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The insular cortex plays an important role in multimodal sensory processing, audio-
visual integration and emotion; however, little is known about how the insula is affected
by auditory deprivation due to sensorineural hearing loss (SNHL). To address this
issue, we used structural and functional magnetic resonance imaging to determine
if the neural activity within the insula and its interregional functional connectivity (FC)
was disrupted by SNHL and if these alterations were correlated clinical measures
of emotion and cognition. Thirty-five SNHL subjects and 54 Controls enrolled in our
study underwent auditory evaluation, neuropsychological assessments, functional and
structure MRI, respectively. Twenty five patients and 20 Controls underwent arterial
spin labeling scanning. FC of six insula subdivisions were assessed and the FC results
were compared to the neuropsychological tests. Interregional connections were also
compared among insula-associated networks, including salience network (SN), default
mode network (DMN), and central executive network (CEN). Compared to Controls,
SNHL subjects demonstrated hyperperfusion in the insula and significantly decreased
FC between some insula subdivisions and other brain regions, including thalamus,
putamen, precentral gyrus, postcentral gyrus, mid-cingulate cortex, dorsolateral
prefrontal cortex, rolandic operculum. Anxiety, depression and cognitive impairments
were correlated with FC values. Abnormal interactions among SN, DMN, and CEN
were observed in SNHL group. Our result provides support for the “inefficient high-
order control” theory of the insula in which the auditory deprivation caused by SNHL
contributes to impaired sensory integration and central deficits in emotional and
cognitive processing.

Keywords: sensorineural hearing loss, insula, hyperperfusion, functional connectivity, cognition, emotion

INTRODUCTION

Sensorineural hearing loss (SNHL), primarily resulting from damage to the sensory hair
cells and spiral ganglion neurons, arising from various etiologies, including neurodegenerative
disease, noise, and ototoxic drugs (Cox et al., 2014; Wang et al., 2016; Crowson et al.,
2017), is the most common sensory disorder affecting roughly one-eighth of the population
(Edmiston and Mitchell, 2013; Cunningham and Tucci, 2017). An individual’s inability
to hear and communicate effectively is associated with a broad range of non-auditory
problems such as social isolation, depression, anxiety, and dementia resulting in a reduced
quality of life (Bainbridge and Wallhagen, 2014; Basner et al., 2014; Henshaw et al., 2015;
Kamil and Lin, 2015; Liu et al., 2016; Zhang et al., 2017a). The emotional and cognitive
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disorders associated with SNHL likely results from disturbances
in neural networks outside the classical auditory pathway that
integrate external and internal sensory information required for
cognitive or emotional processes.

The insula, located deep within the lateral sulcus, has
been implicated in numerous functions including emotion,
awareness, cognition, motor control, and sensory processing
(Craig, 2009; Bestelmeyer et al., 2014). Insula neurons have
been found to respond directly to acoustic stimuli in a single-
cell recording study (Bieser, 1998). Micarelli et al. (2017)
highlighted hypoperfusion in the insula and auditory cortex in
idiopathic sudden SNHL patients, reflecting a “freezing” behavior
when auditory deprivation occurred abruptly. The function and
structure of the insula were found to be impaired in patients
with tinnitus and unilateral hearing loss using resting-state or
task-based MRI approaches (Yang et al., 2014). Lesions of the
insula or disconnections with the auditory cortex often result in
auditory agnosia and musical anhedonia (Sihvonen et al., 2016).
Damage to the insula can induce hyperacusis, a condition in
which sounds are perceived as extremely loud (Boucher et al.,
2015). Moreover, the insula has numerous connections with
frontal cortex, cingulate cortex and amygdala which contribute
to emotional, cognitive and other high level processes (Pandya
et al., 1971; Hoistad and Barbas, 2008; Baur et al., 2013; Nomi
et al., 2016), as well as neuropsychiatric disorders (Namkung
et al., 2017), including depression, anxiety, and bipolar disorder
(Stein et al., 2007; Liu et al., 2010; Hulvershorn et al., 2012).
These preceding results suggest that the insula is a key structure
of modulating acoustic information and could contribute to
SNHL-associated psychiatric symptoms.

