture the expected benefits on
those symptoms:

1. The Unified Parkinson’s Disease Rating Scale (UPDRS, Fahn
et al., 1987) Section 3 (Motor Examination). The UPDRS is an
overall marker for Parkinson’s disease progression, symptoms
severity and a validated measure of treatment-related benefits.

2. The Grooved Pegboard Test, which is a manipulative dexterity
test consisting of 25 holes with randomly positioned slots
(Trites, 1989) commonly used as a test of fine motor
performance (Bryden and Roy, 2005) and general slowing due
to medication or disease progression. In PD, the GPT has also
been used extensively as a motor outcome of clinical trials
(Haas et al., 2006).

3. The Finger-Thumb Opposition Task is one item from the
Neurological Evaluation Scale (Buchanan and Heinrichs,
1989), which assesses different sensory and motor functions.
Participants were asked to perform bilateral finger-thumb
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appositions during a 2-min lag to quantify fine motor
coordination and bradykinesia.

Magnetoencephalography Data
Acquisition, Preprocessing, and
Coregistration With Structural MRI
Neuromagnetic data was acquired using a Magnes 3,600
whole head MEG device with an array of 248 sensors (4D
Neuroimaging, San Diego, CA) in a magnetically shielded room
(ETS-Lindgren, Cedar Park, TX, USA). Participants were asked
to tap with their right index finger with an acoustic burst
stimuli (30ms duration at 2,000Hz, intensity of 70 dB above
subjective threshold) delivered in their right ear every second.
A quick practice session was performed prior to the MEG
recording session. A total of 6 sequences of 30 s separated by a
5-s rest period were presented. Data was acquired continuously
at 678Hz with an acquisition bandwidth of 0.1–200Hz. Scalp
shape and location was determined with a 3-D digitizer to allow
for comparison across subjects in a common coordinate system
and for co-localization with an averaged MRI brain atlas. Data
was divided into 800ms epochs. Preprocessing included 3–70Hz
band pass filtering, noise reduction, and rejection of epochs with
significant artifact. Independent component analysis was used to
remove eye blink and other common artifacts (Jung et al., 2000).
Epochs were baseline corrected using 800ms baseline epochs
that were extracted within the inter-block trials rest periods to
prevent contamination with extended motor signals. A mean
of 229 ± 18 (before NMT) and 215 ± 49 (after) epochs were
subjected to further analysis. Participants’ response occurred
on average between 31.6ms before (anticipatory response) and
123.7ms after the stimulus. Stimulus-locked spectral analysis
was performed over a 0–400ms time period (0 being tone
onset) in order to fully capture entrainment-related coupling
between auditory and motor activity. Each participant’s MEG
data were co-registered with structural T1-weighted magnetic
resonance imaging (MRI, Supplementary Materials) data prior
to source space analyses using common landmarks from the
MEG digitization procedure and MRI scan data via SPM12
software (Statistical Parametric Mapping; Wellcome Department
of Cognitive Neurology, London, UK) (Friston, 2007).

MEG Source Analysis and Source Space
Statistics
Source analysis was performed in Matlab (2010b; MathWorks,
Inc., Natick, MA, USA) using the SPM12 toolbox. Following co-
registration of the MEG fiducials with each participant’s MRI,
leadfields were computed using a single shell volume conductor
model. Source localization was then performed using a cortically
constrained group minimum norm inversion with multiple
sparse priors (Litvak et al., 2011), on all subjects’ data pooled
together from the three participants, which resulted in common
source space images across subjects. The cortical surface used
was a standard MNI space surface with 20,484 vertices supplied
within SPM12. Source analysis was performed on the 15–80Hz
passband between 0 and 400ms. Source space images were

submitted to GLM-based statistical analysis using a one-sample t-
test across all subjects to confirm the involvement of auditory and
motor cortices as well to extract peak MNI coordinates in areas
that survivedmultiple comparison correction, using a family wise
error (FWE) of p < 0.05.

Source Waveforms, Spectral Analyses, and
Functional Connectivity
Regional time-courses were created via source-space projection
(Tesche et al., 1995) from dipoles within both regions of interest:
left auditory and primary motor cortices. Using the peak MNI
coordinates obtained in the previous step (left auditory:−52−35
15, left motor: −7 −25 73), the lead field and its pseudoinverse
were computed and the following current source waveform (Ross
et al., 2000) was created. Time-frequency transformations were
then obtained using a Morlet wavelet decomposition with wave
number linearly increasing from 3 to 12 across the frequency
range of 15–80Hz, on the epochs from 0 to 400ms. Evoked power
relative to the rest period baseline was calculated and averaged
across subjects. In order to evaluate directional functional
connectivity between our regions of interest in the frequency
domain, we computed frequency domain coherence using the
Fieldtrip connectivity analysis functions (Oostenveld et al., 2011),
which first involved an autoregressive model fit to the data using
the bsmart matlab toolbox (Cui et al., 2008). For these analyses,
we downsampled the data to 250Hz for better model order
estimation and submit the data to detrenting, differencing, and
pre-whitening. Then, we estimated themodel order to be 16 using
ARfit toolbox for Matlab (Schneider and Neumaier, 2001).