To elaborate the role of the insula in patients with SNHL,
we first used voxel-based morphometry (VBM) to calculate the
volume of the insula, then used arterial spin labeling (ASL) and
fMRI to determine whether SNHL disrupted the activity and
perfusion within the insula, altered the functional connectivity
(FC) between the insula and other brain regions. We also
examined the interactions among the salience network (SN),
default mode network (DMN), and central executive network
(CEN), due to the fact that the insula is a major component of
SN, which plays an important role in switching CEN and DMN.
Because of known regional differences (Deen et al., 2011), our
analysis focused on six regions, the left and right ventral anterior
insula (vAI), dorsal AI (dAI), and posterior insula (PI). To
evaluate the potential significance of our finding, the functional
changes in the insula associated with SNHL were correlated with
clinical measures of neuropsychological function.

MATERIALS AND METHODS

Participants
Eighty-nine participants were recruited from the ENT
department of local hospitals or the local community for
this study, 35 subjects with a mean age of 56.1 ± 8.6 years and a
mean education of 10.9 ± 3.0 years had long-term bilateral SNHL
and 54 subjects were age-, gender-, and education level-matched
healthy controls with clinical normal hearing. Both groups

underwent T1-weighted image scan (T1WI), BOLD sequences
and a series of neuropsychological tests. Only 25 SNHL subjects
(10 males and 15 females) and 20 Controls (4 males and 16
females) agreed to complete the next arterial spin labeling (ASL)
scan (see Table 1 and Figure 1). All subjects were randomly
assigned using double-blinded principles for further analysis.

Participants were all right-handed and had at least 6 years
of education, with ages ranging from 38 to 65 years. Patients
meeting the diagnostic criteria of SNHL > 1 year. Participants
were excluded if they (1) suffered from tinnitus, hyperacusis,
acoustic neuroma, Meniere’s diseases, head trauma, visual loss,
severe heart diseases or MRI contraindications; (2) had a
history of head surgery, stroke, cognitive impairment or other
serious physical and psychotic diseases; (3) presented with drug
dependence, alcohol or substance abuse.

The study was approved by the ethics committee of Zhongda
Hospital, Southeast University (2016ZDSYLL031.0). Written
informed consent in accordance with the Declaration of Helsinki
was obtained from all subjects.

Auditory Evaluation
Clinical pure tone audiometry (PTA) test (Chen et al., 2018)
was performed at 0.125, 0.25, 0.5, 1, 2, 4, 8 kHz by a trained
otolaryngologist with 12 years of work experience from the ENT
Department of Zhongda Hospital using a GSI-61 audiometer. In

TABLE 1 | Clinical characteristics of SNHL and the control groups and local
measurements of the left and right insula.

Characteristics SNHL (n = 35) Control (n = 54) P-value

Clinical measurements

Gender (male/female) 22/13 34/20 0.992a

Age (years) 56.1 ± 8.6 53.5 ± 7.9 0.153b

Education (years) 10.9 ± 3.0 12.4 ± 5.2 0.136b

Duration (years) 6.9 ± 6.7 – –

Neuropsychological tests

MMSE 29.6 ± 0.8 29.7 ± 0.5 0.352b

SDMT 33.4 ± 12.2 40.7 ± 8.9 0.003b

AVLT-5 min 5.7 ± 2.5 6.6 ± 2.0 0.070b

AVLT-20 min 5.6 ± 2.5 6.5 ± 2.2 0.079b

SAS 35.8 ± 7.1 30.9 ± 5.5 <0.001b

HAMD 6.1 ± 4.0 4.4 ± 2.9 0.025b

Volume

Relative volume of left
insula

0.406 ± 0.007 0.411 ± 0.006 0.592b

Relative volume of right
insula

0.405 ± 0.007 0.409 ± 0.006 0.612b

Perfusion SNHL (n = 25) Control (n = 20) P-value

Mean CBF of left insula
(ml/100 g/min)

71.610 ± 2.847 61.100 ± 2.975 0.013b

Mean CBF of right
insula (ml/100 g/min)

78.780 ± 3.109 67.230 ± 3.429 0.018b

Data are represented as mean ± standard deviation. aChi-square test;
b Independent-sample t-test. SNHL, sensorineural hearing loss; MMSE, Mini Mental
State Exam; SDMT, Symbol Digit Modalities Test; AVLT, Auditory Verbal Learning
Test; SAS, Self-Rating Anxiety Scale; HAMD, Hamilton Depression Scale; CBF,
cerebral blood flow.
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FIGURE 1 | Experimental flowchart. SNHL, sensorineural hearing loss;
MMSE, Mini Mental State Exam; SDMT, Symbol Digit Modalities Test; AVLT,
Auditory Verbal Learning Test; SAS, Self-Rating Anxiety Scale; HAMD,
Hamilton Depression Scale.

the control group, the mean PTA across the seven frequencies
was <25 dB HL (Lin et al., 2011), while the mean PTA of SNHL
across the seven frequencies was >30 dB HL. According to global
burden of disease (GBD) 2013, hearing loss has been ranked
into five severity levels, as moderate, 35–49 dB; moderately
severe, 50–64 dB; severe, 65–79 dB; profound, 80–94 dB; and
complete >95 dB.

Neuropsychological Assessment
All subjects underwent a battery of neuropsychological tests prior
to the MRI scans and these tests were carried out by a professional
psychiatrist with 6 years of work experience to provide a measure
of their cognitive and mental status. General cognition was
established by the Mini Mental State Exam (MMSE) (Galea and
Woodward, 2005), the Symbol Digit Modalities Test (SDMT)
(Patel et al., 2017), and the Auditory Verbal Learning Test
(AVLT) (Hawkins et al., 2004). Depression and anxiety status
were assessed using the Hamilton Depression Scale (HAMD)
(Maier et al., 1985) and the Self-Rating Anxiety Scale (SAS)
(Zung, 1971).

Brain Imaging Acquisition
MRI studies were performed in a Siemens 3.0 Tesla scanner
using a homogeneous birdcage head coil. Subjects lay supine and
were required to close their eyes, stay awake and avoid thinking
specific thoughts while in the scanner. We used ear plugs and
earphones to attenuate scanner noise and a head cushion to
reduce head motion. High-resolution 3-dimensional T1WI scans
were acquired using a spoiled gradient-echo sequence [repetition
time (TR) = 1900 ms, echo time (TE) = 2.48 ms, flip angle
(FA) = 90◦, field of view (FOV) = 256 mm × 256 mm, acquisition
matrix = 256 × 256, slices = 176, section thickness = 1.0 mm].
A gradient-echo-planar imaging sequence was set up to obtain

functional images (TR = 2000 ms, TE = 25 ms, 36 slices, section
thickness = 4.0 mm, FA = 90◦, FOV = 240 mm × 240 mm,
acquisition matrix = 64 × 64). Subsequent ASL perfusion MR
was performed using a Siemens product pulsed-ASL (pASL)
PICORE Q2T sequence (TR = 4000 ms, TE = 12 ms, 27
slices, thickness = 4 mm; FA = 90◦; matrix = 64 × 64;
FOV = 220 mm × 220 mm).