RESULTS AND DISCUSSION

Five weeks of NMT had beneficial effects on fine
motor function in our cohort of three patients with
PD (Supplementary Figure 1). PD-specific overall motor
assessments showed clinically significant improvements after
NMT (A). Score improvements were more mitigated for the
Grooved Pegboard test, for which the dominant hand from two
out of three subjects exhibited higher proficiency at picking and
placing the pegs into their designated holes (B). Lastly, finger-
thumb opposition test scores were greatly improved after NMT
sessions, here again for two out of three participants, regardless
of the hand tested (C). While fine motor assessments did not
show consistent improvements among all participants, each one
benefited in one or more areas of fine motor function, including
the dominant hand or both hands. Interestingly, we found that
finger tapping before the cue (anticipatory response) during
the MEG recording occurred 73.72% before NMT whereas
after NMT 90.31% of the trials were anticipatory, suggesting
that NMT may enhance anticipatory motor behavior. These
results are in agreement with other behavioral interventions in
the PD community (Alves Da Rocha et al., 2015). In addition,
this extends the benefits of NMT from gross motor to fine
motor skills.

Spectral analysis in the primary motor and auditory cortices
during a cued finger tapping task showed a possible coinciding
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FIGURE 1 | Left primary auditory and motor areas evoked power time-frequency results. Grand average evoked power in the beta range increased simultaneously in

the auditory (A) and motor (B) cortices between pre-NMT (top) and post-NMT (bottom) during a cued right hand finger tapping.

FIGURE 2 | Coherence results. Coherence spectra show increased functional

connectivity between the auditory and motor cortices after (light gray shade)

compared to before NMT (dark gray shade).

increase in evoked power in the beta-range suggesting an activity
coupling in those two areas most likely due to their simultaneous
activation (Figure 1). While this case report lacks a control
group and statistical analysis, we demonstrate here NMT-related
changes in cortical beta activity, an oscillation that is definitely
challenged in PD. Other interventions, especially physical
therapies, have been shown to modify sensorimotor alpha and
beta rhythms (Mierau et al., 2009). Our results therefore suggest
that musical interventions may also hold potential to influence
cortical activity. Regardless of the specific pathways underlying
this phenomenon, it appears that information related to the
beat is simultaneously perceived by the auditory and the motor
cortices, both regions we postulated would be more highly
connected after NMT training.

Stronger functional connectivity between the auditory and
motor cortices was observed after NMT (Figure 2). It is highly
possible that the NMT-related increased connectivity between

the auditory and motor cortices explains the simultaneous
beta power increase in auditory and motor areas. Increased
auditory-motor functional connectivity is indeed observed
during synchronization to rhythm (Chen et al., 2006), which
suggests a relationship between brain connectivity and rhythmic
entrainment. While beat perception has been attributed to the
putamen, the outermost portion of the BG, it is possible that
NMT uses alternative relays to drive impaired areas via intact
ones in PD. The use of brain imaging techniques with subcortical
resolution will help investigating this idea.

CONCLUSION

This case study provides very preliminary evidence that NMT-
based motor rehabilitation may enhance cortical activation in
the auditory and motor areas in a synergic manner. Our
connectivity findings and the existing literature both suggest that
auditory-motor connections may be improved and strengthened
by training, even in the PD population. With a lack of both
control subjects and control conditions, future controlled trials
are warranted to further explore the effects of NMT therapy in
those vulnerable patients, especially looking at symptom-specific
groups given the heterogeneity of the motor symptoms found in
patients with PD.
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2019.00105/full#supplementary-material

Supplementary Figure 1 | Fine motor assessments scores for both dominant

and non-dominant hands before (pre) and after (post) a 5-week session of

Neurologic Music Therapy. (A) Overall motor score, section 3 of the UPDRS;

(B) Time to complete the pegboard, as part of the GPT (Grooved Pegboard Test);

(C) Number of finger-to-thumb oppositions, as part of the NES (Neurological

Evaluation Scale).

Supplementary Table 1 | Participants’ demographics and baseline

characteristics. UPDRS, Unified Parkinson’s disease rating scale, an overall

marker for Parkinson’s disease progression and symptoms severity.
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