Data Processing Protocol
Functional Data
Two experienced radiologists inspected all image data. As
described in previous studies (Chen et al., 2014; Cui et al.,
2014), data analysis was conducted using DPARBI toolbox1,
which is based on DPARSF (version 4.3), SPM 122, and REST3.
After removing the first 10 time points, the remaining 230
times points were corrected for slice timing, realignment of
head motion, segmentation and normalization to the non-linear
Montreal Neurological Institute (MNI) template (resampling
to 3 mm × 3 mm × 3 mm voxels). Then regressed six
motion parameters, white matter, and CSF signals. Afterward, the
images were smoothed using a 6 mm full-width half-maximum
(FWHM) Gaussian kernel. No one was excluded from this study
because of head motion >2.0 mm translation or >2.0◦ rotation
in any direction.

Structure Data
Individual structural images were analyzed with the DARTEL-
VBM method (Colloby et al., 2011, 2014) in the following
order: (1) segment the MRI images into the gray matter
(GM), white matter and cerebrospinal fluid standard unified
segmentation model in SPM 12; (2) construct GM templates from
the entire image dataset (Ashburner, 2007) to generate tissue
probability maps in MNI space; (3) perform non-linear warping
of segmented images to match the MNI space to DARTEL
templates; (4) modulate the relative GM volume following
spatial normalization; (5) smooth data with a 6 mm FWHM
Gaussian kernel.

Perfusion Data
Similar to (Zhang et al., 2018), SPM 12 and ASLtbx (Wang et al.,
2008) were used to process pASL data. First, motion corrections
were performed to eliminate spurious motion artifacts. The raw
ASL images were then high pass filtered to retain the higher
frequency band. Then, the ASL images were co-registered to the
T1 images and spatially smoothed with a 6 mm FWHM Gaussian
kernel. After subsequent pairwise control/label image subtraction
and cerebral blood flow (CBF) quantification, rejection of
CBF outliers, mean CBF maps were created and registered
into the MNI space using the transformation obtained from
structural images.

Statistical Analysis
Demographic, clinical variables and scores of neuropsychological
performance were compared by independent-sample t-tests

1http://rfmri.org/DPABI
2http://www.fil.ion.ucl.ac.uk/spm
3http://www.restfmri.net
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using SPSS software (Version 18.0, United States). Chi-square
tests were used to compare categorical variables (e.g., gender).
P-values <0.05 were considered statistically significant.

Using the Anatomical Automatic Labeling (AAL) atlas, we
selected the left and right insula as two ROIs. We extracted
the relative volume and mean CBF values of the two ROIs and
identified changes in structure and perfusion caused by SNHL
(two-sample t-test, p < 0.05). Consistent with previous research
(Zamorano et al., 2017; Zhang et al., 2017b), bilateral vAI, dAI
and PI subdivisions were used as seeds in the whole-brain FC
analysis (see Table 2 for the coordinates of six ROIs). The
resulting FC maps were transformed using Fisher’s z to yield
normally distributed data and the data averaged for each subject.
False discovery rate (FDR) correction was used to correct for
multiple comparisons with a corrected p < 0.001. To examine
changes in FC caused by SNHL, a partial correlation analysis
with some covariates (including age, gender and education
level) between z-values of the FC results and the clinical
measurements were performed using SPSS software (Version
18.0, United States). Statistical significance was set a p < 0.05.

The three large-scale networks, CEN, DMN, and SN, are
believed to be involved in psychiatric disorders (Menon, 2011)
and the insula is a key node of SN. Therefore, we investigated
the changes in the interregional relations of these three networks
following SNHL. The nodes representing CEN and DMN were
selected according to previous research (Moran et al., 2013):
CEN: dorsolateral prefrontal cortex (DLPFC), inferior parietal
lobule (IPL), and Caudate; DMN: medial prefrontal cortex
(MPFC), posterior cingulate cortex (PCC), lateral parietal cortex
(LP), and parahippocampal gyrus (PHG). ROI-wise FC analysis
was conducted among CEN, DMN, and SN, with FDR correction
for multiple comparison (corrected p < 0.05). All above analysis
on the MRI data were conducted using the age, gender and
education level as covariance.

RESULTS

Clinical Characteristics and Local
Measurements of the Insula
The demographic and clinical characteristics of SNHL and
Controls are summarized in Table 1. Both groups were well-
matched in terms of gender, age and education level. SNHL
subjects performed significantly worse that Controls on SDMT

TABLE 2 | Name and coordinates of insula subdivisions (r = 6 mm).

Hemisphere Subdivision Abbreviation Coordinate

X Y Z

Left Ventral anterior insula vAI −33 13 −7

Dorsal anterior insula dAI −38 6 2

Posterior insula PI −38 −6 5

Right Ventral anterior insula vAI 32 10 −6

Dorsal anterior insula dAI 35 7 3

Posterior insula PI 35 −11 6

(p < 0.003), SAS (p < 0.001) and HAMD (p = 0.025) tests.
Figure 2 illustrates the differences in hearing thresholds between
the SNHL group and Controls at 0.125, 0.25, 0.5, 1, 2, 4, and
8 kHz. Thresholds in the SNHL group were significantly higher
in the SNHL group than Controls (p < 0.001), especially at the
high frequencies (4 and 8 kHz).

There was no significant difference in the relative volume
of bilateral insula between two groups (Table 1). However,
CBF values of the left and right insula were significantly
greater in SNHL group compared to Controls, indicating the
hyperperfusion of the insula after auditory deprivation.

Voxel-Wise Functional Connectivity of
Insula Subdivisions
Using six insula subdivisions as ROIs, FC analysis revealed
an extensive reduction of connectivity between the insula and
other brain regions (p < 0.001, FDR corrected, minimum
cluster = 50). Compared to Controls, the SNHL group showed
a significant reduction in FC between the left vAI and the
bilateral thalamus and right precentral gyrus. Additionally, the
SNHL group displayed weakened FC between left dAI and the
right thalamus, putamen, DLPFC, precentral gyrus, postcentral
gyrus and mid-cingulate cortex. Moreover, the SNHL group
demonstrated decreased FC between the right dAI and right
rolandic operculum. Finally, the SNHL group demonstrated
decreased FC between the right PI and right thalamus, as well as
right precentral gyrus (Figure 3 and Table 3).

Functional Connectivity and Clinical
Features
Partial correlation analysis with some covariates (age, gender,
and education level) identified significant relationships between
clinical characteristics and FC data. In the SNHL group, FC of
the left dAI and right DLPFC was negatively correlated with SAS
scores (r = −0.489, p = 0.005, Figure 4A) and positively correlated
with SDMT sores (r = 0.410, p = 0.020, Figure 4B). FC in the

FIGURE 2 | Hearing thresholds at seven frequencies (0.125, 0.25, 0.5, 1, 2,
4, 8 kHz) evaluated by pure tone audiometry tests in SNHL and Control
groups. Data are expressed as mean ± standard error. ∗∗∗p < 0.001.
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left dAI and the right mid-cingulate cortex FC was negatively
correlated with HAMD scores (r = −0.402, p = 0.022, Figure 4C).
However, no correlation survived after multiple comparison.

Network Abnormalities in CEN, DMN,
and SN
To determine if SNHL affected the 18 core regions involved in
the CEN, DMN, and SN, we employed a ROI-wise interregional
connectivity analysis to identify significant changes (Figure 5).
SNHL significantly weakened interactions among these three
networks as follows. The left vAI showed decreased interregional
connectivity with the left LP while the right vAI showed
decreased connections with left LP and right PCC. And the left
dAI showed reduced connectivity with bilateral DLPFC, PCC and
right PCC. Meanwhile, SNHL reduced the connectivity between
left PI and right PCC, as well as the connections between right PI
and bilateral PCC and left LP (p < 0.05, FDR corrected).

DISCUSSION

To our knowledge, this is the first study to determine if
SNHL disrupts the function and connective of the insula and
interregional connectivity using a multimodal neuroimaging
approach. We found significant hyperperfusion in left and
right insula in subjects with SNHL and widespread decreased
neuronal synchronizations between insula subdivisions and other
brain regions. Several of these FC changes were correlated with
altered performance on neuropsychological metrics of emotion
and cognition. Furthermore, SNHL altered the interregional
connections among CEN, DMN, and SN. Taken together, our
findings provide new insights on the role of insula in SNHL-
related neuropsychiatric deficits.

SNHL and Structure
Our VBM analysis failed to identify significant volume
differences in the insula between groups, consistent with absence

FIGURE 3 | Whole-brain voxel-wise functional connectivity patterns of the insula subdivisions (p < 0.001, false discovery rate corrected). (A) Comparing with
Controls, functional connectivity was significantly decreased between left vAI and bilateral thalamus and right precentral gyrus in SNHL subjects. (B) The left dAI
showed significant decreased functional connectivity with right thalamus, putamen, mid-cingulate cortex, precentral gyrus, postcentral gyrus, and DLPFC. (C) The
right dAI showed decreased connectivity with right rolandic operculum. (D) The right PI showed weakened connections with right thalamus and precentral gyrus.
SNHL, sensorineural hearing loss; vAI, ventral anterior insula; dAI, dorsal anterior insula; PI, posterior insula; DLPFC, dorsolateral prefrontal cortex; L, left; R, right.
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TABLE 3 | Decreased functional connectivity of the insula subdivisions in SNHL
subjects comparing with Controls.

Brain
region

BA Side MNI
coordinate

Peak t-value Cluster
size

X Y Z

Functional connectivity of left vAI

Thalamus – R 12 −22 9 −7.2482 102

Thalamus – L −6 −18 6 −6.736 57

Precentral
gyrus

6 R 42 −12 45 −6.3206 68

Functional connectivity of left dAI

Thalamus – R 6 −21 9 −7.6285 298

Putamen 48 R 30 −3 9 −5.8026 81

Dorsolateral
prefrontal
cortex

46 R 42 42 27 −5.3125 53

Precentral
gyrus

6 R 42 −12 45 −6.227 303

Mid-
cingulate
cortex

– R 15 −36 39 −5.522 53

Postcentral
gyrus

6 R 27 −27 66 −5.3037 62

Functional connectivity of right dAI

Rolandic
operculum

48 R 39 −12 21 −5.8744 56

Functional connectivity of right PI

Thalamus – L 9 −21 9 −6.4883 108

Precentral
gyrus

6 R 39 −12 45 −6.4082 229

The threshold was set at p < 0.001, false discovery rate correction. BA, Brodmann
area; vAI, ventral anterior insula; dAI, dorsal anterior insula; PI, posterior insula.

of major structural changes in the insula of prelingual and
postlingual hearing loss (Shibata, 2007; Hribar et al., 2014;
Shiell and Zatorre, 2017). However, a few studies (Allen

et al., 2008) reported structural alterations in the human
insula from congenital deafness; in these cases sign language
increased GM volume of left PI compared to normal hearing
subjects. Compared to hearing non-signers, hearing signers,
and deaf signers exhibited a significant increase in the size
of the right insula, which was attributed to lip-reading and
articulation, rather than auditory input itself (MacSweeney
et al., 2001). In contrast, the SNHL patients in our study all
had acquired postlingual hearing loss and lived with normal
hearing families. Thus, the most likely explanation for the
lack of structural changes in our study was the lack of sign
language history. We did not ask our controls and SNHL
whether they were signers and cannot address the question about
the effects of articulation. All things being equal, it is likely
that signing was equally distributed across the SNHL and the
control group, making it difficult to identify an articulatory
effect in our data.

Perfusion
Pulsed-ASL is a non-invasive and sensitive imaging technique
for assessing CBF without using radioactive sources or contrast
agents (Williams et al., 1992; Detre and Alsop, 1999). In
comparison to PET, pASL has superior spatial resolution and
sensitivity, therefore it has been widely used to measure
CBF in cerebrovascular and psychiatric disorders (Cui et al.,
2017). Our observation of heighted CBF values in the
insula was independent of cortical atrophy, as no volume
difference were observed between SNHL subjects and Controls
in the insula. Lee et al. (2001) reported hypoperfusion
in the primary cortex and auditory-association cortex of
prelingually deaf patients; the hypoperfusion was positively
correlated with degree of hearing improvement after cochlear
implantation. Prior PET reports from subject with postlingual
deafness (n = 7) (Okuda et al., 2013) and idiopathic sudden

FIGURE 4 | Partial correlations between fMRI data and clinical measurements. (A) The left dAI-right DLPFC connectivity showed a negative correlation with SAS
scores. (B) The left dAI-right DLPFC connectivity showed a positive correlation with SDMT scores. (C) The left dAI-right mid-cingulate cortex connectivity showed a
negative correlation with HAMD scores. SNHL, sensorineural hearing loss; dAI, dorsal anterior insula; SDMT, Symbol Digit Modalities Test; SAS, Self-Rating Anxiety
Scale; HAMD, Hamilton Depression Scale; DLPFC, dorsolateral prefrontal cortex.
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FIGURE 5 | ROI-wise interregional connectivity analysis among salience network, central executive network and default mode network across all participants
(p < 0.05, false discovery rate corrected). (A) Colored matrix indicating t-values of interactions among salience network, central executive network and default mode
network. (B) Significant difference in interregional functional connectivity between SNHL and Controls. (C) Detailed ROI coordinates extracted from central executive
network and default mode network. SNHL, sensorineural hearing loss. ∗p < 0.05.

SNHL patients (n = 14) (Micarelli et al., 2017) indicated
lower glucose metabolism in the temporal lobe and insula
attributed to the absence of sensory input. The difference
between our insula results and these earlier reports may
be related to the types of hearing loss (i.e., unilateral vs.
bilateral, genetic factors), duration of deafness, small sample
size, and other factors such as cognitive and emotional
differences as illustrated by worse scores on SDMT, SAS,
and HAMD in our SNHL subjects. Others have noted a
relationship between the perfusion of the insula and anxiety
(Andreescu et al., 2011). Moreover, it has been reported
that depression could activate the insula and amygdala,
propounding an “anxious-misery” dimension (Kennedy et al.,
2001; Xekardaki et al., 2015). Thus, the increased perfusion
in the insula might be associated with SNHL-induced anxiety
and depression in our subject sample. We speculate that
the CBF could be a confirmatory candidate biomarker for
diagnosis since it is tightly linked to regional metabolism and
neural activity.

Regional Insula Functional Connectivity
Changes
Most insula subdivisions in our SNHL subjects showed
decreased connectivity with the thalamus which might reflect
a change in sensory-emotional integration (Groenewegen and
Berendse, 1994). The thalamus receives numerous sensory
inputs and then relays this information to associated higher-
order primary cortical areas (Lee, 2015). Reward stimuli can
increase the thalamus-to-insula connectivity (Cho et al., 2013)
whereas negative stimuli, such as difficulties hearing due
to partial deafness, could have the opposite effect thereby
reducing connectivity. It is conceivable that reduced incoming
auditory information results in weakened connectivity between
the thalamus and insula. Additionally, we observed reduced
connections between the left dAI and right putamen while
the putamen has been found to connect to the thalamus and
functioned in cognition decline, anxiety and depression (Park
et al., 2017; Luo et al., 2018).
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Traditionally, the dAI and vAI are activated by cognition
and emotion task, respectively (Nomi et al., 2016). However,
this cognition-emotion dichotomy has been challenged recently
(Uddin et al., 2014). Our data showed reduced couplings between
the left dAI and right mid-cingulate cortex in SNHL subjects,
as well as the negative correlation with HAMD scores. The
mid-cingulate cortex is not only linked to cognitive processing,
including decision making, attention and salience (Dosenbach
et al., 2007; Rushworth et al., 2007), but also homeostasis and
emotion, and it has become a therapy target for intractable
mood, anxiety, and pain disorders (Tolomeo et al., 2016).
Patients with treatment-resistant depression or refractory pain
sometimes receive bilateral cingulotomy (including AI) (Steele
et al., 2008; Shackman et al., 2011). Primate and human studies
(Mufson and Mesulam, 1982; Taylor et al., 2009) provide
evidence for functional connections between the AI and mid-
cingulate cortex, as well as FC between the entire insula
and mid-cingulate cortex. In addition, thalamus-insula- mid-
cingulate cortex projection tracts have been found in animals
(Hatanaka et al., 2003), suggesting that functional connections
between the dAI and mid-cingulate cortex might contribute to
neuropsychiatric disorders.

Reduced fluorodeoxyglucose (FDG) uptake has been observed
in the insula, precentral gyrus and postcentral gyrus within
72 h following sudden SNHL (Micarelli et al., 2017). Although
the postcentral gyrus has often been linked to somatosensory
processing, pain and olfaction (Bedny et al., 2011; Grabski
et al., 2012), studies have demonstrated greater activation in
this region in speech rhythm, auditory oddball and articulation
imagery tasks (Geiser et al., 2008; Job et al., 2012; Tian et al.,
2016), suggesting its involvement in speech perception. The
volume of the precentral gyrus is reduced in schizophrenia
(Zhou et al., 2005), indicating that the precentral gyrus (part
of the primary motor cortex) is involved in motor-related
cognitive functioning (Georgopoulos, 2000); these observations
are relevant to poorer SDMT performance in our SNHL subjects.
Moreover, the right dAI showed decreased connectivity with
rolandic operculum as it together covers with the insula and
was reported hyperactivity in tinnitus subjects following acute
acoustic trauma (Job et al., 2012).

Some insula subdivisions showed decreased connectivity
with the DLPFC, PCC, and LP using voxel-wise and ROI-
wise methods, suggesting the involvement of the DMN and
CEN in SNHL-induced auditory deprivation. A meta-analysis
showed that several brain regions overlap with the DMN and
CEN play an important role in processing multiple cognitive
signals (Dosenbach et al., 2006), while acquiring normal sensory
information supports cognition functioning. SNHL disrupts
the auditory system, leading to the disruptions of the SN,
resulting in imbalances between the DMN and CEN. Chand
et al. (2017), also found abnormal interactions among the SN,
DMN, and CEN in subjects with mild cognitive impairments.
Recent research suggest that that depression and anxiety are
associated with alterations in the DMN, expanding the role
of DMN in emotion processing (Vicentini et al., 2017), as FC
of left dAI-right DLPFC not only showed positive correlation
with SDMT performance, but also negative correlation with

SAS scores. Combing the hyperperfusion in the insula, we
used an “inefficient high-order control” theory to illustrate
this phenomenon.

Limitation
There were several limitations to our research. First, it is
reported that human left and right insula occupy a total
volume of around 10–20 cm3 (Bauernfeind et al., 2013) while
we employed 6-mm diameter spherical ROIs as seeds, further
research with independent component analysis could be used
to extract the insula subregions. Second, the relative small
sample of subjects likely reduced the statistical power, particularly
for the correlation analysis. A follow-up study with a larger
dataset might help to elucidate more subtle effects in the
future. Another limitation was the range and duration of
hearing loss in our study. Repeating aspects of this study
using subjects with more severe and/or longer duration hearing
loss might identify other functional and structural changes
associated with SNHL.

CONCLUSION

In conclusion, this study underscores the potential contribution
of disrupted neural processing in the insula resulting from
SNHL and its potential relationships with neuropsychiatric
disorders, suggesting that it could be a candidate biomarker
for auditory deprivation related neural deficits and a future
target for therapy.
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